1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUSubtarget.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <limits> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "AMDGPUtti" 56 57 static cl::opt<unsigned> UnrollThresholdPrivate( 58 "amdgpu-unroll-threshold-private", 59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 60 cl::init(2700), cl::Hidden); 61 62 static cl::opt<unsigned> UnrollThresholdLocal( 63 "amdgpu-unroll-threshold-local", 64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 65 cl::init(1000), cl::Hidden); 66 67 static cl::opt<unsigned> UnrollThresholdIf( 68 "amdgpu-unroll-threshold-if", 69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 70 cl::init(150), cl::Hidden); 71 72 static cl::opt<bool> UnrollRuntimeLocal( 73 "amdgpu-unroll-runtime-local", 74 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<bool> UseLegacyDA( 78 "amdgpu-use-legacy-divergence-analysis", 79 cl::desc("Enable legacy divergence analysis for AMDGPU"), 80 cl::init(false), cl::Hidden); 81 82 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 83 unsigned Depth = 0) { 84 const Instruction *I = dyn_cast<Instruction>(Cond); 85 if (!I) 86 return false; 87 88 for (const Value *V : I->operand_values()) { 89 if (!L->contains(I)) 90 continue; 91 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 92 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 93 return SubLoop->contains(PHI); })) 94 return true; 95 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 96 return true; 97 } 98 return false; 99 } 100 101 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 102 TTI::UnrollingPreferences &UP) { 103 const Function &F = *L->getHeader()->getParent(); 104 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 105 UP.MaxCount = std::numeric_limits<unsigned>::max(); 106 UP.Partial = true; 107 108 // TODO: Do we want runtime unrolling? 109 110 // Maximum alloca size than can fit registers. Reserve 16 registers. 111 const unsigned MaxAlloca = (256 - 16) * 4; 112 unsigned ThresholdPrivate = UnrollThresholdPrivate; 113 unsigned ThresholdLocal = UnrollThresholdLocal; 114 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 115 for (const BasicBlock *BB : L->getBlocks()) { 116 const DataLayout &DL = BB->getModule()->getDataLayout(); 117 unsigned LocalGEPsSeen = 0; 118 119 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 120 return SubLoop->contains(BB); })) 121 continue; // Block belongs to an inner loop. 122 123 for (const Instruction &I : *BB) { 124 // Unroll a loop which contains an "if" statement whose condition 125 // defined by a PHI belonging to the loop. This may help to eliminate 126 // if region and potentially even PHI itself, saving on both divergence 127 // and registers used for the PHI. 128 // Add a small bonus for each of such "if" statements. 129 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 130 if (UP.Threshold < MaxBoost && Br->isConditional()) { 131 BasicBlock *Succ0 = Br->getSuccessor(0); 132 BasicBlock *Succ1 = Br->getSuccessor(1); 133 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 134 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 135 continue; 136 if (dependsOnLocalPhi(L, Br->getCondition())) { 137 UP.Threshold += UnrollThresholdIf; 138 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 139 << " for loop:\n" 140 << *L << " due to " << *Br << '\n'); 141 if (UP.Threshold >= MaxBoost) 142 return; 143 } 144 } 145 continue; 146 } 147 148 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 149 if (!GEP) 150 continue; 151 152 unsigned AS = GEP->getAddressSpace(); 153 unsigned Threshold = 0; 154 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 155 Threshold = ThresholdPrivate; 156 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 157 Threshold = ThresholdLocal; 158 else 159 continue; 160 161 if (UP.Threshold >= Threshold) 162 continue; 163 164 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 165 const Value *Ptr = GEP->getPointerOperand(); 166 const AllocaInst *Alloca = 167 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 168 if (!Alloca || !Alloca->isStaticAlloca()) 169 continue; 170 Type *Ty = Alloca->getAllocatedType(); 171 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 172 if (AllocaSize > MaxAlloca) 173 continue; 174 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 175 AS == AMDGPUAS::REGION_ADDRESS) { 176 LocalGEPsSeen++; 177 // Inhibit unroll for local memory if we have seen addressing not to 178 // a variable, most likely we will be unable to combine it. 179 // Do not unroll too deep inner loops for local memory to give a chance 180 // to unroll an outer loop for a more important reason. 