1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/IntrinsicsAMDGPU.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/Support/KnownBits.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "AMDGPUtti"
28 
29 static cl::opt<unsigned> UnrollThresholdPrivate(
30   "amdgpu-unroll-threshold-private",
31   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
32   cl::init(2700), cl::Hidden);
33 
34 static cl::opt<unsigned> UnrollThresholdLocal(
35   "amdgpu-unroll-threshold-local",
36   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
37   cl::init(1000), cl::Hidden);
38 
39 static cl::opt<unsigned> UnrollThresholdIf(
40   "amdgpu-unroll-threshold-if",
41   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
42   cl::init(150), cl::Hidden);
43 
44 static cl::opt<bool> UnrollRuntimeLocal(
45   "amdgpu-unroll-runtime-local",
46   cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
47   cl::init(true), cl::Hidden);
48 
49 static cl::opt<bool> UseLegacyDA(
50   "amdgpu-use-legacy-divergence-analysis",
51   cl::desc("Enable legacy divergence analysis for AMDGPU"),
52   cl::init(false), cl::Hidden);
53 
54 static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
55     "amdgpu-unroll-max-block-to-analyze",
56     cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
57     cl::init(32), cl::Hidden);
58 
59 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
60                                        cl::Hidden, cl::init(4000),
61                                        cl::desc("Cost of alloca argument"));
62 
63 // If the amount of scratch memory to eliminate exceeds our ability to allocate
64 // it into registers we gain nothing by aggressively inlining functions for that
65 // heuristic.
66 static cl::opt<unsigned>
67     ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
68                     cl::init(256),
69                     cl::desc("Maximum alloca size to use for inline cost"));
70 
71 // Inliner constraint to achieve reasonable compilation time.
72 static cl::opt<size_t> InlineMaxBB(
73     "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
74     cl::desc("Maximum number of BBs allowed in a function after inlining"
75              " (compile time constraint)"));
76 
77 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
78                               unsigned Depth = 0) {
79   const Instruction *I = dyn_cast<Instruction>(Cond);
80   if (!I)
81     return false;
82 
83   for (const Value *V : I->operand_values()) {
84     if (!L->contains(I))
85       continue;
86     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
87       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
88                   return SubLoop->contains(PHI); }))
89         return true;
90     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
91       return true;
92   }
93   return false;
94 }
95 
96 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
97     : BaseT(TM, F.getParent()->getDataLayout()),
98       TargetTriple(TM->getTargetTriple()),
99       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
100       TLI(ST->getTargetLowering()) {}
101 
102 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
103                                             TTI::UnrollingPreferences &UP) {
104   const Function &F = *L->getHeader()->getParent();
105   UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
106   UP.MaxCount = std::numeric_limits<unsigned>::max();
107   UP.Partial = true;
108 
109   // TODO: Do we want runtime unrolling?
110 
111   // Maximum alloca size than can fit registers. Reserve 16 registers.
112   const unsigned MaxAlloca = (256 - 16) * 4;
113   unsigned ThresholdPrivate = UnrollThresholdPrivate;
114   unsigned ThresholdLocal = UnrollThresholdLocal;
115 
116   // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
117   // provided threshold value as the default for Threshold
118   if (MDNode *LoopUnrollThreshold =
119           findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
120     if (LoopUnrollThreshold->getNumOperands() == 2) {
121       ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
122           LoopUnrollThreshold->getOperand(1));
123       if (MetaThresholdValue) {
124         // We will also use the supplied value for PartialThreshold for now.
125         // We may introduce additional metadata if it becomes necessary in the
126         // future.
127         UP.Threshold = MetaThresholdValue->getSExtValue();
128         UP.PartialThreshold = UP.Threshold;
129         ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
130         ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
131       }
132     }
133   }
134 
135   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
136   for (const BasicBlock *BB : L->getBlocks()) {
137     const DataLayout &DL = BB->getModule()->getDataLayout();
138     unsigned LocalGEPsSeen = 0;
139 
140     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
141                return SubLoop->contains(BB); }))
142         continue; // Block belongs to an inner loop.
143 
144     for (const Instruction &I : *BB) {
145       // Unroll a loop which contains an "if" statement whose condition
146       // defined by a PHI belonging to the loop. This may help to eliminate
147       // if region and potentially even PHI itself, saving on both divergence
148       // and registers used for the PHI.
149       // Add a small bonus for each of such "if" statements.
150       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
151         if (UP.Threshold < MaxBoost && Br->isConditional()) {
152           BasicBlock *Succ0 = Br->getSuccessor(0);
153           BasicBlock *Succ1 = Br->getSuccessor(1);
154           if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
155               (L->contains(Succ1) && L->isLoopExiting(Succ1)))
156             continue;
157           if (dependsOnLocalPhi(L, Br->getCondition())) {
158             UP.Threshold += UnrollThresholdIf;
159             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
160                               << " for loop:\n"
161                               << *L << " due to " << *Br << '\n');
162             if (UP.Threshold >= MaxBoost)
163               return;
164           }
165         }
166         continue;
167       }
168 
169       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
170       if (!GEP)
171         continue;
172 
173       unsigned AS = GEP->getAddressSpace();
174       unsigned Threshold = 0;
175       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
176         Threshold = ThresholdPrivate;
177       else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
178         Threshold = ThresholdLocal;
179       else
180         continue;
181 
182       if (UP.Threshold >= Threshold)
183         continue;
184 
185       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
186         const Value *Ptr = GEP->getPointerOperand();
187         const AllocaInst *Alloca =
188             dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
189         if (!Alloca || !Alloca->isStaticAlloca())
190           continue;
191         Type *Ty = Alloca->getAllocatedType();
192         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
193         if (AllocaSize > MaxAlloca)
194           continue;
195       } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
196                  AS == AMDGPUAS::REGION_ADDRESS) {
197         LocalGEPsSeen++;
198         // Inhibit unroll for local memory if we have seen addressing not to
199         // a variable, most likely we will be unable to combine it.
