1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // \file 11 // This file implements a TargetTransformInfo analysis pass specific to the 12 // AMDGPU target machine. It uses the target's detailed information to provide 13 // more precise answers to certain TTI queries, while letting the target 14 // independent and default TTI implementations handle the rest. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "AMDGPUTargetTransformInfo.h" 19 #include "AMDGPUSubtarget.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/MachineValueType.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/MC/SubtargetFeature.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <limits> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "AMDGPUtti" 56 57 static cl::opt<unsigned> UnrollThresholdPrivate( 58 "amdgpu-unroll-threshold-private", 59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 60 cl::init(2500), cl::Hidden); 61 62 static cl::opt<unsigned> UnrollThresholdLocal( 63 "amdgpu-unroll-threshold-local", 64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 65 cl::init(1000), cl::Hidden); 66 67 static cl::opt<unsigned> UnrollThresholdIf( 68 "amdgpu-unroll-threshold-if", 69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 70 cl::init(150), cl::Hidden); 71 72 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 73 unsigned Depth = 0) { 74 const Instruction *I = dyn_cast<Instruction>(Cond); 75 if (!I) 76 return false; 77 78 for (const Value *V : I->operand_values()) { 79 if (!L->contains(I)) 80 continue; 81 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 82 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 83 return SubLoop->contains(PHI); })) 84 return true; 85 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 86 return true; 87 } 88 return false; 89 } 90 91 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 92 TTI::UnrollingPreferences &UP) { 93 UP.Threshold = 300; // Twice the default. 94 UP.MaxCount = std::numeric_limits<unsigned>::max(); 95 UP.Partial = true; 96 97 // TODO: Do we want runtime unrolling? 98 99 // Maximum alloca size than can fit registers. Reserve 16 registers. 100 const unsigned MaxAlloca = (256 - 16) * 4; 101 unsigned ThresholdPrivate = UnrollThresholdPrivate; 102 unsigned ThresholdLocal = UnrollThresholdLocal; 103 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 104 AMDGPUAS ASST = ST->getAMDGPUAS(); 105 for (const BasicBlock *BB : L->getBlocks()) { 106 const DataLayout &DL = BB->getModule()->getDataLayout(); 107 unsigned LocalGEPsSeen = 0; 108 109 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 110 return SubLoop->contains(BB); })) 111 continue; // Block belongs to an inner loop. 112 113 for (const Instruction &I : *BB) { 114 // Unroll a loop which contains an "if" statement whose condition 115 // defined by a PHI belonging to the loop. This may help to eliminate 116 // if region and potentially even PHI itself, saving on both divergence 117 // and registers used for the PHI. 118 // Add a small bonus for each of such "if" statements. 119 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 120 if (UP.Threshold < MaxBoost && Br->isConditional()) { 121 if (L->isLoopExiting(Br->getSuccessor(0)) || 122 L->isLoopExiting(Br->getSuccessor(1))) 123 continue; 124 if (dependsOnLocalPhi(L, Br->getCondition())) { 125 UP.Threshold += UnrollThresholdIf; 126 DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 127 << " for loop:\n" << *L << " due to " << *Br << '\n'); 128 if (UP.Threshold >= MaxBoost) 129 return; 130 } 131 } 132 continue; 133 } 134 135 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 136 if (!GEP) 137 continue; 138 139 unsigned AS = GEP->getAddressSpace(); 140 unsigned Threshold = 0; 141 if (AS == ASST.PRIVATE_ADDRESS) 142 Threshold = ThresholdPrivate; 143 else if (AS == ASST.LOCAL_ADDRESS) 144 Threshold = ThresholdLocal; 145 else 146 continue; 147 148 if (UP.Threshold >= Threshold) 149 continue; 150 151 if (AS == ASST.PRIVATE_ADDRESS) { 