181 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 182 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 183 !isa<Argument>(GEP->getPointerOperand()))) 184 continue; 185 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 186 << *L << " due to LDS use.\n"); 187 UP.Runtime = UnrollRuntimeLocal; 188 } 189 190 // Check if GEP depends on a value defined by this loop itself. 191 bool HasLoopDef = false; 192 for (const Value *Op : GEP->operands()) { 193 const Instruction *Inst = dyn_cast<Instruction>(Op); 194 if (!Inst || L->isLoopInvariant(Op)) 195 continue; 196 197 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 198 return SubLoop->contains(Inst); })) 199 continue; 200 HasLoopDef = true; 201 break; 202 } 203 if (!HasLoopDef) 204 continue; 205 206 // We want to do whatever we can to limit the number of alloca 207 // instructions that make it through to the code generator. allocas 208 // require us to use indirect addressing, which is slow and prone to 209 // compiler bugs. If this loop does an address calculation on an 210 // alloca ptr, then we want to use a higher than normal loop unroll 211 // threshold. This will give SROA a better chance to eliminate these 212 // allocas. 213 // 214 // We also want to have more unrolling for local memory to let ds 215 // instructions with different offsets combine. 216 // 217 // Don't use the maximum allowed value here as it will make some 218 // programs way too big. 219 UP.Threshold = Threshold; 220 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 221 << " for loop:\n" 222 << *L << " due to " << *GEP << '\n'); 223 if (UP.Threshold >= MaxBoost) 224 return; 225 } 226 } 227 } 228 229 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 230 // The concept of vector registers doesn't really exist. Some packed vector 231 // operations operate on the normal 32-bit registers. 232 return 256; 233 } 234 235 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 236 // This is really the number of registers to fill when vectorizing / 237 // interleaving loops, so we lie to avoid trying to use all registers. 238 return getHardwareNumberOfRegisters(Vec) >> 3; 239 } 240 241 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { 242 return 32; 243 } 244 245 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 246 return 32; 247 } 248 249 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 250 unsigned ChainSizeInBytes, 251 VectorType *VecTy) const { 252 unsigned VecRegBitWidth = VF * LoadSize; 253 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 254 // TODO: Support element-size less than 32bit? 255 return 128 / LoadSize; 256 257 return VF; 258 } 259 260 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 261 unsigned ChainSizeInBytes, 262 VectorType *VecTy) const { 263 unsigned VecRegBitWidth = VF * StoreSize; 264 if (VecRegBitWidth > 128) 265 return 128 / StoreSize; 266 267 return VF; 268 } 269 270 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 271 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 272 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 273 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 274 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 275 return 512; 276 } 277 278 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS || 279 AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 280 AddrSpace == AMDGPUAS::REGION_ADDRESS) 281 return 128; 282 283 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 284 return 8 * ST->getMaxPrivateElementSize(); 285 286 llvm_unreachable("unhandled address space"); 287 } 288 289 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 290 unsigned Alignment, 291 unsigned AddrSpace) const { 292 // We allow vectorization of flat stores, even though we may need to decompose 293 // them later if they may access private memory. We don't have enough context 294 // here, and legalization can handle it. 295 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 296 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 297 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 298 } 299 return true; 300 } 301 302 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 303 unsigned Alignment, 304 unsigned AddrSpace) const { 305 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 306 } 307 308 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 309 unsigned Alignment, 310 unsigned AddrSpace) const { 311 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 312 } 313 314 // FIXME: Really we would like to issue multiple 128-bit loads and stores per 315 // iteration. Should we report a larger size and let it legalize? 