200         // Do not unroll too deep inner loops for local memory to give a chance
201         // to unroll an outer loop for a more important reason.
202         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
203             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
204              !isa<Argument>(GEP->getPointerOperand())))
205           continue;
206         LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
207                           << *L << " due to LDS use.\n");
208         UP.Runtime = UnrollRuntimeLocal;
209       }
210 
211       // Check if GEP depends on a value defined by this loop itself.
212       bool HasLoopDef = false;
213       for (const Value *Op : GEP->operands()) {
214         const Instruction *Inst = dyn_cast<Instruction>(Op);
215         if (!Inst || L->isLoopInvariant(Op))
216           continue;
217 
218         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
219              return SubLoop->contains(Inst); }))
220           continue;
221         HasLoopDef = true;
222         break;
223       }
224       if (!HasLoopDef)
225         continue;
226 
227       // We want to do whatever we can to limit the number of alloca
228       // instructions that make it through to the code generator.  allocas
229       // require us to use indirect addressing, which is slow and prone to
230       // compiler bugs.  If this loop does an address calculation on an
231       // alloca ptr, then we want to use a higher than normal loop unroll
232       // threshold. This will give SROA a better chance to eliminate these
233       // allocas.
234       //
235       // We also want to have more unrolling for local memory to let ds
236       // instructions with different offsets combine.
237       //
238       // Don't use the maximum allowed value here as it will make some
239       // programs way too big.
240       UP.Threshold = Threshold;
241       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
242                         << " for loop:\n"
243                         << *L << " due to " << *GEP << '\n');
244       if (UP.Threshold >= MaxBoost)
245         return;
246     }
247 
248     // If we got a GEP in a small BB from inner loop then increase max trip
249     // count to analyze for better estimation cost in unroll
250     if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
251       UP.MaxIterationsCountToAnalyze = 32;
252   }
253 }
254 
255 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
256                                           TTI::PeelingPreferences &PP) {
257   BaseT::getPeelingPreferences(L, SE, PP);
258 }
259 
260 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
261     // Codegen control options which don't matter.
262     AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
263     AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
264     AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
265     AMDGPU::FeatureUnalignedAccessMode,
266 
267     AMDGPU::FeatureAutoWaitcntBeforeBarrier,
268 
269     // Property of the kernel/environment which can't actually differ.
270     AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
271     AMDGPU::FeatureTrapHandler,
272 
273     // The default assumption needs to be ecc is enabled, but no directly
274     // exposed operations depend on it, so it can be safely inlined.
275     AMDGPU::FeatureSRAMECC,
276 
277     // Perf-tuning features
278     AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
279 
280 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
281     : BaseT(TM, F.getParent()->getDataLayout()),
282       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
283       TLI(ST->getTargetLowering()), CommonTTI(TM, F),
284       IsGraphics(AMDGPU::isGraphics(F.getCallingConv())),
285       MaxVGPRs(ST->getMaxNumVGPRs(
286           std::max(ST->getWavesPerEU(F).first,
287                    ST->getWavesPerEUForWorkGroup(
288                        ST->getFlatWorkGroupSizes(F).second)))) {
289   AMDGPU::SIModeRegisterDefaults Mode(F);
290   HasFP32Denormals = Mode.allFP32Denormals();
291   HasFP64FP16Denormals = Mode.allFP64FP16Denormals();
292 }
293 
294 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
295   // The concept of vector registers doesn't really exist. Some packed vector
296   // operations operate on the normal 32-bit registers.
297   return MaxVGPRs;
298 }
299 
300 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
301   // This is really the number of registers to fill when vectorizing /
302   // interleaving loops, so we lie to avoid trying to use all registers.
303   return getHardwareNumberOfRegisters(Vec) >> 3;
304 }
305 
306 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
307   const SIRegisterInfo *TRI = ST->getRegisterInfo();
308   const TargetRegisterClass *RC = TRI->getRegClass(RCID);
309   unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32;
310   return getHardwareNumberOfRegisters(false) / NumVGPRs;
311 }
312 
313 TypeSize
314 GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
315   switch (K) {
316   case TargetTransformInfo::RGK_Scalar:
317     return TypeSize::getFixed(32);
318   case TargetTransformInfo::RGK_FixedWidthVector:
319     return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
320   case TargetTransformInfo::RGK_ScalableVector:
321     return TypeSize::getScalable(0);
322   }
323   llvm_unreachable("Unsupported register kind");
324 }
325 
326 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
327   return 32;
328 }
329 
330 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
331   if (Opcode == Instruction::Load || Opcode == Instruction::Store)
332     return 32 * 4 / ElemWidth;
333   return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
334        : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
335        : 1;
336 }
337 
338 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
339                                          unsigned ChainSizeInBytes,
340                                          VectorType *VecTy) const {
341   unsigned VecRegBitWidth = VF * LoadSize;
342   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
343     // TODO: Support element-size less than 32bit?