152 const Value *Ptr = GEP->getPointerOperand(); 153 const AllocaInst *Alloca = 154 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 155 if (!Alloca || !Alloca->isStaticAlloca()) 156 continue; 157 Type *Ty = Alloca->getAllocatedType(); 158 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 159 if (AllocaSize > MaxAlloca) 160 continue; 161 } else if (AS == ASST.LOCAL_ADDRESS) { 162 LocalGEPsSeen++; 163 // Inhibit unroll for local memory if we have seen addressing not to 164 // a variable, most likely we will be unable to combine it. 165 // Do not unroll too deep inner loops for local memory to give a chance 166 // to unroll an outer loop for a more important reason. 167 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 168 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 169 !isa<Argument>(GEP->getPointerOperand()))) 170 continue; 171 } 172 173 // Check if GEP depends on a value defined by this loop itself. 174 bool HasLoopDef = false; 175 for (const Value *Op : GEP->operands()) { 176 const Instruction *Inst = dyn_cast<Instruction>(Op); 177 if (!Inst || L->isLoopInvariant(Op)) 178 continue; 179 180 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 181 return SubLoop->contains(Inst); })) 182 continue; 183 HasLoopDef = true; 184 break; 185 } 186 if (!HasLoopDef) 187 continue; 188 189 // We want to do whatever we can to limit the number of alloca 190 // instructions that make it through to the code generator. allocas 191 // require us to use indirect addressing, which is slow and prone to 192 // compiler bugs. If this loop does an address calculation on an 193 // alloca ptr, then we want to use a higher than normal loop unroll 194 // threshold. This will give SROA a better chance to eliminate these 195 // allocas. 196 // 197 // We also want to have more unrolling for local memory to let ds 198 // instructions with different offsets combine. 199 // 200 // Don't use the maximum allowed value here as it will make some 201 // programs way too big. 202 UP.Threshold = Threshold; 203 DEBUG(dbgs() << "Set unroll threshold " << Threshold << " for loop:\n" 204 << *L << " due to " << *GEP << '\n'); 205 if (UP.Threshold >= MaxBoost) 206 return; 207 } 208 } 209 } 210 211 unsigned AMDGPUTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 212 // The concept of vector registers doesn't really exist. Some packed vector 213 // operations operate on the normal 32-bit registers. 214 215 // Number of VGPRs on SI. 216 if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) 217 return 256; 218 219 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 220 } 221 222 unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) const { 223 // This is really the number of registers to fill when vectorizing / 224 // interleaving loops, so we lie to avoid trying to use all registers. 225 return getHardwareNumberOfRegisters(Vec) >> 3; 226 } 227 228 unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) const { 229 return 32; 230 } 231 232 unsigned AMDGPUTTIImpl::getMinVectorRegisterBitWidth() const { 233 return 32; 234 } 235 236 unsigned AMDGPUTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 237 AMDGPUAS AS = ST->getAMDGPUAS(); 238 if (AddrSpace == AS.GLOBAL_ADDRESS || 239 AddrSpace == AS.CONSTANT_ADDRESS || 240 AddrSpace == AS.FLAT_ADDRESS) 241 return 128; 242 if (AddrSpace == AS.LOCAL_ADDRESS || 243 AddrSpace == AS.REGION_ADDRESS) 244 return 64; 245 if (AddrSpace == AS.PRIVATE_ADDRESS) 246 return 8 * ST->getMaxPrivateElementSize(); 247 248 if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS && 249 (AddrSpace == AS.PARAM_D_ADDRESS || 250 AddrSpace == AS.PARAM_I_ADDRESS || 251 (AddrSpace >= AS.CONSTANT_BUFFER_0 && 252 AddrSpace <= AS.CONSTANT_BUFFER_15))) 253 return 128; 254 llvm_unreachable("unhandled address space"); 255 } 256 257 bool AMDGPUTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 258 unsigned Alignment, 259 unsigned AddrSpace) const { 260 // We allow vectorization of flat stores, even