1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // \file 11 // This file implements a TargetTransformInfo analysis pass specific to the 12 // AMDGPU target machine. It uses the target's detailed information to provide 13 // more precise answers to certain TTI queries, while letting the target 14 // independent and default TTI implementations handle the rest. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "AMDGPUTargetTransformInfo.h" 19 #include "AMDGPUSubtarget.h" 20 #include "Utils/AMDGPUBaseInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/ISDOpcodes.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/MC/SubtargetFeature.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MachineValueType.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <limits> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "AMDGPUtti" 57 58 static cl::opt<unsigned> UnrollThresholdPrivate( 59 "amdgpu-unroll-threshold-private", 60 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 61 cl::init(2500), cl::Hidden); 62 63 static cl::opt<unsigned> UnrollThresholdLocal( 64 "amdgpu-unroll-threshold-local", 65 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 66 cl::init(1000), cl::Hidden); 67 68 static cl::opt<unsigned> UnrollThresholdIf( 69 "amdgpu-unroll-threshold-if", 70 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 71 cl::init(150), cl::Hidden); 72 73 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 74 unsigned Depth = 0) { 75 const Instruction *I = dyn_cast<Instruction>(Cond); 76 if (!I) 77 return false; 78 79 for (const Value *V : I->operand_values()) { 80 if (!L->contains(I)) 81 continue; 82 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 83 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 84 return SubLoop->contains(PHI); })) 85 return true; 86 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 87 return true; 88 } 89 return false; 90 } 91 92 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 93 TTI::UnrollingPreferences &UP) { 94 UP.Threshold = 300; // Twice the default. 95 UP.MaxCount = std::numeric_limits<unsigned>::max(); 96 UP.Partial = true; 97 98 // TODO: Do we want runtime unrolling? 99 100 // Maximum alloca size than can fit registers. Reserve 16 registers. 101 const unsigned MaxAlloca = (256 - 16) * 4; 102 unsigned ThresholdPrivate = UnrollThresholdPrivate; 103 unsigned ThresholdLocal = UnrollThresholdLocal; 104 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 105 const AMDGPUAS &ASST = AMDGPU::getAMDGPUAS(TargetTriple); 106 for (const BasicBlock *BB : L->getBlocks()) { 107 const DataLayout &DL = BB->getModule()->getDataLayout(); 108 unsigned LocalGEPsSeen = 0; 109 110 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 111 return SubLoop->contains(BB); })) 112 continue; // Block belongs to an inner loop. 113 114 for (const Instruction &I : *BB) { 115 // Unroll a loop which contains an "if" statement whose condition 116 // defined by a PHI belonging to the loop. This may help to eliminate 117 // if region and potentially even PHI itself, saving on both divergence 118 // and registers used for the PHI. 119 // Add a small bonus for each of such "if" statements. 120 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 121 if (UP.Threshold < MaxBoost && Br->isConditional()) { 122 if (L->isLoopExiting(Br->getSuccessor(0)) || 123 L->isLoopExiting(Br->getSuccessor(1))) 124 continue; 125 if (dependsOnLocalPhi(L, Br->getCondition())) { 126 UP.Threshold += UnrollThresholdIf; 127 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 128 << " for loop:\n" 129 << *L << " due to " << *Br << '\n'); 130 if (UP.Threshold >= MaxBoost) 131 return; 132 } 133 } 134 continue; 135 } 136 137 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 138 if (!GEP) 139 continue; 140 141 unsigned AS = GEP->getAddressSpace(); 142 unsigned Threshold = 0; 143 if (AS == ASST.PRIVATE_ADDRESS) 144 Threshold = ThresholdPrivate; 145 else if (AS == ASST.LOCAL_ADDRESS) 146 Threshold = ThresholdLocal; 147 else 148 continue; 149 150 if (UP.Threshold >= Threshold) 151 continue; 152 153 if (AS == ASST.PRIVATE_ADDRESS) { 154 const Value *Ptr = GEP->getPointerOperand(); 155 const AllocaInst *Alloca = 156 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 157 if (!Alloca || !Alloca->isStaticAlloca()) 158 continue; 159 Type *Ty = Alloca->getAllocatedType(); 160 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 161 if (AllocaSize > MaxAlloca) 162 continue; 163 } else if (AS == ASST.LOCAL_ADDRESS) { 164 LocalGEPsSeen++; 165 // Inhibit unroll for local memory if we have seen addressing not to 166 // a variable, most likely we will be unable to combine it. 167 // Do not unroll too deep inner loops for local memory to give a chance 168 // to unroll an outer loop for a more important reason. 