316 // 317 // FIXME: Should we use narrower types for local/region, or account for when 318 // unaligned access is legal? 319 // 320 // FIXME: This could use fine tuning and microbenchmarks. 321 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, 322 unsigned SrcAddrSpace, 323 unsigned DestAddrSpace, 324 unsigned SrcAlign, 325 unsigned DestAlign) const { 326 unsigned MinAlign = std::min(SrcAlign, DestAlign); 327 328 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 329 // hardware into byte accesses. If you assume all alignments are equally 330 // probable, it's more efficient on average to use short accesses for this 331 // case. 332 if (MinAlign == 2) 333 return Type::getInt16Ty(Context); 334 335 // Not all subtargets have 128-bit DS instructions, and we currently don't 336 // form them by default. 337 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 338 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 339 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 340 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 341 return VectorType::get(Type::getInt32Ty(Context), 2); 342 } 343 344 // Global memory works best with 16-byte accesses. Private memory will also 345 // hit this, although they'll be decomposed. 346 return VectorType::get(Type::getInt32Ty(Context), 4); 347 } 348 349 void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 350 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 351 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 352 unsigned SrcAlign, unsigned DestAlign) const { 353 assert(RemainingBytes < 16); 354 355 unsigned MinAlign = std::min(SrcAlign, DestAlign); 356 357 if (MinAlign != 2) { 358 Type *I64Ty = Type::getInt64Ty(Context); 359 while (RemainingBytes >= 8) { 360 OpsOut.push_back(I64Ty); 361 RemainingBytes -= 8; 362 } 363 364 Type *I32Ty = Type::getInt32Ty(Context); 365 while (RemainingBytes >= 4) { 366 OpsOut.push_back(I32Ty); 367 RemainingBytes -= 4; 368 } 369 } 370 371 Type *I16Ty = Type::getInt16Ty(Context); 372 while (RemainingBytes >= 2) { 373 OpsOut.push_back(I16Ty); 374 RemainingBytes -= 2; 375 } 376 377 Type *I8Ty = Type::getInt8Ty(Context); 378 while (RemainingBytes) { 379 OpsOut.push_back(I8Ty); 380 --RemainingBytes; 381 } 382 } 383 384 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 385 // Disable unrolling if the loop is not vectorized. 386 // TODO: Enable this again. 387 if (VF == 1) 388 return 1; 389 390 return 8; 391 } 392 393 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 394 MemIntrinsicInfo &Info) const { 395 switch (Inst->getIntrinsicID()) { 396 case Intrinsic::amdgcn_atomic_inc: 397 case Intrinsic::amdgcn_atomic_dec: 398 case Intrinsic::amdgcn_ds_ordered_add: 399 case Intrinsic::amdgcn_ds_ordered_swap: 400 case Intrinsic::amdgcn_ds_fadd: 401 case Intrinsic::amdgcn_ds_fmin: 402 case Intrinsic::amdgcn_ds_fmax: { 403 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 404 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 405 if (!Ordering || !Volatile) 406 return false; // Invalid. 407 408 unsigned OrderingVal = Ordering->getZExtValue(); 409 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 410 return false; 411 412 Info.PtrVal = Inst->getArgOperand(0); 413 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 414 Info.ReadMem = true; 415 Info.WriteMem = true; 416 Info.IsVolatile = !Volatile->isNullValue(); 417 return true; 418 } 419 default: 420 return false; 421 } 422 } 423 424 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 425 TTI::TargetCostKind CostKind, 426 TTI::OperandValueKind Opd1Info, 427 TTI::OperandValueKind Opd2Info, 428 TTI::OperandValueProperties Opd1PropInfo, 429 TTI::OperandValueProperties Opd2PropInfo, 430 ArrayRef<const Value *> Args, 431 const Instruction *CxtI) { 432 EVT OrigTy = TLI->getValueType(DL, Ty); 433 if (!OrigTy.isSimple()) { 434 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 435 Opd2Info, 436 Opd1PropInfo, Opd2PropInfo); 437 } 438 439 // Legalize the type. 440 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 441 int ISD = TLI->InstructionOpcodeToISD(Opcode); 442 443 // Because we don't have any legal vector operations, but the legal types, we 444 // need to account for split vectors. 445 unsigned NElts = LT.second.isVector() ? 446 LT.second.getVectorNumElements() : 1; 447 448 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 449 450 switch (ISD) { 451 case ISD::SHL: 452 case ISD::SRL: 453 case ISD::SRA: 454 if (SLT == MVT::i64) 455 return get64BitInstrCost() * LT.first * NElts; 456 457 if (ST->has16BitInsts() && SLT == MVT::i16) 458 NElts = (NElts + 1) / 2; 459 460 // i32 461 return getFullRateInstrCost() * LT.first * NElts; 462 case ISD::ADD: 463 case ISD::SUB: 464 case ISD::AND: 465 case ISD::OR: 466 case ISD::XOR: 467 if (SLT == MVT::i64) { 468 // and, or and xor are typically split into 2 VALU instructions. 