1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // \file 11 // This file implements a TargetTransformInfo analysis pass specific to the 12 // AMDGPU target machine. It uses the target's detailed information to provide 13 // more precise answers to certain TTI queries, while letting the target 14 // independent and default TTI implementations handle the rest. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "AMDGPUTargetTransformInfo.h" 19 #include "AMDGPUSubtarget.h" 20 #include "Utils/AMDGPUBaseInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/ISDOpcodes.h" 26 #include "llvm/CodeGen/MachineValueType.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/MC/SubtargetFeature.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <limits> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "AMDGPUtti" 57 58 static cl::opt<unsigned> UnrollThresholdPrivate( 59 "amdgpu-unroll-threshold-private", 60 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 61 cl::init(2500), cl::Hidden); 62 63 static cl::opt<unsigned> UnrollThresholdLocal( 64 "amdgpu-unroll-threshold-local", 65 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 66 cl::init(1000), cl::Hidden); 67 68 static cl::opt<unsigned> UnrollThresholdIf( 69 "amdgpu-unroll-threshold-if", 70 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 71 cl::init(150), cl::Hidden); 72 73 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 74 unsigned Depth = 0) { 75 const Instruction *I = dyn_cast<Instruction>(Cond); 76 if (!I) 77 return false; 78 79 for (const Value *V : I->operand_values()) { 80 if (!L->contains(I)) 81 continue; 82 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 83 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 84 return SubLoop->contains(PHI); })) 85 return true; 86 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 87 return true; 88 } 89 return false; 90 } 91 92 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 93 TTI::UnrollingPreferences &UP) { 94 UP.Threshold = 300; // Twice the default. 95 UP.MaxCount = std::numeric_limits<unsigned>::max(); 96 UP.Partial = true; 97 98 // TODO: Do we want runtime unrolling? 99 100 // Maximum alloca size than can fit registers. Reserve 16 registers. 101 const unsigned MaxAlloca = (256 - 16) * 4; 102 unsigned ThresholdPrivate = UnrollThresholdPrivate; 103 unsigned ThresholdLocal = UnrollThresholdLocal; 104 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 105 AMDGPUAS ASST = ST->getAMDGPUAS(); 106 for (const BasicBlock *BB : L->getBlocks()) { 107 const DataLayout &DL = BB->getModule()->getDataLayout(); 108 unsigned LocalGEPsSeen = 0; 109 110 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 111 return SubLoop->contains(BB); })) 112 continue; // Block belongs to an inner loop. 113 114 for (const Instruction &I : *BB) { 115 // Unroll a loop which contains an "if" statement whose condition 116 // defined by a PHI belonging to the loop. This may help to eliminate 117 // if region and potentially even PHI itself, saving on both divergence 118 // and registers used for the PHI. 119 // Add a small bonus for each of such "if" statements. 120 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 121 if (UP.Threshold < MaxBoost && Br->isConditional()) { 122 if (L->isLoopExiting(Br->getSuccessor(0)) || 123 L->isLoopExiting(Br->getSuccessor(1))) 124 continue; 125 if (dependsOnLocalPhi(L, Br->getCondition())) { 126 UP.Threshold += UnrollThresholdIf; 127 DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 128 << " for loop:\n" << *L << " due to " << *Br << '\n'); 129 if (UP.Threshold >= MaxBoost) 130 return; 131 } 132 } 133 continue; 134 } 135 136 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 137 if (!GEP) 138 continue; 139 140 unsigned AS = GEP->getAddressSpace(); 141 unsigned Threshold = 0; 142 if (AS == ASST.PRIVATE_ADDRESS) 143 Threshold = ThresholdPrivate; 144 else if (AS == ASST.LOCAL_ADDRESS) 145 Threshold = ThresholdLocal; 146 else 147 continue; 148 149 if (UP.Threshold >= Threshold) 150 continue; 151 152 if (AS == ASST.PRIVATE_ADDRESS) { 153 const Value *Ptr = GEP->getPointerOperand(); 154 const AllocaInst *Alloca = 155 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 156 if (!Alloca || !Alloca->isStaticAlloca()) 157 continue; 158 Type *Ty = Alloca->getAllocatedType(); 159 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 160 if (AllocaSize > MaxAlloca) 161 continue; 162 } else if (AS == ASST.LOCAL_ADDRESS) { 163 LocalGEPsSeen++; 164 // Inhibit unroll for local memory if we have seen addressing not to 165 // a variable, most likely we will be unable to combine it. 166 // Do not unroll too deep inner loops for local memory to give a chance 167 // to unroll an outer loop for a more important reason. 