though we may need to decompose 261 // them later if they may access private memory. We don't have enough context 262 // here, and legalization can handle it. 263 if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS) { 264 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 265 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 266 } 267 return true; 268 } 269 270 bool AMDGPUTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 271 unsigned Alignment, 272 unsigned AddrSpace) const { 273 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 274 } 275 276 bool AMDGPUTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 277 unsigned Alignment, 278 unsigned AddrSpace) const { 279 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 280 } 281 282 unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) { 283 // Disable unrolling if the loop is not vectorized. 284 // TODO: Enable this again. 285 if (VF == 1) 286 return 1; 287 288 return 8; 289 } 290 291 bool AMDGPUTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 292 MemIntrinsicInfo &Info) const { 293 switch (Inst->getIntrinsicID()) { 294 case Intrinsic::amdgcn_atomic_inc: 295 case Intrinsic::amdgcn_atomic_dec: { 296 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 297 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 298 if (!Ordering || !Volatile) 299 return false; // Invalid. 300 301 unsigned OrderingVal = Ordering->getZExtValue(); 302 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 303 return false; 304 305 Info.PtrVal = Inst->getArgOperand(0); 306 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 307 Info.ReadMem = true; 308 Info.WriteMem = true; 309 Info.IsVolatile = !Volatile->isNullValue(); 310 return true; 311 } 312 default: 313 return false; 314 } 315 } 316 317 int AMDGPUTTIImpl::getArithmeticInstrCost( 318 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, 319 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 320 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) { 321 EVT OrigTy = TLI->getValueType(DL, Ty); 322 if (!OrigTy.isSimple()) { 323 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 324 Opd1PropInfo, Opd2PropInfo); 325 } 326 327 // Legalize the type. 328 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 329 int ISD = TLI->InstructionOpcodeToISD(Opcode); 330 331 // Because we don't have any legal vector operations, but the legal types, we 332 // need to account for split vectors. 333 unsigned NElts = LT.second.isVector() ? 334 LT.second.getVectorNumElements() : 1; 335 336 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 337 338 switch (ISD) { 339 case ISD::SHL: 340 case ISD::SRL: 341 case ISD::SRA: 342 if (SLT == MVT::i64) 343 return get64BitInstrCost() * LT.first * NElts; 344 345 // i32 346 return getFullRateInstrCost() * LT.first * NElts; 347 case ISD::ADD: 348 case ISD::SUB: 349 case ISD::AND: 350 case ISD::OR: 351 case ISD::XOR: 352 if (SLT == MVT::i64){ 353 // and, or and xor are typically split into 2 VALU instructions. 354 return 2 * getFullRateInstrCost() * LT.first * NElts; 355 } 356 357 return LT.first * NElts * getFullRateInstrCost(); 358 case ISD::MUL: { 359 const int QuarterRateCost = getQuarterRateInstrCost(); 360 if (SLT == MVT::i64) { 361 const int FullRateCost = getFullRateInstrCost(); 362 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 363 } 364 365 // i32 366 return QuarterRateCost * NElts * LT.first; 367 } 368 case ISD::FADD: 369 case ISD::FSUB: 370 case ISD::FMUL: 371 if (SLT == MVT::f64) 372 return LT.first * NElts * get64BitInstrCost(); 373 374 if (SLT == MVT::f32 || SLT == MVT::f16) 375 return LT.first * NElts * getFullRateInstrCost(); 376 break; 377 case ISD::FDIV: 378 case ISD::FREM: 379 // FIXME: frem should be handled separately. The fdiv in it is most of it, 380 // but the current lowering is also not entirely correct. 381 if (SLT == MVT::f64) { 382 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 383 // Add cost of workaround. 