469 return 2 * getFullRateInstrCost() * LT.first * NElts; 470 } 471 472 if (ST->has16BitInsts() && SLT == MVT::i16) 473 NElts = (NElts + 1) / 2; 474 475 return LT.first * NElts * getFullRateInstrCost(); 476 case ISD::MUL: { 477 const int QuarterRateCost = getQuarterRateInstrCost(); 478 if (SLT == MVT::i64) { 479 const int FullRateCost = getFullRateInstrCost(); 480 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 481 } 482 483 if (ST->has16BitInsts() && SLT == MVT::i16) 484 NElts = (NElts + 1) / 2; 485 486 // i32 487 return QuarterRateCost * NElts * LT.first; 488 } 489 case ISD::FADD: 490 case ISD::FSUB: 491 case ISD::FMUL: 492 if (SLT == MVT::f64) 493 return LT.first * NElts * get64BitInstrCost(); 494 495 if (ST->has16BitInsts() && SLT == MVT::f16) 496 NElts = (NElts + 1) / 2; 497 498 if (SLT == MVT::f32 || SLT == MVT::f16) 499 return LT.first * NElts * getFullRateInstrCost(); 500 break; 501 case ISD::FDIV: 502 case ISD::FREM: 503 // FIXME: frem should be handled separately. The fdiv in it is most of it, 504 // but the current lowering is also not entirely correct. 505 if (SLT == MVT::f64) { 506 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 507 // Add cost of workaround. 508 if (!ST->hasUsableDivScaleConditionOutput()) 509 Cost += 3 * getFullRateInstrCost(); 510 511 return LT.first * Cost * NElts; 512 } 513 514 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 515 // TODO: This is more complicated, unsafe flags etc. 516 if ((SLT == MVT::f32 && !HasFP32Denormals) || 517 (SLT == MVT::f16 && ST->has16BitInsts())) { 518 return LT.first * getQuarterRateInstrCost() * NElts; 519 } 520 } 521 522 if (SLT == MVT::f16 && ST->has16BitInsts()) { 523 // 2 x v_cvt_f32_f16 524 // f32 rcp 525 // f32 fmul 526 // v_cvt_f16_f32 527 // f16 div_fixup 528 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 529 return LT.first * Cost * NElts; 530 } 531 532 if (SLT == MVT::f32 || SLT == MVT::f16) { 533 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 534 535 if (!HasFP32Denormals) { 536 // FP mode switches. 537 Cost += 2 * getFullRateInstrCost(); 538 } 539 540 return LT.first * NElts * Cost; 541 } 542 break; 543 default: 544 break; 545 } 546 547 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 548 Opd2Info, 549 Opd1PropInfo, Opd2PropInfo); 550 } 551 552 // Return true if there's a potential benefit from using v2f16 instructions for 553 // an intrinsic, even if it requires nontrivial legalization. 554 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 555 switch (ID) { 556 case Intrinsic::fma: // TODO: fmuladd 557 // There's a small benefit to using vector ops in the legalized code. 558 case Intrinsic::round: 559 return true; 560 default: 561 return false; 562 } 563 } 564 565 template <typename T> 566 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 567 ArrayRef<T *> Args, FastMathFlags FMF, 568 unsigned VF, 569 TTI::TargetCostKind CostKind, 570 const Instruction *I) { 571 if (!intrinsicHasPackedVectorBenefit(ID)) 572 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, CostKind, I); 573 574 EVT OrigTy = TLI->getValueType(DL, RetTy); 575 if (!OrigTy.isSimple()) { 576 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, CostKind, I); 577 } 578 579 // Legalize the type. 580 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 581 582 unsigned NElts = LT.second.isVector() ? 583 LT.second.getVectorNumElements() : 1; 584 585 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 586 587 if (SLT == MVT::f64) 588 return LT.first * NElts * get64BitInstrCost(); 589 590 if (ST->has16BitInsts() && SLT == MVT::f16) 591 NElts = (NElts + 1) / 2; 592 593 // TODO: Get more refined intrinsic costs? 594 unsigned InstRate = getQuarterRateInstrCost(); 595 if (ID == Intrinsic::fma) { 596 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost() 597 : getQuarterRateInstrCost(); 598 } 599 600 return LT.first * NElts * InstRate; 601 } 602 603 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 604 ArrayRef<Value *> Args, FastMathFlags FMF, 605 unsigned VF, 606 TTI::TargetCostKind CostKind, 607 const Instruction *I) { 608 return getIntrinsicInstrCost<Value>(ID, RetTy, Args, FMF, VF, CostKind, I); 609 } 610 611 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 612 ArrayRef<Type *> Tys, FastMathFlags FMF, 613 unsigned ScalarizationCostPassed, 614 TTI::TargetCostKind CostKind, 615 const Instruction *I) { 616 return getIntrinsicInstrCost<Type>(ID, RetTy, Tys, FMF, 617 ScalarizationCostPassed, CostKind, I); 618 } 619 620 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode, 621 TTI::TargetCostKind CostKind) { 622 // XXX - For some reason this isn't called for switch. 