168 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 169 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 170 !isa<Argument>(GEP->getPointerOperand()))) 171 continue; 172 } 173 174 // Check if GEP depends on a value defined by this loop itself. 175 bool HasLoopDef = false; 176 for (const Value *Op : GEP->operands()) { 177 const Instruction *Inst = dyn_cast<Instruction>(Op); 178 if (!Inst || L->isLoopInvariant(Op)) 179 continue; 180 181 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 182 return SubLoop->contains(Inst); })) 183 continue; 184 HasLoopDef = true; 185 break; 186 } 187 if (!HasLoopDef) 188 continue; 189 190 // We want to do whatever we can to limit the number of alloca 191 // instructions that make it through to the code generator. allocas 192 // require us to use indirect addressing, which is slow and prone to 193 // compiler bugs. If this loop does an address calculation on an 194 // alloca ptr, then we want to use a higher than normal loop unroll 195 // threshold. This will give SROA a better chance to eliminate these 196 // allocas. 197 // 198 // We also want to have more unrolling for local memory to let ds 199 // instructions with different offsets combine. 200 // 201 // Don't use the maximum allowed value here as it will make some 202 // programs way too big. 203 UP.Threshold = Threshold; 204 DEBUG(dbgs() << "Set unroll threshold " << Threshold << " for loop:\n" 205 << *L << " due to " << *GEP << '\n'); 206 if (UP.Threshold >= MaxBoost) 207 return; 208 } 209 } 210 } 211 212 unsigned AMDGPUTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 213 // The concept of vector registers doesn't really exist. Some packed vector 214 // operations operate on the normal 32-bit registers. 215 216 // Number of VGPRs on SI. 217 if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) 218 return 256; 219 220 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 221 } 222 223 unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) const { 224 // This is really the number of registers to fill when vectorizing / 225 // interleaving loops, so we lie to avoid trying to use all registers. 226 return getHardwareNumberOfRegisters(Vec) >> 3; 227 } 228 229 unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) const { 230 return 32; 231 } 232 233 unsigned AMDGPUTTIImpl::getMinVectorRegisterBitWidth() const { 234 return 32; 235 } 236 237 unsigned AMDGPUTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 238 AMDGPUAS AS = ST->getAMDGPUAS(); 239 if (AddrSpace == AS.GLOBAL_ADDRESS || 240 AddrSpace == AS.CONSTANT_ADDRESS || 241 AddrSpace == AS.CONSTANT_ADDRESS_32BIT || 242 AddrSpace == AS.FLAT_ADDRESS) 243 return 128; 244 if (AddrSpace == AS.LOCAL_ADDRESS || 245 AddrSpace == AS.REGION_ADDRESS) 246 return 64; 247 if (AddrSpace == AS.PRIVATE_ADDRESS) 248 return 8 * ST->getMaxPrivateElementSize(); 249 250 if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS && 251 (AddrSpace == AS.PARAM_D_ADDRESS || 252 AddrSpace == AS.PARAM_I_ADDRESS || 253 (AddrSpace >= AS.CONSTANT_BUFFER_0 && 254 AddrSpace <= AS.CONSTANT_BUFFER_15))) 255 return 128; 256 llvm_unreachable("unhandled address space"); 257 } 258 259 bool AMDGPUTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 260 unsigned Alignment, 261 unsigned AddrSpace) const { 262 // We allow vectorization of flat stores, even though we may need to decompose 263 // them later if they may access private memory. We don't have enough context 264 // here, and legalization can handle it. 265 if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS) { 266 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 267 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 268 } 269 return true; 270 } 271 272 bool AMDGPUTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 273 unsigned Alignment, 274 unsigned AddrSpace) const { 275 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 276 } 277 278 bool AMDGPUTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 279 unsigned Alignment, 280 unsigned AddrSpace) const { 281 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 282 } 283 284 unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) { 285 // Disable unrolling if the loop is not vectorized. 286 // TODO: Enable this again. 