344     return 128 / LoadSize;
345 
346   return VF;
347 }
348 
349 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
350                                              unsigned ChainSizeInBytes,
351                                              VectorType *VecTy) const {
352   unsigned VecRegBitWidth = VF * StoreSize;
353   if (VecRegBitWidth > 128)
354     return 128 / StoreSize;
355 
356   return VF;
357 }
358 
359 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
360   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
361       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
362       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
363       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
364     return 512;
365   }
366 
367   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
368     return 8 * ST->getMaxPrivateElementSize();
369 
370   // Common to flat, global, local and region. Assume for unknown addrspace.
371   return 128;
372 }
373 
374 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
375                                             Align Alignment,
376                                             unsigned AddrSpace) const {
377   // We allow vectorization of flat stores, even though we may need to decompose
378   // them later if they may access private memory. We don't have enough context
379   // here, and legalization can handle it.
380   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
381     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
382       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
383   }
384   return true;
385 }
386 
387 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
388                                              Align Alignment,
389                                              unsigned AddrSpace) const {
390   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
391 }
392 
393 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
394                                               Align Alignment,
395                                               unsigned AddrSpace) const {
396   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
397 }
398 
399 // FIXME: Really we would like to issue multiple 128-bit loads and stores per
400 // iteration. Should we report a larger size and let it legalize?
401 //
402 // FIXME: Should we use narrower types for local/region, or account for when
403 // unaligned access is legal?
404 //
405 // FIXME: This could use fine tuning and microbenchmarks.
406 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
407                                             unsigned SrcAddrSpace,
408                                             unsigned DestAddrSpace,
409                                             unsigned SrcAlign,
410                                             unsigned DestAlign) const {
411   unsigned MinAlign = std::min(SrcAlign, DestAlign);
412 
413   // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
414   // hardware into byte accesses. If you assume all alignments are equally
415   // probable, it's more efficient on average to use short accesses for this
416   // case.
417   if (MinAlign == 2)
418     return Type::getInt16Ty(Context);
419 
420   // Not all subtargets have 128-bit DS instructions, and we currently don't
421   // form them by default.
422   if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
423       SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
424       DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
425       DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
426     return FixedVectorType::get(Type::getInt32Ty(Context), 2);
427   }
428 
429   // Global memory works best with 16-byte accesses. Private memory will also
430   // hit this, although they'll be decomposed.
431   return FixedVectorType::get(Type::getInt32Ty(Context), 4);
432 }
433 
434 void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
435   SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
436   unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
437   unsigned SrcAlign, unsigned DestAlign) const {
438   assert(RemainingBytes < 16);
439 
440   unsigned MinAlign = std::min(SrcAlign, DestAlign);
441 
442   if (MinAlign != 2) {
443     Type *I64Ty = Type::getInt64Ty(Context);
444     while (RemainingBytes >= 8) {
445       OpsOut.push_back(I64Ty);
446       RemainingBytes -= 8;
447     }
448 
449     Type *I32Ty = Type::getInt32Ty(Context);
450     while (RemainingBytes >= 4) {
451       OpsOut.push_back(I32Ty);
452       RemainingBytes -= 4;
453     }
454   }
455 
456   Type *I16Ty = Type::getInt16Ty(Context);
457   while (RemainingBytes >= 2) {
458     OpsOut.push_back(I16Ty);
459     RemainingBytes -= 2;
460   }
461 
462   Type *I8Ty = Type::getInt8Ty(Context);
463   while (RemainingBytes) {
464     OpsOut.push_back(I8Ty);
465     --RemainingBytes;
466   }
467 }
468 
469 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
470   // Disable unrolling if the loop is not vectorized.
471   // TODO: Enable this again.
472   if (VF == 1)
473     return 1;
474 
475   return 8;
476 }
477 
478 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
479                                        MemIntrinsicInfo &Info) const {
480   switch (Inst->getIntrinsicID()) {
481   case Intrinsic::amdgcn_atomic_inc:
482   case Intrinsic::amdgcn_atomic_dec:
483   case Intrinsic::amdgcn_ds_ordered_add:
484   case Intrinsic::amdgcn_ds_ordered_swap:
485   case Intrinsic::amdgcn_ds_fadd:
486   case Intrinsic::amdgcn_ds_fmin:
487   case Intrinsic::amdgcn_ds_fmax: {
488     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
489     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
490     if (!Ordering || !Volatile)
491       return false; // Invalid.
492 
493     unsigned OrderingVal = Ordering->getZExtValue();
494     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
495       return false;
496 
497     Info.PtrVal = Inst->getArgOperand(0);
498     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
499     Info.ReadMem = true;
500     Info.WriteMem = true;
501     Info.IsVolatile = !Volatile->isNullValue();
502     return true;
503   }
504   default:
505     return false;
506   }
507 }
508 
509 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
510                                        TTI::TargetCostKind CostKind,
511                                        TTI::OperandValueKind Opd1Info,
512                                        TTI::OperandValueKind Opd2Info,
513                                        TTI::OperandValueProperties Opd1PropInfo,
514                                        TTI::OperandValueProperties Opd2PropInfo,
515                                        ArrayRef<const Value *> Args,
516                                        const Instruction *CxtI) {
517   EVT OrigTy = TLI->getValueType(DL, Ty);
518   if (!OrigTy.isSimple()) {
519     // FIXME: We're having to query the throughput cost so that the basic
520     // implementation tries to generate legalize and scalarization costs. Maybe
521     // we could hoist the scalarization code here?
