1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUSubtarget.h"
19 #include "Utils/AMDGPUBaseInfo.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/ISDOpcodes.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/MC/SubtargetFeature.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MachineValueType.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <limits>
51 #include <utility>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "AMDGPUtti"
56 
57 static cl::opt<unsigned> UnrollThresholdPrivate(
58   "amdgpu-unroll-threshold-private",
59   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
60   cl::init(2700), cl::Hidden);
61 
62 static cl::opt<unsigned> UnrollThresholdLocal(
63   "amdgpu-unroll-threshold-local",
64   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
65   cl::init(1000), cl::Hidden);
66 
67 static cl::opt<unsigned> UnrollThresholdIf(
68   "amdgpu-unroll-threshold-if",
69   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
70   cl::init(150), cl::Hidden);
71 
72 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
73                               unsigned Depth = 0) {
74   const Instruction *I = dyn_cast<Instruction>(Cond);
75   if (!I)
76     return false;
77 
78   for (const Value *V : I->operand_values()) {
79     if (!L->contains(I))
80       continue;
81     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
82       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
83                   return SubLoop->contains(PHI); }))
84         return true;
85     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
86       return true;
87   }
88   return false;
89 }
90 
91 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
92                                             TTI::UnrollingPreferences &UP) {
93   UP.Threshold = 300; // Twice the default.
94   UP.MaxCount = std::numeric_limits<unsigned>::max();
95   UP.Partial = true;
96 
97   // TODO: Do we want runtime unrolling?
98 
99   // Maximum alloca size than can fit registers. Reserve 16 registers.
100   const unsigned MaxAlloca = (256 - 16) * 4;
101   unsigned ThresholdPrivate = UnrollThresholdPrivate;
102   unsigned ThresholdLocal = UnrollThresholdLocal;
103   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
104   for (const BasicBlock *BB : L->getBlocks()) {
105     const DataLayout &DL = BB->getModule()->getDataLayout();
106     unsigned LocalGEPsSeen = 0;
107 
108     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
109                return SubLoop->contains(BB); }))
110         continue; // Block belongs to an inner loop.
111 
112     for (const Instruction &I : *BB) {
113       // Unroll a loop which contains an "if" statement whose condition
114       // defined by a PHI belonging to the loop. This may help to eliminate
115       // if region and potentially even PHI itself, saving on both divergence
116       // and registers used for the PHI.
117       // Add a small bonus for each of such "if" statements.
118       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
119         if (UP.Threshold < MaxBoost && Br->isConditional()) {
120           BasicBlock *Succ0 = Br->getSuccessor(0);
121           BasicBlock *Succ1 = Br->getSuccessor(1);
122           if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
123               (L->contains(Succ1) && L->isLoopExiting(Succ1)))
124             continue;
125           if (dependsOnLocalPhi(L, Br->getCondition())) {
126             UP.Threshold += UnrollThresholdIf;
127             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
128                               << " for loop:\n"
129                               << *L << " due to " << *Br << '\n');
130             if (UP.Threshold >= MaxBoost)
131               return;
132           }
133         }
134         continue;
135       }
136 
137       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
138       if (!GEP)
139         continue;
140 
141       unsigned AS = GEP->getAddressSpace();
142       unsigned Threshold = 0;
143       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
144         Threshold = ThresholdPrivate;
145       else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
146         Threshold = ThresholdLocal;
147       else
148         continue;
149 
150       if (UP.Threshold >= Threshold)
151         continue;
152 
153       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
154         const Value *Ptr = GEP->getPointerOperand();
155         const AllocaInst *Alloca =
156             dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
157         if (!Alloca || !Alloca->isStaticAlloca())
158           continue;
159         Type *Ty = Alloca->getAllocatedType();
160         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
161         if (AllocaSize > MaxAlloca)
162           continue;
163       } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
164                  AS == AMDGPUAS::REGION_ADDRESS) {
165         LocalGEPsSeen++;
166         // Inhibit unroll for local memory if we have seen addressing not to
167         // a variable, most likely we will be unable to combine it.
168         // Do not unroll too deep inner loops for local memory to give a chance
169         // to unroll an outer loop for a more important reason.
170         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
171             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
172              !isa<Argument>(GEP->getPointerOperand())))
173           continue;
174       }
175 
176       // Check if GEP depends on a value defined by this loop itself.