287 if (VF == 1) 288 return 1; 289 290 return 8; 291 } 292 293 bool AMDGPUTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 294 MemIntrinsicInfo &Info) const { 295 switch (Inst->getIntrinsicID()) { 296 case Intrinsic::amdgcn_atomic_inc: 297 case Intrinsic::amdgcn_atomic_dec: 298 case Intrinsic::amdgcn_ds_fadd: 299 case Intrinsic::amdgcn_ds_fmin: 300 case Intrinsic::amdgcn_ds_fmax: { 301 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 302 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 303 if (!Ordering || !Volatile) 304 return false; // Invalid. 305 306 unsigned OrderingVal = Ordering->getZExtValue(); 307 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 308 return false; 309 310 Info.PtrVal = Inst->getArgOperand(0); 311 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 312 Info.ReadMem = true; 313 Info.WriteMem = true; 314 Info.IsVolatile = !Volatile->isNullValue(); 315 return true; 316 } 317 default: 318 return false; 319 } 320 } 321 322 int AMDGPUTTIImpl::getArithmeticInstrCost( 323 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, 324 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 325 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) { 326 EVT OrigTy = TLI->getValueType(DL, Ty); 327 if (!OrigTy.isSimple()) { 328 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 329 Opd1PropInfo, Opd2PropInfo); 330 } 331 332 // Legalize the type. 333 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 334 int ISD = TLI->InstructionOpcodeToISD(Opcode); 335 336 // Because we don't have any legal vector operations, but the legal types, we 337 // need to account for split vectors. 338 unsigned NElts = LT.second.isVector() ? 339 LT.second.getVectorNumElements() : 1; 340 341 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 342 343 switch (ISD) { 344 case ISD::SHL: 345 case ISD::SRL: 346 case ISD::SRA: 347 if (SLT == MVT::i64) 348 return get64BitInstrCost() * LT.first * NElts; 349 350 // i32 351 return getFullRateInstrCost() * LT.first * NElts; 352 case ISD::ADD: 353 case ISD::SUB: 354 case ISD::AND: 355 case ISD::OR: 356 case ISD::XOR: 357 if (SLT == MVT::i64){ 358 // and, or and xor are typically split into 2 VALU instructions. 359 return 2 * getFullRateInstrCost() * LT.first * NElts; 360 } 361 362 return LT.first * NElts * getFullRateInstrCost(); 363 case ISD::MUL: { 364 const int QuarterRateCost = getQuarterRateInstrCost(); 365 if (SLT == MVT::i64) { 366 const int FullRateCost = getFullRateInstrCost(); 367 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 368 } 369 370 // i32 371 return QuarterRateCost * NElts * LT.first; 372 } 373 case ISD::FADD: 374 case ISD::FSUB: 375 case ISD::FMUL: 376 if (SLT == MVT::f64) 377 return LT.first * NElts * get64BitInstrCost(); 378 379 if (SLT == MVT::f32 || SLT == MVT::f16) 380 return LT.first * NElts * getFullRateInstrCost(); 381 break; 382 case ISD::FDIV: 383 case ISD::FREM: 384 // FIXME: frem should be handled separately. The fdiv in it is most of it, 385 // but the current lowering is also not entirely correct. 386 if (SLT == MVT::f64) { 387 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 388 // Add cost of workaround. 389 if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) 390 Cost += 3 * getFullRateInstrCost(); 391 392 return LT.first * Cost * NElts; 393 } 394 395 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 396 // TODO: This is more complicated, unsafe flags etc. 397 if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) || 398 (SLT == MVT::f16 && ST->has16BitInsts())) { 399 return LT.first * getQuarterRateInstrCost() * NElts; 400 } 401 } 402 403 if (SLT == MVT::f16 && ST->has16BitInsts()) { 404 // 2 x v_cvt_f32_f16 405 // f32 rcp 406 // f32 fmul 407 // v_cvt_f16_f32 408 // f16 div_fixup 409 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 410 return LT.first * Cost * NElts; 411 } 412 413 if (SLT == MVT::f32 || SLT == MVT::f16) { 414 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 415 416 if (!ST->hasFP32Denormals()) { 417 // FP mode switches. 418 Cost += 2 * getFullRateInstrCost(); 419 } 420 421 return LT.first * NElts * Cost; 422 } 423 break; 424 default: 425 break; 426 } 427 428 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 429 Opd1PropInfo, Opd2PropInfo); 430 } 431 432 unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) { 433 // XXX - For some reason this isn't called for switch. 