384 if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) 385 Cost += 3 * getFullRateInstrCost(); 386 387 return LT.first * Cost * NElts; 388 } 389 390 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 391 // TODO: This is more complicated, unsafe flags etc. 392 if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) || 393 (SLT == MVT::f16 && ST->has16BitInsts())) { 394 return LT.first * getQuarterRateInstrCost() * NElts; 395 } 396 } 397 398 if (SLT == MVT::f16 && ST->has16BitInsts()) { 399 // 2 x v_cvt_f32_f16 400 // f32 rcp 401 // f32 fmul 402 // v_cvt_f16_f32 403 // f16 div_fixup 404 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 405 return LT.first * Cost * NElts; 406 } 407 408 if (SLT == MVT::f32 || SLT == MVT::f16) { 409 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 410 411 if (!ST->hasFP32Denormals()) { 412 // FP mode switches. 413 Cost += 2 * getFullRateInstrCost(); 414 } 415 416 return LT.first * NElts * Cost; 417 } 418 break; 419 default: 420 break; 421 } 422 423 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 424 Opd1PropInfo, Opd2PropInfo); 425 } 426 427 unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) { 428 // XXX - For some reason this isn't called for switch. 429 switch (Opcode) { 430 case Instruction::Br: 431 case Instruction::Ret: 432 return 10; 433 default: 434 return BaseT::getCFInstrCost(Opcode); 435 } 436 } 437 438 int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 439 unsigned Index) { 440 switch (Opcode) { 441 case Instruction::ExtractElement: 442 case Instruction::InsertElement: { 443 unsigned EltSize 444 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 445 if (EltSize < 32) { 446 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 447 return 0; 448 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 449 } 450 451 // Extracts are just reads of a subregister, so are free. Inserts are 452 // considered free because we don't want to have any cost for scalarizing 453 // operations, and we don't have to copy into a different register class. 454 455 // Dynamic indexing isn't free and is best avoided. 456 return Index == ~0u ? 2 : 0; 457 } 458 default: 459 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 460 } 461 } 462 463 static bool isIntrinsicSourceOfDivergence(const IntrinsicInst *I) { 464 switch (I->getIntrinsicID()) { 465 case Intrinsic::amdgcn_workitem_id_x: 466 case Intrinsic::amdgcn_workitem_id_y: 467 case Intrinsic::amdgcn_workitem_id_z: 468 case Intrinsic::amdgcn_interp_mov: 469 case Intrinsic::amdgcn_interp_p1: 470 case Intrinsic::amdgcn_interp_p2: 471 case Intrinsic::amdgcn_mbcnt_hi: 472 case Intrinsic::amdgcn_mbcnt_lo: 473 case Intrinsic::r600_read_tidig_x: 474 case Intrinsic::r600_read_tidig_y: 475 case Intrinsic::r600_read_tidig_z: 476 case Intrinsic::amdgcn_atomic_inc: 477 case Intrinsic::amdgcn_atomic_dec: 478 case Intrinsic::amdgcn_atomic_fadd: 479 case Intrinsic::amdgcn_atomic_fmin: 480 case Intrinsic::amdgcn_atomic_fmax: 481 case Intrinsic::amdgcn_image_atomic_swap: 482 case Intrinsic::amdgcn_image_atomic_add: 483 case Intrinsic::amdgcn_image_atomic_sub: 484 case Intrinsic::amdgcn_image_atomic_smin: 485 case Intrinsic::amdgcn_image_atomic_umin: 486 case Intrinsic::amdgcn_image_atomic_smax: 487 case Intrinsic::amdgcn_image_atomic_umax: 488 case Intrinsic::amdgcn_image_atomic_and: 489 case Intrinsic::amdgcn_image_atomic_or: 490 case Intrinsic::amdgcn_image_atomic_xor: 491 case Intrinsic::amdgcn_image_atomic_inc: 492 case Intrinsic::amdgcn_image_atomic_dec: 493 case Intrinsic::amdgcn_image_atomic_cmpswap: 494 case Intrinsic::amdgcn_buffer_atomic_swap: 495 case Intrinsic::amdgcn_buffer_atomic_add: 496 case Intrinsic::amdgcn_buffer_atomic_sub: 497 case Intrinsic::amdgcn_buffer_atomic_smin: 498 case Intrinsic::amdgcn_buffer_atomic_umin: 499 case Intrinsic::amdgcn_buffer_atomic_smax: 500 case Intrinsic::amdgcn_buffer_atomic_umax: 501 case Intrinsic::amdgcn_buffer_atomic_and: 502 case Intrinsic::amdgcn_buffer_atomic_or: 503 case Intrinsic::amdgcn_buffer_atomic_xor: 504 case Intrinsic::amdgcn_buffer_atomic_cmpswap: 505 case Intrinsic::amdgcn_ps_live: 506 case Intrinsic::amdgcn_ds_swizzle: 507 return true; 508 default: 509 return false; 510 } 511 } 512 513 static bool isArgPassedInSGPR(const Argument *A) { 514 const Function *F = A->getParent(); 515 516 // Arguments to compute shaders are never a source of divergence. 