177       bool HasLoopDef = false;
178       for (const Value *Op : GEP->operands()) {
179         const Instruction *Inst = dyn_cast<Instruction>(Op);
180         if (!Inst || L->isLoopInvariant(Op))
181           continue;
182 
183         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
184              return SubLoop->contains(Inst); }))
185           continue;
186         HasLoopDef = true;
187         break;
188       }
189       if (!HasLoopDef)
190         continue;
191 
192       // We want to do whatever we can to limit the number of alloca
193       // instructions that make it through to the code generator.  allocas
194       // require us to use indirect addressing, which is slow and prone to
195       // compiler bugs.  If this loop does an address calculation on an
196       // alloca ptr, then we want to use a higher than normal loop unroll
197       // threshold. This will give SROA a better chance to eliminate these
198       // allocas.
199       //
200       // We also want to have more unrolling for local memory to let ds
201       // instructions with different offsets combine.
202       //
203       // Don't use the maximum allowed value here as it will make some
204       // programs way too big.
205       UP.Threshold = Threshold;
206       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
207                         << " for loop:\n"
208                         << *L << " due to " << *GEP << '\n');
209       if (UP.Threshold >= MaxBoost)
210         return;
211     }
212   }
213 }
214 
215 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
216   // The concept of vector registers doesn't really exist. Some packed vector
217   // operations operate on the normal 32-bit registers.
218   return 256;
219 }
220 
221 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
222   // This is really the number of registers to fill when vectorizing /
223   // interleaving loops, so we lie to avoid trying to use all registers.
224   return getHardwareNumberOfRegisters(Vec) >> 3;
225 }
226 
227 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
228   return 32;
229 }
230 
231 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
232   return 32;
233 }
234 
235 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
236                                             unsigned ChainSizeInBytes,
237                                             VectorType *VecTy) const {
238   unsigned VecRegBitWidth = VF * LoadSize;
239   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
240     // TODO: Support element-size less than 32bit?
241     return 128 / LoadSize;
242 
243   return VF;
244 }
245 
246 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
247                                              unsigned ChainSizeInBytes,
248                                              VectorType *VecTy) const {
249   unsigned VecRegBitWidth = VF * StoreSize;
250   if (VecRegBitWidth > 128)
251     return 128 / StoreSize;
252 
253   return VF;
254 }
255 
256 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
257   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
258       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
259       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
260       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
261     return 512;
262   }
263 
264   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS ||
265       AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
266       AddrSpace == AMDGPUAS::REGION_ADDRESS)
267     return 128;
268 
269   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
270     return 8 * ST->getMaxPrivateElementSize();
271 
272   llvm_unreachable("unhandled address space");
273 }
274 
275 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
276                                                unsigned Alignment,
277                                                unsigned AddrSpace) const {
278   // We allow vectorization of flat stores, even though we may need to decompose
279   // them later if they may access private memory. We don't have enough context
280   // here, and legalization can handle it.
281   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
282     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
283       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
284   }
285   return true;
286 }
287 
288 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
289                                                 unsigned Alignment,
290                                                 unsigned AddrSpace) const {
291   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
292 }
293 
294 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
295                                                  unsigned Alignment,
296                                                  unsigned AddrSpace) const {
297   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
298 }
299 
300 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
301   // Disable unrolling if the loop is not vectorized.
302   // TODO: Enable this again.
303   if (VF == 1)
304     return 1;
305 
306   return 8;
307 }
308 
309 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
310                                        MemIntrinsicInfo &Info) const {
311   switch (Inst->getIntrinsicID()) {
312   case Intrinsic::amdgcn_atomic_inc:
313   case Intrinsic::amdgcn_atomic_dec:
314   case Intrinsic::amdgcn_ds_ordered_add:
315   case Intrinsic::amdgcn_ds_ordered_swap:
316   case Intrinsic::amdgcn_ds_fadd:
317   case Intrinsic::amdgcn_ds_fmin:
318   case Intrinsic::amdgcn_ds_fmax: {
319     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
320     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
321     if (!Ordering || !Volatile)
322       return false; // Invalid.
323 
324     unsigned OrderingVal = Ordering->getZExtValue();
325     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
326       return false;
327 
328     Info.PtrVal = Inst->getArgOperand(0);
329     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
330     Info.ReadMem = true;
331     Info.WriteMem = true;
332     Info.IsVolatile = !Volatile->isNullValue();
333     return true;
334   }
335   default:
336     return false;
337   }
338 }
339 
340 int GCNTTIImpl::getArithmeticInstrCost(
341     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
342     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
343     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) {
344   EVT OrigTy = TLI->getValueType(DL, Ty);
345   if (!OrigTy.isSimple()) {
346     return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
347                                          Opd1PropInfo, Opd2PropInfo);
348   }
349 
350   // Legalize the type.
351   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
352   int ISD = TLI->InstructionOpcodeToISD(Opcode);
353 
354   // Because we don't have any legal vector operations, but the legal types, we
355   // need to account for split vectors.
356   unsigned NElts = LT.second.isVector() ?