434 switch (Opcode) { 435 case Instruction::Br: 436 case Instruction::Ret: 437 return 10; 438 default: 439 return BaseT::getCFInstrCost(Opcode); 440 } 441 } 442 443 int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 444 unsigned Index) { 445 switch (Opcode) { 446 case Instruction::ExtractElement: 447 case Instruction::InsertElement: { 448 unsigned EltSize 449 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 450 if (EltSize < 32) { 451 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 452 return 0; 453 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 454 } 455 456 // Extracts are just reads of a subregister, so are free. Inserts are 457 // considered free because we don't want to have any cost for scalarizing 458 // operations, and we don't have to copy into a different register class. 459 460 // Dynamic indexing isn't free and is best avoided. 461 return Index == ~0u ? 2 : 0; 462 } 463 default: 464 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 465 } 466 } 467 468 469 470 static bool isArgPassedInSGPR(const Argument *A) { 471 const Function *F = A->getParent(); 472 473 // Arguments to compute shaders are never a source of divergence. 474 CallingConv::ID CC = F->getCallingConv(); 475 switch (CC) { 476 case CallingConv::AMDGPU_KERNEL: 477 case CallingConv::SPIR_KERNEL: 478 return true; 479 case CallingConv::AMDGPU_VS: 480 case CallingConv::AMDGPU_LS: 481 case CallingConv::AMDGPU_HS: 482 case CallingConv::AMDGPU_ES: 483 case CallingConv::AMDGPU_GS: 484 case CallingConv::AMDGPU_PS: 485 case CallingConv::AMDGPU_CS: 486 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 487 // Everything else is in VGPRs. 488 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 489 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 490 default: 491 // TODO: Should calls support inreg for SGPR inputs? 492 return false; 493 } 494 } 495 496 /// \returns true if the result of the value could potentially be 497 /// different across workitems in a wavefront. 498 bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const { 499 if (const Argument *A = dyn_cast<Argument>(V)) 500 return !isArgPassedInSGPR(A); 501 502 // Loads from the private address space are divergent, because threads 503 // can execute the load instruction with the same inputs and get different 504 // results. 505 // 506 // All other loads are not divergent, because if threads issue loads with the 507 // same arguments, they will always get the same result. 508 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 509 return Load->getPointerAddressSpace() == ST->getAMDGPUAS().PRIVATE_ADDRESS; 510 511 // Atomics are divergent because they are executed sequentially: when an 512 // atomic operation refers to the same address in each thread, then each 513 // thread after the first sees the value written by the previous thread as 514 // original value. 515 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 516 return true; 517 518 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 519 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 520 521 // Assume all function calls are a source of divergence. 522 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 523 return true; 524 525 return false; 526 } 527 528 bool AMDGPUTTIImpl::isAlwaysUniform(const Value *V) const { 529 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 530 switch (Intrinsic->getIntrinsicID()) { 531 default: 532 return false; 533 case Intrinsic::amdgcn_readfirstlane: 534 case Intrinsic::amdgcn_readlane: 535 return true; 536 } 537 } 538 return false; 539 } 540 541 unsigned AMDGPUTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 542 Type *SubTp) { 543 if (ST->hasVOP3PInsts()) { 544 VectorType *VT = cast<VectorType>(Tp); 545 if (VT->getNumElements() == 2 && 546 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 547 // With op_sel VOP3P instructions freely can access the low half or high 548 // half of a register, so any swizzle is free. 549 550 switch (Kind) { 551 case TTI::SK_Broadcast: 552 case TTI::SK_Reverse: 553 case TTI::SK_PermuteSingleSrc: 554 return 0; 555 default: 556 break; 557 } 558 } 559 } 560 561 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 562 } 563 564 bool AMDGPUTTIImpl::areInlineCompatible(const Function *Caller, 565 const Function *Callee) const { 566 const TargetMachine &TM = getTLI()->getTargetMachine(); 567 const FeatureBitset &CallerBits = 568 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 569 const FeatureBitset &CalleeBits = 570 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 571 572 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 573 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 574 return ((RealCallerBits & RealCalleeBits) == RealCalleeBits); 575 } 576