623 switch (Opcode) { 624 case Instruction::Br: 625 case Instruction::Ret: 626 return 10; 627 default: 628 return BaseT::getCFInstrCost(Opcode, CostKind); 629 } 630 } 631 632 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 633 bool IsPairwise, 634 TTI::TargetCostKind CostKind) { 635 EVT OrigTy = TLI->getValueType(DL, Ty); 636 637 // Computes cost on targets that have packed math instructions(which support 638 // 16-bit types only). 639 if (IsPairwise || 640 !ST->hasVOP3PInsts() || 641 OrigTy.getScalarSizeInBits() != 16) 642 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind); 643 644 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 645 return LT.first * getFullRateInstrCost(); 646 } 647 648 int GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 649 bool IsPairwise, bool IsUnsigned, 650 TTI::TargetCostKind CostKind) { 651 EVT OrigTy = TLI->getValueType(DL, Ty); 652 653 // Computes cost on targets that have packed math instructions(which support 654 // 16-bit types only). 655 if (IsPairwise || 656 !ST->hasVOP3PInsts() || 657 OrigTy.getScalarSizeInBits() != 16) 658 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned, 659 CostKind); 660 661 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 662 return LT.first * getHalfRateInstrCost(); 663 } 664 665 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 666 unsigned Index) { 667 switch (Opcode) { 668 case Instruction::ExtractElement: 669 case Instruction::InsertElement: { 670 unsigned EltSize 671 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 672 if (EltSize < 32) { 673 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 674 return 0; 675 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 676 } 677 678 // Extracts are just reads of a subregister, so are free. Inserts are 679 // considered free because we don't want to have any cost for scalarizing 680 // operations, and we don't have to copy into a different register class. 681 682 // Dynamic indexing isn't free and is best avoided. 683 return Index == ~0u ? 2 : 0; 684 } 685 default: 686 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 687 } 688 } 689 690 static bool isArgPassedInSGPR(const Argument *A) { 691 const Function *F = A->getParent(); 692 693 // Arguments to compute shaders are never a source of divergence. 694 CallingConv::ID CC = F->getCallingConv(); 695 switch (CC) { 696 case CallingConv::AMDGPU_KERNEL: 697 case CallingConv::SPIR_KERNEL: 698 return true; 699 case CallingConv::AMDGPU_VS: 700 case CallingConv::AMDGPU_LS: 701 case CallingConv::AMDGPU_HS: 702 case CallingConv::AMDGPU_ES: 703 case CallingConv::AMDGPU_GS: 704 case CallingConv::AMDGPU_PS: 705 case CallingConv::AMDGPU_CS: 706 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 707 // Everything else is in VGPRs. 708 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 709 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 710 default: 711 // TODO: Should calls support inreg for SGPR inputs? 712 return false; 713 } 714 } 715 716 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 717 /// this is analyzing the collective result of all output registers. Otherwise, 718 /// this is only querying a specific result index if this returns multiple 719 /// registers in a struct. 720 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 721 const CallInst *CI, ArrayRef<unsigned> Indices) const { 722 // TODO: Handle complex extract indices 723 if (Indices.size() > 1) 724 return true; 725 726 const DataLayout &DL = CI->getModule()->getDataLayout(); 727 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 728 TargetLowering::AsmOperandInfoVector TargetConstraints = 729 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 730 731 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 732 733 int OutputIdx = 0; 734 for (auto &TC : TargetConstraints) { 735 if (TC.Type != InlineAsm::isOutput) 736 continue; 737 738 // Skip outputs we don't care about. 739 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 740 continue; 741 742 TLI->ComputeConstraintToUse(TC, SDValue()); 743 744 Register AssignedReg; 745 const TargetRegisterClass *RC; 746 std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( 747 TRI, TC.ConstraintCode, TC.ConstraintVT); 748 if (AssignedReg) { 749 // FIXME: This is a workaround for getRegForInlineAsmConstraint 750 // returning VS_32 751 RC = TRI->getPhysRegClass(AssignedReg); 752 } 753 754 // For AGPR constraints null is returned on subtargets without AGPRs, so 755 // assume divergent for null. 756 if (!RC || !TRI->isSGPRClass(RC)) 757 return true; 758 } 759 760 return false; 761 } 762 763 /// \returns true if the new GPU divergence analysis is enabled. 