517 CallingConv::ID CC = F->getCallingConv(); 518 switch (CC) { 519 case CallingConv::AMDGPU_KERNEL: 520 case CallingConv::SPIR_KERNEL: 521 return true; 522 case CallingConv::AMDGPU_VS: 523 case CallingConv::AMDGPU_LS: 524 case CallingConv::AMDGPU_HS: 525 case CallingConv::AMDGPU_ES: 526 case CallingConv::AMDGPU_GS: 527 case CallingConv::AMDGPU_PS: 528 case CallingConv::AMDGPU_CS: 529 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 530 // Everything else is in VGPRs. 531 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 532 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 533 default: 534 // TODO: Should calls support inreg for SGPR inputs? 535 return false; 536 } 537 } 538 539 /// \returns true if the result of the value could potentially be 540 /// different across workitems in a wavefront. 541 bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const { 542 if (const Argument *A = dyn_cast<Argument>(V)) 543 return !isArgPassedInSGPR(A); 544 545 // Loads from the private address space are divergent, because threads 546 // can execute the load instruction with the same inputs and get different 547 // results. 548 // 549 // All other loads are not divergent, because if threads issue loads with the 550 // same arguments, they will always get the same result. 551 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 552 return Load->getPointerAddressSpace() == ST->getAMDGPUAS().PRIVATE_ADDRESS; 553 554 // Atomics are divergent because they are executed sequentially: when an 555 // atomic operation refers to the same address in each thread, then each 556 // thread after the first sees the value written by the previous thread as 557 // original value. 558 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 559 return true; 560 561 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 562 return isIntrinsicSourceOfDivergence(Intrinsic); 563 564 // Assume all function calls are a source of divergence. 565 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 566 return true; 567 568 return false; 569 } 570 571 bool AMDGPUTTIImpl::isAlwaysUniform(const Value *V) const { 572 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 573 switch (Intrinsic->getIntrinsicID()) { 574 default: 575 return false; 576 case Intrinsic::amdgcn_readfirstlane: 577 case Intrinsic::amdgcn_readlane: 578 return true; 579 } 580 } 581 return false; 582 } 583 584 unsigned AMDGPUTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 585 Type *SubTp) { 586 if (ST->hasVOP3PInsts()) { 587 VectorType *VT = cast<VectorType>(Tp); 588 if (VT->getNumElements() == 2 && 589 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 590 // With op_sel VOP3P instructions freely can access the low half or high 591 // half of a register, so any swizzle is free. 592 593 switch (Kind) { 594 case TTI::SK_Broadcast: 595 case TTI::SK_Reverse: 596 case TTI::SK_PermuteSingleSrc: 597 return 0; 598 default: 599 break; 600 } 601 } 602 } 603 604 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 605 } 606 607 bool AMDGPUTTIImpl::areInlineCompatible(const Function *Caller, 608 const Function *Callee) const { 609 const TargetMachine &TM = getTLI()->getTargetMachine(); 610 const FeatureBitset &CallerBits = 611 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 612 const FeatureBitset &CalleeBits = 613 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 614 615 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 616 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 617 return ((RealCallerBits & RealCalleeBits) == RealCalleeBits); 618 } 619