522     if (CostKind != TTI::TCK_CodeSize)
523       return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput,
524                                            Opd1Info, Opd2Info, Opd1PropInfo,
525                                            Opd2PropInfo, Args, CxtI);
526     // Scalarization
527 
528     // Check if any of the operands are vector operands.
529     int ISD = TLI->InstructionOpcodeToISD(Opcode);
530     assert(ISD && "Invalid opcode");
531 
532     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
533 
534     bool IsFloat = Ty->isFPOrFPVectorTy();
535     // Assume that floating point arithmetic operations cost twice as much as
536     // integer operations.
537     unsigned OpCost = (IsFloat ? 2 : 1);
538 
539     if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
540       // The operation is legal. Assume it costs 1.
541       // TODO: Once we have extract/insert subvector cost we need to use them.
542       return LT.first * OpCost;
543     }
544 
545     if (!TLI->isOperationExpand(ISD, LT.second)) {
546       // If the operation is custom lowered, then assume that the code is twice
547       // as expensive.
548       return LT.first * 2 * OpCost;
549     }
550 
551     // Else, assume that we need to scalarize this op.
552     // TODO: If one of the types get legalized by splitting, handle this
553     // similarly to what getCastInstrCost() does.
554     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
555       unsigned Num = cast<FixedVectorType>(VTy)->getNumElements();
556       unsigned Cost = getArithmeticInstrCost(
557           Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
558           Opd1PropInfo, Opd2PropInfo, Args, CxtI);
559       // Return the cost of multiple scalar invocation plus the cost of
560       // inserting and extracting the values.
561       SmallVector<Type *> Tys(Args.size(), Ty);
562       return getScalarizationOverhead(VTy, Args, Tys) + Num * Cost;
563     }
564 
565     // We don't know anything about this scalar instruction.
566     return OpCost;
567   }
568 
569   // Legalize the type.
570   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
571   int ISD = TLI->InstructionOpcodeToISD(Opcode);
572 
573   // Because we don't have any legal vector operations, but the legal types, we
574   // need to account for split vectors.
575   unsigned NElts = LT.second.isVector() ?
576     LT.second.getVectorNumElements() : 1;
577 
578   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
579 
580   switch (ISD) {
581   case ISD::SHL:
582   case ISD::SRL:
583   case ISD::SRA:
584     if (SLT == MVT::i64)
585       return get64BitInstrCost(CostKind) * LT.first * NElts;
586 
587     if (ST->has16BitInsts() && SLT == MVT::i16)
588       NElts = (NElts + 1) / 2;
589 
590     // i32
591     return getFullRateInstrCost() * LT.first * NElts;
592   case ISD::ADD:
593   case ISD::SUB:
594   case ISD::AND:
595   case ISD::OR:
596   case ISD::XOR:
597     if (SLT == MVT::i64) {
598       // and, or and xor are typically split into 2 VALU instructions.
599       return 2 * getFullRateInstrCost() * LT.first * NElts;
600     }
601 
602     if (ST->has16BitInsts() && SLT == MVT::i16)
603       NElts = (NElts + 1) / 2;
604 
605     return LT.first * NElts * getFullRateInstrCost();
606   case ISD::MUL: {
607     const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
608     if (SLT == MVT::i64) {
609       const int FullRateCost = getFullRateInstrCost();
610       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
611     }
612 
613     if (ST->has16BitInsts() && SLT == MVT::i16)
614       NElts = (NElts + 1) / 2;
615 
616     // i32
617     return QuarterRateCost * NElts * LT.first;
618   }
619   case ISD::FMUL:
620     // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
621     // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
622     // fused operation.
623     if (CxtI && CxtI->hasOneUse())
624       if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
625         const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
626         if (OPC == ISD::FADD || OPC == ISD::FSUB) {
627           if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
628             return TargetTransformInfo::TCC_Free;
629           if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
630             return TargetTransformInfo::TCC_Free;
631 
632           // Estimate all types may be fused with contract/unsafe flags
633           const TargetOptions &Options = TLI->getTargetMachine().Options;
634           if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
635               Options.UnsafeFPMath ||
636               (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
637             return TargetTransformInfo::TCC_Free;
638         }
639       }
640     LLVM_FALLTHROUGH;
641   case ISD::FADD:
642   case ISD::FSUB:
643     if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
644       NElts = (NElts + 1) / 2;
645     if (SLT == MVT::f64)
646       return LT.first * NElts * get64BitInstrCost(CostKind);
647 
648     if (ST->has16BitInsts() && SLT == MVT::f16)
649       NElts = (NElts + 1) / 2;
650 
651     if (SLT == MVT::f32 || SLT == MVT::f16)
652       return LT.first * NElts * getFullRateInstrCost();
653     break;
654   case ISD::FDIV:
655   case ISD::FREM:
656     // FIXME: frem should be handled separately. The fdiv in it is most of it,
657     // but the current lowering is also not entirely correct.