764 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 765 return !UseLegacyDA; 766 } 767 768 /// \returns true if the result of the value could potentially be 769 /// different across workitems in a wavefront. 770 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 771 if (const Argument *A = dyn_cast<Argument>(V)) 772 return !isArgPassedInSGPR(A); 773 774 // Loads from the private and flat address spaces are divergent, because 775 // threads can execute the load instruction with the same inputs and get 776 // different results. 777 // 778 // All other loads are not divergent, because if threads issue loads with the 779 // same arguments, they will always get the same result. 780 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 781 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 782 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 783 784 // Atomics are divergent because they are executed sequentially: when an 785 // atomic operation refers to the same address in each thread, then each 786 // thread after the first sees the value written by the previous thread as 787 // original value. 788 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 789 return true; 790 791 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 792 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 793 794 // Assume all function calls are a source of divergence. 795 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 796 if (CI->isInlineAsm()) 797 return isInlineAsmSourceOfDivergence(CI); 798 return true; 799 } 800 801 // Assume all function calls are a source of divergence. 802 if (isa<InvokeInst>(V)) 803 return true; 804 805 return false; 806 } 807 808 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 809 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 810 switch (Intrinsic->getIntrinsicID()) { 811 default: 812 return false; 813 case Intrinsic::amdgcn_readfirstlane: 814 case Intrinsic::amdgcn_readlane: 815 case Intrinsic::amdgcn_icmp: 816 case Intrinsic::amdgcn_fcmp: 817 case Intrinsic::amdgcn_ballot: 818 case Intrinsic::amdgcn_if_break: 819 return true; 820 } 821 } 822 823 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 824 if (CI->isInlineAsm()) 825 return !isInlineAsmSourceOfDivergence(CI); 826 return false; 827 } 828 829 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 830 if (!ExtValue) 831 return false; 832 833 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 834 if (!CI) 835 return false; 836 837 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 838 switch (Intrinsic->getIntrinsicID()) { 839 default: 840 return false; 841 case Intrinsic::amdgcn_if: 842 case Intrinsic::amdgcn_else: { 843 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 844 return Indices.size() == 1 && Indices[0] == 1; 845 } 846 } 847 } 848 849 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 850 // divergent for the overall struct return. We need to override it in the 851 // case we're extracting an SGPR component here. 852 if (CI->isInlineAsm()) 853 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 854 855 return false; 856 } 857 858 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 859 Intrinsic::ID IID) const { 860 switch (IID) { 861 case Intrinsic::amdgcn_atomic_inc: 862 case Intrinsic::amdgcn_atomic_dec: 863 case Intrinsic::amdgcn_ds_fadd: 864 case Intrinsic::amdgcn_ds_fmin: 865 case Intrinsic::amdgcn_ds_fmax: 866 case Intrinsic::amdgcn_is_shared: 867 case Intrinsic::amdgcn_is_private: 868 OpIndexes.push_back(0); 869 return true; 870 default: 871 return false; 872 } 873 } 874 875 bool GCNTTIImpl::rewriteIntrinsicWithAddressSpace( 876 IntrinsicInst *II, Value *OldV, Value *NewV) const { 877 auto IntrID = II->getIntrinsicID(); 878 switch (IntrID) { 879 case Intrinsic::amdgcn_atomic_inc: 880 case Intrinsic::amdgcn_atomic_dec: 881 case Intrinsic::amdgcn_ds_fadd: 882 case Intrinsic::amdgcn_ds_fmin: 883 case Intrinsic::amdgcn_ds_fmax: { 884 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 885 if (!IsVolatile->isZero()) 886 return false; 887 Module *M = II->getParent()->getParent()->getParent(); 888 Type *DestTy = II->getType(); 889 Type *SrcTy = NewV->getType(); 890 Function *NewDecl = 891 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 892 II->setArgOperand(0, NewV); 893 II->setCalledFunction(NewDecl); 894 return true; 895 } 896 case Intrinsic::amdgcn_is_shared: 897 case Intrinsic::amdgcn_is_private: { 898 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 899 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 900 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 901 LLVMContext &Ctx = NewV->getType()->getContext(); 902 ConstantInt *NewVal = (TrueAS == NewAS) ? 