169 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 170 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 171 !isa<Argument>(GEP->getPointerOperand()))) 172 continue; 173 } 174 175 // Check if GEP depends on a value defined by this loop itself. 176 bool HasLoopDef = false; 177 for (const Value *Op : GEP->operands()) { 178 const Instruction *Inst = dyn_cast<Instruction>(Op); 179 if (!Inst || L->isLoopInvariant(Op)) 180 continue; 181 182 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 183 return SubLoop->contains(Inst); })) 184 continue; 185 HasLoopDef = true; 186 break; 187 } 188 if (!HasLoopDef) 189 continue; 190 191 // We want to do whatever we can to limit the number of alloca 192 // instructions that make it through to the code generator. allocas 193 // require us to use indirect addressing, which is slow and prone to 194 // compiler bugs. If this loop does an address calculation on an 195 // alloca ptr, then we want to use a higher than normal loop unroll 196 // threshold. This will give SROA a better chance to eliminate these 197 // allocas. 198 // 199 // We also want to have more unrolling for local memory to let ds 200 // instructions with different offsets combine. 201 // 202 // Don't use the maximum allowed value here as it will make some 203 // programs way too big. 204 UP.Threshold = Threshold; 205 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 206 << " for loop:\n" 207 << *L << " due to " << *GEP << '\n'); 208 if (UP.Threshold >= MaxBoost) 209 return; 210 } 211 } 212 } 213 214 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 215 // The concept of vector registers doesn't really exist. Some packed vector 216 // operations operate on the normal 32-bit registers. 217 return 256; 218 } 219 220 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 221 // This is really the number of registers to fill when vectorizing / 222 // interleaving loops, so we lie to avoid trying to use all registers. 223 return getHardwareNumberOfRegisters(Vec) >> 3; 224 } 225 226 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { 227 return 32; 228 } 229 230 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 231 return 32; 232 } 233 234 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 235 unsigned ChainSizeInBytes, 236 VectorType *VecTy) const { 237 unsigned VecRegBitWidth = VF * LoadSize; 238 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 239 // TODO: Support element-size less than 32bit? 240 return 128 / LoadSize; 241 242 return VF; 243 } 244 245 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 246 unsigned ChainSizeInBytes, 247 VectorType *VecTy) const { 248 unsigned VecRegBitWidth = VF * StoreSize; 249 if (VecRegBitWidth > 128) 250 return 128 / StoreSize; 251 252 return VF; 253 } 254 255 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 256 AMDGPUAS AS = ST->getAMDGPUAS(); 257 if (AddrSpace == AS.GLOBAL_ADDRESS || 258 AddrSpace == AS.CONSTANT_ADDRESS || 259 AddrSpace == AS.CONSTANT_ADDRESS_32BIT) { 260 return 512; 261 } 262 263 if (AddrSpace == AS.FLAT_ADDRESS || 264 AddrSpace == AS.LOCAL_ADDRESS || 265 AddrSpace == AS.REGION_ADDRESS) 266 return 128; 267 268 if (AddrSpace == AS.PRIVATE_ADDRESS) 269 return 8 * ST->getMaxPrivateElementSize(); 270 271 llvm_unreachable("unhandled address space"); 272 } 273 274 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 275 unsigned Alignment, 276 unsigned AddrSpace) const { 277 // We allow vectorization of flat stores, even though we may need to decompose 278 // them later if they may access private memory. We don't have enough context 279 // here, and legalization can handle it. 280 if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS) { 281 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 282 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 283 } 284 return true; 285 } 286 287 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 288 unsigned Alignment, 289 unsigned AddrSpace) const { 290 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 291 } 292 293 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 294 unsigned Alignment, 295 unsigned AddrSpace) const { 296 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 297 } 298 299 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 300 // Disable unrolling if the loop is not vectorized. 