658     if (SLT == MVT::f64) {
659       int Cost = 7 * get64BitInstrCost(CostKind) +
660                  getQuarterRateInstrCost(CostKind) +
661                  3 * getHalfRateInstrCost(CostKind);
662       // Add cost of workaround.
663       if (!ST->hasUsableDivScaleConditionOutput())
664         Cost += 3 * getFullRateInstrCost();
665 
666       return LT.first * Cost * NElts;
667     }
668 
669     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
670       // TODO: This is more complicated, unsafe flags etc.
671       if ((SLT == MVT::f32 && !HasFP32Denormals) ||
672           (SLT == MVT::f16 && ST->has16BitInsts())) {
673         return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
674       }
675     }
676 
677     if (SLT == MVT::f16 && ST->has16BitInsts()) {
678       // 2 x v_cvt_f32_f16
679       // f32 rcp
680       // f32 fmul
681       // v_cvt_f16_f32
682       // f16 div_fixup
683       int Cost =
684           4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
685       return LT.first * Cost * NElts;
686     }
687 
688     if (SLT == MVT::f32 || SLT == MVT::f16) {
689       // 4 more v_cvt_* insts without f16 insts support
690       int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
691                  1 * getQuarterRateInstrCost(CostKind);
692 
693       if (!HasFP32Denormals) {
694         // FP mode switches.
695         Cost += 2 * getFullRateInstrCost();
696       }
697 
698       return LT.first * NElts * Cost;
699     }
700     break;
701   case ISD::FNEG:
702     // Use the backend' estimation. If fneg is not free each element will cost
703     // one additional instruction.
704     return TLI->isFNegFree(SLT) ? 0 : NElts;
705   default:
706     break;
707   }
708 
709   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
710                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
711 }
712 
713 // Return true if there's a potential benefit from using v2f16/v2i16
714 // instructions for an intrinsic, even if it requires nontrivial legalization.
715 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
716   switch (ID) {
717   case Intrinsic::fma: // TODO: fmuladd
718   // There's a small benefit to using vector ops in the legalized code.
719   case Intrinsic::round:
720   case Intrinsic::uadd_sat:
721   case Intrinsic::usub_sat:
722   case Intrinsic::sadd_sat:
723   case Intrinsic::ssub_sat:
724     return true;
725   default:
726     return false;
727   }
728 }
729 
730 int GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
731                                       TTI::TargetCostKind CostKind) {
732   if (ICA.getID() == Intrinsic::fabs)
733     return 0;
734 
735   if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
736     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
737 
738   Type *RetTy = ICA.getReturnType();
739   EVT OrigTy = TLI->getValueType(DL, RetTy);
740   if (!OrigTy.isSimple()) {
741     if (CostKind != TTI::TCK_CodeSize)
742       return BaseT::getIntrinsicInstrCost(ICA, CostKind);
743 
744     // TODO: Combine these two logic paths.
745     if (ICA.isTypeBasedOnly())
746       return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
747 
748     unsigned RetVF =
749         (RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements()
750                              : 1);
751     const IntrinsicInst *I = ICA.getInst();
752     const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
753     FastMathFlags FMF = ICA.getFlags();
754     // Assume that we need to scalarize this intrinsic.
755 
756     // Compute the scalarization overhead based on Args for a vector
757     // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
758     // CostModel will pass a vector RetTy and VF is 1.
759     unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
760     if (RetVF > 1) {
761       ScalarizationCost = 0;
762       if (!RetTy->isVoidTy())
763         ScalarizationCost +=
764             getScalarizationOverhead(cast<VectorType>(RetTy), true, false);
765       ScalarizationCost +=
766           getOperandsScalarizationOverhead(Args, ICA.getArgTypes());
767     }
768 
769     IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, ICA.getArgTypes(), FMF, I,
770                                   ScalarizationCost);
771     return getIntrinsicInstrCost(Attrs, CostKind);
772   }
773 
774   // Legalize the type.
775   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
776 
777   unsigned NElts = LT.second.isVector() ?
778     LT.second.getVectorNumElements() : 1;
779 
780   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
781 
782   if (SLT == MVT::f64)
783     return LT.first * NElts * get64BitInstrCost(CostKind);
784 
785   if ((ST->has16BitInsts() && SLT == MVT::f16) ||
786       (ST->hasPackedFP32Ops() && SLT == MVT::f32))
787     NElts = (NElts + 1) / 2;
788 
789   // TODO: Get more refined intrinsic costs?
790   unsigned InstRate = getQuarterRateInstrCost(CostKind);
791 
792   switch (ICA.getID()) {
793   case Intrinsic::fma:
794     InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
795                                    : getQuarterRateInstrCost(CostKind);
796     break;
797   case Intrinsic::uadd_sat:
798   case Intrinsic::usub_sat:
799   case Intrinsic::sadd_sat:
800   case Intrinsic::ssub_sat:
801     static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
802     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
803       NElts = 1;
804     break;
805   }
806 
807   return LT.first * NElts * InstRate;
808 }
809 
810 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode,
811                                     TTI::TargetCostKind CostKind) {
812   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
813     return Opcode == Instruction::PHI ? 0 : 1;
814 
815   // XXX - For some reason this isn't called for switch.