903 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 904 II->replaceAllUsesWith(NewVal); 905 II->eraseFromParent(); 906 return true; 907 } 908 default: 909 return false; 910 } 911 } 912 913 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT, 914 int Index, VectorType *SubTp) { 915 if (ST->hasVOP3PInsts()) { 916 if (VT->getNumElements() == 2 && 917 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 918 // With op_sel VOP3P instructions freely can access the low half or high 919 // half of a register, so any swizzle is free. 920 921 switch (Kind) { 922 case TTI::SK_Broadcast: 923 case TTI::SK_Reverse: 924 case TTI::SK_PermuteSingleSrc: 925 return 0; 926 default: 927 break; 928 } 929 } 930 } 931 932 return BaseT::getShuffleCost(Kind, VT, Index, SubTp); 933 } 934 935 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 936 const Function *Callee) const { 937 const TargetMachine &TM = getTLI()->getTargetMachine(); 938 const GCNSubtarget *CallerST 939 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 940 const GCNSubtarget *CalleeST 941 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 942 943 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 944 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 945 946 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 947 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 948 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 949 return false; 950 951 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 952 // no way to support merge for backend defined attributes. 953 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); 954 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); 955 return CallerMode.isInlineCompatible(CalleeMode); 956 } 957 958 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 959 TTI::UnrollingPreferences &UP) { 960 CommonTTI.getUnrollingPreferences(L, SE, UP); 961 } 962 963 unsigned 964 GCNTTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands, 965 TTI::TargetCostKind CostKind) { 966 const Instruction *I = dyn_cast<Instruction>(U); 967 if (!I) 968 return BaseT::getUserCost(U, Operands, CostKind); 969 970 // Estimate different operations to be optimized out 971 switch (I->getOpcode()) { 972 case Instruction::ExtractElement: { 973 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 974 unsigned Idx = -1; 975 if (CI) 976 Idx = CI->getZExtValue(); 977 return getVectorInstrCost(I->getOpcode(), I->getOperand(0)->getType(), Idx); 978 } 979 case Instruction::InsertElement: { 980 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 981 unsigned Idx = -1; 982 if (CI) 983 Idx = CI->getZExtValue(); 984 return getVectorInstrCost(I->getOpcode(), I->getType(), Idx); 985 } 986 case Instruction::Call: { 987 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 988 SmallVector<Value *, 4> Args(II->arg_operands()); 989 FastMathFlags FMF; 990 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 991 FMF = FPMO->getFastMathFlags(); 992 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args, 993 FMF, 1, CostKind, II); 994 } else { 995 return BaseT::getUserCost(U, Operands, CostKind); 996 } 997 } 998 case Instruction::ShuffleVector: { 999 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1000 auto *Ty = cast<VectorType>(Shuffle->getType()); 1001 auto *SrcTy = cast<VectorType>(Shuffle->getOperand(0)->getType()); 1002 1003 // TODO: Identify and add costs for insert subvector, etc. 1004 int SubIndex; 1005 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1006 return getShuffleCost(TTI::SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1007 1008 if (Shuffle->changesLength()) 1009 return BaseT::getUserCost(U, Operands, CostKind); 1010 1011 if (Shuffle->isIdentity()) 1012 return 0; 1013 1014 if (Shuffle->isReverse()) 1015 return getShuffleCost(TTI::SK_Reverse, Ty, 0, nullptr); 1016 1017 if (Shuffle->isSelect()) 1018 return getShuffleCost(TTI::SK_Select, Ty, 0, nullptr); 1019 1020 if (Shuffle->isTranspose()) 1021 return getShuffleCost(TTI::SK_Transpose, Ty, 0, nullptr); 1022 1023 if (Shuffle->isZeroEltSplat()) 1024 return getShuffleCost(TTI::SK_Broadcast, Ty, 0, nullptr); 1025 1026 if (Shuffle->isSingleSource()) 1027 return getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, nullptr); 1028 1029 return getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, 0, nullptr); 1030 } 1031 case Instruction::ZExt: 1032 case Instruction::SExt: 1033 case Instruction::FPToUI: 1034 