301 // TODO: Enable this again. 302 if (VF == 1) 303 return 1; 304 305 return 8; 306 } 307 308 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 309 MemIntrinsicInfo &Info) const { 310 switch (Inst->getIntrinsicID()) { 311 case Intrinsic::amdgcn_atomic_inc: 312 case Intrinsic::amdgcn_atomic_dec: 313 case Intrinsic::amdgcn_ds_fadd: 314 case Intrinsic::amdgcn_ds_fmin: 315 case Intrinsic::amdgcn_ds_fmax: { 316 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 317 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 318 if (!Ordering || !Volatile) 319 return false; // Invalid. 320 321 unsigned OrderingVal = Ordering->getZExtValue(); 322 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 323 return false; 324 325 Info.PtrVal = Inst->getArgOperand(0); 326 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 327 Info.ReadMem = true; 328 Info.WriteMem = true; 329 Info.IsVolatile = !Volatile->isNullValue(); 330 return true; 331 } 332 default: 333 return false; 334 } 335 } 336 337 int GCNTTIImpl::getArithmeticInstrCost( 338 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, 339 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 340 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) { 341 EVT OrigTy = TLI->getValueType(DL, Ty); 342 if (!OrigTy.isSimple()) { 343 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 344 Opd1PropInfo, Opd2PropInfo); 345 } 346 347 // Legalize the type. 348 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 349 int ISD = TLI->InstructionOpcodeToISD(Opcode); 350 351 // Because we don't have any legal vector operations, but the legal types, we 352 // need to account for split vectors. 353 unsigned NElts = LT.second.isVector() ? 354 LT.second.getVectorNumElements() : 1; 355 356 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 357 358 switch (ISD) { 359 case ISD::SHL: 360 case ISD::SRL: 361 case ISD::SRA: 362 if (SLT == MVT::i64) 363 return get64BitInstrCost() * LT.first * NElts; 364 365 // i32 366 return getFullRateInstrCost() * LT.first * NElts; 367 case ISD::ADD: 368 case ISD::SUB: 369 case ISD::AND: 370 case ISD::OR: 371 case ISD::XOR: 372 if (SLT == MVT::i64){ 373 // and, or and xor are typically split into 2 VALU instructions. 374 return 2 * getFullRateInstrCost() * LT.first * NElts; 375 } 376 377 return LT.first * NElts * getFullRateInstrCost(); 378 case ISD::MUL: { 379 const int QuarterRateCost = getQuarterRateInstrCost(); 380 if (SLT == MVT::i64) { 381 const int FullRateCost = getFullRateInstrCost(); 382 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 383 } 384 385 // i32 386 return QuarterRateCost * NElts * LT.first; 387 } 388 case ISD::FADD: 389 case ISD::FSUB: 390 case ISD::FMUL: 391 if (SLT == MVT::f64) 392 return LT.first * NElts * get64BitInstrCost(); 393 394 if (SLT == MVT::f32 || SLT == MVT::f16) 395 return LT.first * NElts * getFullRateInstrCost(); 396 break; 397 case ISD::FDIV: 398 case ISD::FREM: 399 // FIXME: frem should be handled separately. The fdiv in it is most of it, 400 // but the current lowering is also not entirely correct. 401 if (SLT == MVT::f64) { 402 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 403 // Add cost of workaround. 404 if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) 405 Cost += 3 * getFullRateInstrCost(); 406 407 return LT.first * Cost * NElts; 408 } 409 410 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 411 // TODO: This is more complicated, unsafe flags etc. 412 if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) || 413 (SLT == MVT::f16 && ST->has16BitInsts())) { 414 return LT.first * getQuarterRateInstrCost() * NElts; 415 } 416 } 417 418 if (SLT == MVT::f16 && ST->has16BitInsts()) { 419 // 2 x v_cvt_f32_f16 420 // f32 rcp 421 // f32 fmul 422 // v_cvt_f16_f32 423 // f16 div_fixup 424 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 425 return LT.first * Cost * NElts; 426 } 427 428 if (SLT == MVT::f32 || SLT == MVT::f16) { 429 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 430 431 if (!ST->hasFP32Denormals()) { 432 // FP mode switches. 433 Cost += 2 * getFullRateInstrCost(); 434 } 435 436 return LT.first * NElts * Cost; 437 } 438 break; 439 default: 440 break; 441 } 442 443 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 444 Opd1PropInfo, Opd2PropInfo); 445 } 446 447 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) { 448 // XXX - For some reason this isn't called for switch. 