816   switch (Opcode) {
817   case Instruction::Br:
818   case Instruction::Ret:
819     return 10;
820   default:
821     return BaseT::getCFInstrCost(Opcode, CostKind);
822   }
823 }
824 
825 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
826                                            bool IsPairwise,
827                                            TTI::TargetCostKind CostKind) {
828   EVT OrigTy = TLI->getValueType(DL, Ty);
829 
830   // Computes cost on targets that have packed math instructions(which support
831   // 16-bit types only).
832   if (IsPairwise ||
833       !ST->hasVOP3PInsts() ||
834       OrigTy.getScalarSizeInBits() != 16)
835     return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind);
836 
837   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
838   return LT.first * getFullRateInstrCost();
839 }
840 
841 int GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
842                                        bool IsPairwise, bool IsUnsigned,
843                                        TTI::TargetCostKind CostKind) {
844   EVT OrigTy = TLI->getValueType(DL, Ty);
845 
846   // Computes cost on targets that have packed math instructions(which support
847   // 16-bit types only).
848   if (IsPairwise ||
849       !ST->hasVOP3PInsts() ||
850       OrigTy.getScalarSizeInBits() != 16)
851     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned,
852                                          CostKind);
853 
854   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
855   return LT.first * getHalfRateInstrCost(CostKind);
856 }
857 
858 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
859                                       unsigned Index) {
860   switch (Opcode) {
861   case Instruction::ExtractElement:
862   case Instruction::InsertElement: {
863     unsigned EltSize
864       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
865     if (EltSize < 32) {
866       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
867         return 0;
868       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
869     }
870 
871     // Extracts are just reads of a subregister, so are free. Inserts are
872     // considered free because we don't want to have any cost for scalarizing
873     // operations, and we don't have to copy into a different register class.
874 
875     // Dynamic indexing isn't free and is best avoided.
876     return Index == ~0u ? 2 : 0;
877   }
878   default:
879     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
880   }
881 }
882 
883 /// Analyze if the results of inline asm are divergent. If \p Indices is empty,
884 /// this is analyzing the collective result of all output registers. Otherwise,
885 /// this is only querying a specific result index if this returns multiple
886 /// registers in a struct.
887 bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
888   const CallInst *CI, ArrayRef<unsigned> Indices) const {
889   // TODO: Handle complex extract indices
890   if (Indices.size() > 1)
891     return true;
892 
893   const DataLayout &DL = CI->getModule()->getDataLayout();
894   const SIRegisterInfo *TRI = ST->getRegisterInfo();
895   TargetLowering::AsmOperandInfoVector TargetConstraints =
896       TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
897 
898   const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
899 
900   int OutputIdx = 0;
901   for (auto &TC : TargetConstraints) {
902     if (TC.Type != InlineAsm::isOutput)
903       continue;
904 
905     // Skip outputs we don't care about.
906     if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
907       continue;
908 
909     TLI->ComputeConstraintToUse(TC, SDValue());
910 
911     Register AssignedReg;
912     const TargetRegisterClass *RC;
913     std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint(
914       TRI, TC.ConstraintCode, TC.ConstraintVT);
915     if (AssignedReg) {
916       // FIXME: This is a workaround for getRegForInlineAsmConstraint
917       // returning VS_32
918       RC = TRI->getPhysRegClass(AssignedReg);
919     }
920 
921     // For AGPR constraints null is returned on subtargets without AGPRs, so
922     // assume divergent for null.
923     if (!RC || !TRI->isSGPRClass(RC))
924       return true;
925   }
926 
927   return false;
928 }
929 
930 /// \returns true if the new GPU divergence analysis is enabled.
931 bool GCNTTIImpl::useGPUDivergenceAnalysis() const {
932   return !UseLegacyDA;
933 }
934 
935 /// \returns true if the result of the value could potentially be
936 /// different across workitems in a wavefront.
937 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
938   if (const Argument *A = dyn_cast<Argument>(V))
939     return !AMDGPU::isArgPassedInSGPR(A);
940 
941   // Loads from the private and flat address spaces are divergent, because
942   // threads can execute the load instruction with the same inputs and get
943   // different results.
944   //
945   // All other loads are not divergent, because if threads issue loads with the
946   // same arguments, they will always get the same result.
947   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
948     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
949            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
950 
951   // Atomics are divergent because they are executed sequentially: when an
952   // atomic operation refers to the same address in each thread, then each
953   // thread after the first sees the value written by the previous thread as
954   // original value.
955   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
956     return true;
957 
958   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
959     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
960 
961   // Assume all function calls are a source of divergence.
962   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
963     if (CI->isInlineAsm())
964       return isInlineAsmSourceOfDivergence(CI);
965     return true;
966   }
967 
968   // Assume all function calls are a source of divergence.