case Instruction::FPToSI: 1035 case Instruction::FPExt: 1036 case Instruction::PtrToInt: 1037 case Instruction::IntToPtr: 1038 case Instruction::SIToFP: 1039 case Instruction::UIToFP: 1040 case Instruction::Trunc: 1041 case Instruction::FPTrunc: 1042 case Instruction::BitCast: 1043 case Instruction::AddrSpaceCast: { 1044 return getCastInstrCost(I->getOpcode(), I->getType(), 1045 I->getOperand(0)->getType(), CostKind, I); 1046 } 1047 case Instruction::Add: 1048 case Instruction::FAdd: 1049 case Instruction::Sub: 1050 case Instruction::FSub: 1051 case Instruction::Mul: 1052 case Instruction::FMul: 1053 case Instruction::UDiv: 1054 case Instruction::SDiv: 1055 case Instruction::FDiv: 1056 case Instruction::URem: 1057 case Instruction::SRem: 1058 case Instruction::FRem: 1059 case Instruction::Shl: 1060 case Instruction::LShr: 1061 case Instruction::AShr: 1062 case Instruction::And: 1063 case Instruction::Or: 1064 case Instruction::Xor: 1065 case Instruction::FNeg: { 1066 return getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind, 1067 TTI::OK_AnyValue, TTI::OK_AnyValue, 1068 TTI::OP_None, TTI::OP_None, Operands, I); 1069 } 1070 default: 1071 break; 1072 } 1073 1074 return BaseT::getUserCost(U, Operands, CostKind); 1075 } 1076 1077 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 1078 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 1079 } 1080 1081 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 1082 return getHardwareNumberOfRegisters(Vec); 1083 } 1084 1085 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { 1086 return 32; 1087 } 1088 1089 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 1090 return 32; 1091 } 1092 1093 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 1094 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 1095 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 1096 return 128; 1097 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1098 AddrSpace == AMDGPUAS::REGION_ADDRESS) 1099 return 64; 1100 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 1101 return 32; 1102 1103 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 1104 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 1105 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 1106 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 1107 return 128; 1108 llvm_unreachable("unhandled address space"); 1109 } 1110 1111 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 1112 unsigned Alignment, 1113 unsigned AddrSpace) const { 1114 // We allow vectorization of flat stores, even though we may need to decompose 1115 // them later if they may access private memory. We don't have enough context 1116 // here, and legalization can handle it. 1117 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 1118 } 1119 1120 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 1121 unsigned Alignment, 1122 unsigned AddrSpace) const { 1123 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1124 } 1125 1126 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 1127 unsigned Alignment, 1128 unsigned AddrSpace) const { 1129 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1130 } 1131 1132 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1133 // Disable unrolling if the loop is not vectorized. 1134 // TODO: Enable this again. 1135 if (VF == 1) 1136 return 1; 1137 1138 return 8; 1139 } 1140 1141 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode, 1142 TTI::TargetCostKind CostKind) { 1143 // XXX - For some reason this isn't called for switch. 1144 switch (Opcode) { 1145 case Instruction::Br: 1146 case Instruction::Ret: 1147 return 10; 1148 default: 1149 return BaseT::getCFInstrCost(Opcode, CostKind); 1150 } 1151 } 1152 1153 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 1154 unsigned Index) { 1155 switch (Opcode) { 1156 case Instruction::ExtractElement: 1157 case Instruction::InsertElement: { 1158 unsigned EltSize 1159 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 1160 if (EltSize < 32) { 1161 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1162 } 1163 1164 // Extracts are just reads of a subregister, so are free. Inserts are 1165 // considered free because we don't want to have any cost for scalarizing 1166 // operations, and we don't have to copy into a different register class. 1167 1168 // Dynamic indexing isn't free and is best avoided. 1169 return Index == ~0u ? 2 : 0; 1170 } 1171 default: 1172 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1173 } 1174 } 1175 1176 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1177 TTI::UnrollingPreferences &UP) { 1178 CommonTTI.getUnrollingPreferences(L, SE, UP); 1179 } 1180