449 switch (Opcode) { 450 case Instruction::Br: 451 case Instruction::Ret: 452 return 10; 453 default: 454 return BaseT::getCFInstrCost(Opcode); 455 } 456 } 457 458 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 459 bool IsPairwise) { 460 EVT OrigTy = TLI->getValueType(DL, Ty); 461 462 // Computes cost on targets that have packed math instructions(which support 463 // 16-bit types only). 464 if (IsPairwise || 465 !ST->hasVOP3PInsts() || 466 OrigTy.getScalarSizeInBits() != 16) 467 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise); 468 469 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 470 return LT.first * getFullRateInstrCost(); 471 } 472 473 int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy, 474 bool IsPairwise, 475 bool IsUnsigned) { 476 EVT OrigTy = TLI->getValueType(DL, Ty); 477 478 // Computes cost on targets that have packed math instructions(which support 479 // 16-bit types only). 480 if (IsPairwise || 481 !ST->hasVOP3PInsts() || 482 OrigTy.getScalarSizeInBits() != 16) 483 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned); 484 485 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 486 return LT.first * getHalfRateInstrCost(); 487 } 488 489 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 490 unsigned Index) { 491 switch (Opcode) { 492 case Instruction::ExtractElement: 493 case Instruction::InsertElement: { 494 unsigned EltSize 495 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 496 if (EltSize < 32) { 497 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 498 return 0; 499 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 500 } 501 502 // Extracts are just reads of a subregister, so are free. Inserts are 503 // considered free because we don't want to have any cost for scalarizing 504 // operations, and we don't have to copy into a different register class. 505 506 // Dynamic indexing isn't free and is best avoided. 507 return Index == ~0u ? 2 : 0; 508 } 509 default: 510 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 511 } 512 } 513 514 515 516 static bool isArgPassedInSGPR(const Argument *A) { 517 const Function *F = A->getParent(); 518 519 // Arguments to compute shaders are never a source of divergence. 520 CallingConv::ID CC = F->getCallingConv(); 521 switch (CC) { 522 case CallingConv::AMDGPU_KERNEL: 523 case CallingConv::SPIR_KERNEL: 524 return true; 525 case CallingConv::AMDGPU_VS: 526 case CallingConv::AMDGPU_LS: 527 case CallingConv::AMDGPU_HS: 528 case CallingConv::AMDGPU_ES: 529 case CallingConv::AMDGPU_GS: 530 case CallingConv::AMDGPU_PS: 531 case CallingConv::AMDGPU_CS: 532 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 533 // Everything else is in VGPRs. 534 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 535 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 536 default: 537 // TODO: Should calls support inreg for SGPR inputs? 538 return false; 539 } 540 } 541 542 /// \returns true if the result of the value could potentially be 543 /// different across workitems in a wavefront. 544 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 545 if (const Argument *A = dyn_cast<Argument>(V)) 546 return !isArgPassedInSGPR(A); 547 548 // Loads from the private address space are divergent, because threads 549 // can execute the load instruction with the same inputs and get different 550 // results. 551 // 552 // All other loads are not divergent, because if threads issue loads with the 553 // same arguments, they will always get the same result. 554 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 555 return Load->getPointerAddressSpace() == ST->getAMDGPUAS().PRIVATE_ADDRESS; 556 557 // Atomics are divergent because they are executed sequentially: when an 558 // atomic operation refers to the same address in each thread, then each 559 // thread after the first sees the value written by the previous thread as 560 // original value. 561 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 562 return true; 563 564 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 565 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 566 567 // Assume all function calls are a source of divergence. 