969   if (isa<InvokeInst>(V))
970     return true;
971 
972   return false;
973 }
974 
975 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
976   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
977     switch (Intrinsic->getIntrinsicID()) {
978     default:
979       return false;
980     case Intrinsic::amdgcn_readfirstlane:
981     case Intrinsic::amdgcn_readlane:
982     case Intrinsic::amdgcn_icmp:
983     case Intrinsic::amdgcn_fcmp:
984     case Intrinsic::amdgcn_ballot:
985     case Intrinsic::amdgcn_if_break:
986       return true;
987     }
988   }
989 
990   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
991     if (CI->isInlineAsm())
992       return !isInlineAsmSourceOfDivergence(CI);
993     return false;
994   }
995 
996   const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
997   if (!ExtValue)
998     return false;
999 
1000   const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
1001   if (!CI)
1002     return false;
1003 
1004   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
1005     switch (Intrinsic->getIntrinsicID()) {
1006     default:
1007       return false;
1008     case Intrinsic::amdgcn_if:
1009     case Intrinsic::amdgcn_else: {
1010       ArrayRef<unsigned> Indices = ExtValue->getIndices();
1011       return Indices.size() == 1 && Indices[0] == 1;
1012     }
1013     }
1014   }
1015 
1016   // If we have inline asm returning mixed SGPR and VGPR results, we inferred
1017   // divergent for the overall struct return. We need to override it in the
1018   // case we're extracting an SGPR component here.
1019   if (CI->isInlineAsm())
1020     return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
1021 
1022   return false;
1023 }
1024 
1025 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1026                                             Intrinsic::ID IID) const {
1027   switch (IID) {
1028   case Intrinsic::amdgcn_atomic_inc:
1029   case Intrinsic::amdgcn_atomic_dec:
1030   case Intrinsic::amdgcn_ds_fadd:
1031   case Intrinsic::amdgcn_ds_fmin:
1032   case Intrinsic::amdgcn_ds_fmax:
1033   case Intrinsic::amdgcn_is_shared:
1034   case Intrinsic::amdgcn_is_private:
1035     OpIndexes.push_back(0);
1036     return true;
1037   default:
1038     return false;
1039   }
1040 }
1041 
1042 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1043                                                     Value *OldV,
1044                                                     Value *NewV) const {
1045   auto IntrID = II->getIntrinsicID();
1046   switch (IntrID) {
1047   case Intrinsic::amdgcn_atomic_inc:
1048   case Intrinsic::amdgcn_atomic_dec:
1049   case Intrinsic::amdgcn_ds_fadd:
1050   case Intrinsic::amdgcn_ds_fmin:
1051   case Intrinsic::amdgcn_ds_fmax: {
1052     const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
1053     if (!IsVolatile->isZero())
1054       return nullptr;
1055     Module *M = II->getParent()->getParent()->getParent();
1056     Type *DestTy = II->getType();
1057     Type *SrcTy = NewV->getType();
1058     Function *NewDecl =
1059         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
1060     II->setArgOperand(0, NewV);
1061     II->setCalledFunction(NewDecl);
1062     return II;
1063   }
1064   case Intrinsic::amdgcn_is_shared:
1065   case Intrinsic::amdgcn_is_private: {
1066     unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
1067       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
1068     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1069     LLVMContext &Ctx = NewV->getType()->getContext();
1070     ConstantInt *NewVal = (TrueAS == NewAS) ?
1071       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
1072     return NewVal;
1073   }
1074   case Intrinsic::ptrmask: {
1075     unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1076     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1077     Value *MaskOp = II->getArgOperand(1);
1078     Type *MaskTy = MaskOp->getType();
1079 
1080     bool DoTruncate = false;
1081 
1082     const GCNTargetMachine &TM =
1083         static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
1084     if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
1085       // All valid 64-bit to 32-bit casts work by chopping off the high
1086       // bits. Any masking only clearing the low bits will also apply in the new
1087       // address space.
1088       if (DL.getPointerSizeInBits(OldAS) != 64 ||
1089           DL.getPointerSizeInBits(NewAS) != 32)
1090         return nullptr;
1091 
1092       // TODO: Do we need to thread more context in here?
1093       KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
1094       if (Known.countMinLeadingOnes() < 32)
1095         return nullptr;
1096 
1097       DoTruncate = true;
1098     }
1099 
1100     IRBuilder<> B(II);
1101     if (DoTruncate) {
1102       MaskTy = B.getInt32Ty();
1103       MaskOp = B.CreateTrunc(MaskOp, MaskTy);
1104     }
1105 
1106     return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
1107                              {NewV, MaskOp});
1108   }
1109   default:
1110     return nullptr;
1111   }
1112 }
1113 
1114 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT,
1115                                     ArrayRef<int> Mask, int Index,
1116                                     VectorType *SubTp) {
1117   if (ST->hasVOP3PInsts()) {
1118     if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
1119         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
1120       // With op_sel VOP3P instructions freely can access the low half or high
1121       // half of a register, so any swizzle is free.
1122 
1123       switch (Kind) {
1124       case TTI::SK_Broadcast:
1125       case TTI::SK_Reverse:
1126       case TTI::SK_PermuteSingleSrc:
1127         return 0;
1128       default:
1129         break;
1130       }
1131     }
1132   }
1133 
1134   return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp);
1135 }
1136 
1137 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
1138                                      const Function *Callee) const {
1139   const TargetMachine &TM = getTLI()->getTargetMachine();
1140   const GCNSubtarget *CallerST
1141     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1142   const GCNSubtarget *CalleeST
1143     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1144 
1145   const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1146   const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1147 
1148   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1149   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1150   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1151     return false;
1152 
1153   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1154   // no way to support merge for backend defined attributes.
1155   AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
1156   AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
1157   if (!CallerMode.isInlineCompatible(CalleeMode))
1158     return false;
1159 
1160   if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
1161       Callee->hasFnAttribute(Attribute::InlineHint))
1162     return true;
1163 
1164   // Hack to make compile times reasonable.
1165   if (InlineMaxBB) {
1166     // Single BB does not increase total BB amount.
1167     if (Callee->size() == 1)
1168       return true;
1169     size_t BBSize = Caller->size() + Callee->size() - 1;
1170     return BBSize <= InlineMaxBB;
1171   }
1172 
1173   return true;
1174 }
1175 
1176 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
1177   // If we have a pointer to private array passed into a function
1178   // it will not be optimized out, leaving scratch usage.
1179   // Increase the inline threshold to allow inlining in this case.
1180   uint64_t AllocaSize = 0;
1181   SmallPtrSet<const AllocaInst *, 8> AIVisited;
1182   for (Value *PtrArg : CB->args()) {
1183     PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
1184     if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS &&
1185                 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS))
1186       continue;
1187 
1188     PtrArg = getUnderlyingObject(PtrArg);
1189     if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) {
1190       if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second)
1191         continue;
1192       AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
1193       // If the amount of stack memory is excessive we will not be able
1194       // to get rid of the scratch anyway, bail out.
1195       if (AllocaSize > ArgAllocaCutoff) {
1196         AllocaSize = 0;
1197         break;
1198       }
1199     }
1200   }
1201   if (AllocaSize)
1202     return ArgAllocaCost;
1203   return 0;
1204 }
1205 
1206 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1207                                          TTI::UnrollingPreferences &UP) {
1208   CommonTTI.getUnrollingPreferences(L, SE, UP);
1209 }
1210 
1211 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1212                                        TTI::PeelingPreferences &PP) {
1213   CommonTTI.getPeelingPreferences(L, SE, PP);
1214 }
1215 
1216 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
1217   return ST->hasFullRate64Ops()
1218              ? getFullRateInstrCost()
1219              : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
1220                                       : getQuarterRateInstrCost(CostKind);
1221 }
1222 
1223 R600TTIImpl::R600TTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
1224     : BaseT(TM, F.getParent()->getDataLayout()),
1225       ST(static_cast<const R600Subtarget *>(TM->getSubtargetImpl(F))),
1226       TLI(ST->getTargetLowering()), CommonTTI(TM, F) {}
1227 
1228 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
1229   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
1230 }
1231 
1232 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
1233   return getHardwareNumberOfRegisters(Vec);
1234 }
1235 
1236 TypeSize
1237 R600TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
1238   return TypeSize::getFixed(32);
1239 }
1240 
1241 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
1242   return 32;
1243 }
1244 
1245 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
1246   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
1247       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
1248     return 128;
1249   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1250       AddrSpace == AMDGPUAS::REGION_ADDRESS)
1251     return 64;
1252   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
1253     return 32;
1254 
1255   if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
1256       AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
1257       (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
1258       AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
1259     return 128;
1260   llvm_unreachable("unhandled address space");
1261 }
1262 
1263 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
1264                                              Align Alignment,
1265                                              unsigned AddrSpace) const {
1266   // We allow vectorization of flat stores, even though we may need to decompose
1267   // them later if they may access private memory. We don't have enough context
1268   // here, and legalization can handle it.
1269   return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
1270 }
1271 
1272 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1273                                               Align Alignment,
1274                                               unsigned AddrSpace) const {
1275   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
1276 }
1277 
1278 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1279                                                Align Alignment,
1280                                                unsigned AddrSpace) const {
1281   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
1282 }
1283 
1284 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
1285   // Disable unrolling if the loop is not vectorized.
1286   // TODO: Enable this again.
1287   if (VF == 1)
1288     return 1;
1289 
1290   return 8;
1291 }
1292 
1293 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode,
1294                                      TTI::TargetCostKind CostKind) {
1295   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
1296     return Opcode == Instruction::PHI ? 0 : 1;
1297 
1298   // XXX - For some reason this isn't called for switch.
1299   switch (Opcode) {
1300   case Instruction::Br:
1301   case Instruction::Ret:
1302     return 10;
1303   default:
1304     return BaseT::getCFInstrCost(Opcode, CostKind);
1305   }
1306 }
1307 
1308 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
1309                                     unsigned Index) {
1310   switch (Opcode) {
1311   case Instruction::ExtractElement:
1312   case Instruction::InsertElement: {
1313     unsigned EltSize
1314       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
1315     if (EltSize < 32) {
1316       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
1317     }
1318 
1319     // Extracts are just reads of a subregister, so are free. Inserts are
1320     // considered free because we don't want to have any cost for scalarizing
1321     // operations, and we don't have to copy into a different register class.
1322 
1323     // Dynamic indexing isn't free and is best avoided.
1324     return Index == ~0u ? 2 : 0;
1325   }
1326   default:
1327     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
1328   }
1329 }
1330 
1331 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1332                                           TTI::UnrollingPreferences &UP) {
1333   CommonTTI.getUnrollingPreferences(L, SE, UP);
1334 }
1335 
1336 void R600TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1337                                         TTI::PeelingPreferences &PP) {
1338   CommonTTI.getPeelingPreferences(L, SE, PP);
1339 }
1340