568 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 569 return true; 570 571 return false; 572 } 573 574 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 575 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 576 switch (Intrinsic->getIntrinsicID()) { 577 default: 578 return false; 579 case Intrinsic::amdgcn_readfirstlane: 580 case Intrinsic::amdgcn_readlane: 581 return true; 582 } 583 } 584 return false; 585 } 586 587 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 588 Type *SubTp) { 589 if (ST->hasVOP3PInsts()) { 590 VectorType *VT = cast<VectorType>(Tp); 591 if (VT->getNumElements() == 2 && 592 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 593 // With op_sel VOP3P instructions freely can access the low half or high 594 // half of a register, so any swizzle is free. 595 596 switch (Kind) { 597 case TTI::SK_Broadcast: 598 case TTI::SK_Reverse: 599 case TTI::SK_PermuteSingleSrc: 600 return 0; 601 default: 602 break; 603 } 604 } 605 } 606 607 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 608 } 609 610 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 611 const Function *Callee) const { 612 const TargetMachine &TM = getTLI()->getTargetMachine(); 613 const FeatureBitset &CallerBits = 614 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 615 const FeatureBitset &CalleeBits = 616 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 617 618 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 619 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 620 return ((RealCallerBits & RealCalleeBits) == RealCalleeBits); 621 } 622 623 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 624 TTI::UnrollingPreferences &UP) { 625 CommonTTI.getUnrollingPreferences(L, SE, UP); 626 } 627 628 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 629 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 630 } 631 632 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 633 return getHardwareNumberOfRegisters(Vec); 634 } 635 636 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { 637 return 32; 638 } 639 640 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 641 return 32; 642 } 643 644 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 645 AMDGPUAS AS = ST->getAMDGPUAS(); 646 if (AddrSpace == AS.GLOBAL_ADDRESS || 647 AddrSpace == AS.CONSTANT_ADDRESS) 648 return 128; 649 if (AddrSpace == AS.LOCAL_ADDRESS || 650 AddrSpace == AS.REGION_ADDRESS) 651 return 64; 652 if (AddrSpace == AS.PRIVATE_ADDRESS) 653 return 32; 654 655 if ((AddrSpace == AS.PARAM_D_ADDRESS || 656 AddrSpace == AS.PARAM_I_ADDRESS || 657 (AddrSpace >= AS.CONSTANT_BUFFER_0 && 658 AddrSpace <= AS.CONSTANT_BUFFER_15))) 659 return 128; 660 llvm_unreachable("unhandled address space"); 661 } 662 663 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 664 unsigned Alignment, 665 unsigned AddrSpace) const { 666 // We allow vectorization of flat stores, even though we may need to decompose 667 // them later if they may access private memory. We don't have enough context 668 // here, and legalization can handle it. 669 if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS) 670 return false; 671 return true; 672 } 673 674 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 675 unsigned Alignment, 676 unsigned AddrSpace) const { 677 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 678 } 679 680 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 681 unsigned Alignment, 682 unsigned AddrSpace) const { 683 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 684 } 685 686 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 687 // Disable unrolling if the loop is not vectorized. 688 // TODO: Enable this again. 689 if (VF == 1) 690 return 1; 691 692 return 8; 693 } 694 695 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) { 696 // XXX - For some reason this isn't called for switch. 697 switch (Opcode) { 698 case Instruction::Br: 699 case Instruction::Ret: 700 return 10; 701 default: 702 return BaseT::getCFInstrCost(Opcode); 703 } 704 } 705 706 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 707 unsigned Index) { 708 switch (Opcode) { 709 case Instruction::ExtractElement: 710 case Instruction::InsertElement: { 711 unsigned EltSize 712 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 713 if (EltSize < 32) { 714 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 715 } 716 717 // Extracts are just reads of a subregister, so are free. Inserts are 718 // considered free because we don't want to have any cost for scalarizing 719 // operations, and we don't have to copy into a different register class. 720 721 // Dynamic indexing isn't free and is best avoided. 722 return Index == ~0u ? 2 : 0; 723 } 724 default: 725 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 726 } 727 } 728 729 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 730 TTI::UnrollingPreferences &UP) { 731 CommonTTI.getUnrollingPreferences(L, SE, UP); 732 } 733