357     LT.second.getVectorNumElements() : 1;
358 
359   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
360 
361   switch (ISD) {
362   case ISD::SHL:
363   case ISD::SRL:
364   case ISD::SRA:
365     if (SLT == MVT::i64)
366       return get64BitInstrCost() * LT.first * NElts;
367 
368     // i32
369     return getFullRateInstrCost() * LT.first * NElts;
370   case ISD::ADD:
371   case ISD::SUB:
372   case ISD::AND:
373   case ISD::OR:
374   case ISD::XOR:
375     if (SLT == MVT::i64){
376       // and, or and xor are typically split into 2 VALU instructions.
377       return 2 * getFullRateInstrCost() * LT.first * NElts;
378     }
379 
380     return LT.first * NElts * getFullRateInstrCost();
381   case ISD::MUL: {
382     const int QuarterRateCost = getQuarterRateInstrCost();
383     if (SLT == MVT::i64) {
384       const int FullRateCost = getFullRateInstrCost();
385       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
386     }
387 
388     // i32
389     return QuarterRateCost * NElts * LT.first;
390   }
391   case ISD::FADD:
392   case ISD::FSUB:
393   case ISD::FMUL:
394     if (SLT == MVT::f64)
395       return LT.first * NElts * get64BitInstrCost();
396 
397     if (SLT == MVT::f32 || SLT == MVT::f16)
398       return LT.first * NElts * getFullRateInstrCost();
399     break;
400   case ISD::FDIV:
401   case ISD::FREM:
402     // FIXME: frem should be handled separately. The fdiv in it is most of it,
403     // but the current lowering is also not entirely correct.
404     if (SLT == MVT::f64) {
405       int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
406       // Add cost of workaround.
407       if (!ST->hasUsableDivScaleConditionOutput())
408         Cost += 3 * getFullRateInstrCost();
409 
410       return LT.first * Cost * NElts;
411     }
412 
413     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
414       // TODO: This is more complicated, unsafe flags etc.
415       if ((SLT == MVT::f32 && !HasFP32Denormals) ||
416           (SLT == MVT::f16 && ST->has16BitInsts())) {
417         return LT.first * getQuarterRateInstrCost() * NElts;
418       }
419     }
420 
421     if (SLT == MVT::f16 && ST->has16BitInsts()) {
422       // 2 x v_cvt_f32_f16
423       // f32 rcp
424       // f32 fmul
425       // v_cvt_f16_f32
426       // f16 div_fixup
427       int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost();
428       return LT.first * Cost * NElts;
429     }
430 
431     if (SLT == MVT::f32 || SLT == MVT::f16) {
432       int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
433 
434       if (!HasFP32Denormals) {
435         // FP mode switches.
436         Cost += 2 * getFullRateInstrCost();
437       }
438 
439       return LT.first * NElts * Cost;
440     }
441     break;
442   default:
443     break;
444   }
445 
446   return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
447                                        Opd1PropInfo, Opd2PropInfo);
448 }
449 
450 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) {
451   // XXX - For some reason this isn't called for switch.
452   switch (Opcode) {
453   case Instruction::Br:
454   case Instruction::Ret:
455     return 10;
456   default:
457     return BaseT::getCFInstrCost(Opcode);
458   }
459 }
460 
461 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
462                                               bool IsPairwise) {
463   EVT OrigTy = TLI->getValueType(DL, Ty);
464 
465   // Computes cost on targets that have packed math instructions(which support
466   // 16-bit types only).
467   if (IsPairwise ||
468       !ST->hasVOP3PInsts() ||
469       OrigTy.getScalarSizeInBits() != 16)
470     return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise);
471 
472   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
473   return LT.first * getFullRateInstrCost();
474 }
475 
476 int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy,
477                                           bool IsPairwise,
478                                           bool IsUnsigned) {
479   EVT OrigTy = TLI->getValueType(DL, Ty);
480 
481   // Computes cost on targets that have packed math instructions(which support
482   // 16-bit types only).
483   if (IsPairwise ||
484       !ST->hasVOP3PInsts() ||
485       OrigTy.getScalarSizeInBits() != 16)
486     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned);
487 
488   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
489   return LT.first * getHalfRateInstrCost();
490 }
491 
492 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
493                                       unsigned Index) {
494   switch (Opcode) {
495   case Instruction::ExtractElement:
496   case Instruction::InsertElement: {
497     unsigned EltSize
498       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
499     if (EltSize < 32) {
500       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
501         return 0;
502       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
503     }
504 
505     // Extracts are just reads of a subregister, so are free. Inserts are
506     // considered free because we don't want to have any cost for scalarizing
507     // operations, and we don't have to copy into a different register class.
508 
509     // Dynamic indexing isn't free and is best avoided.
510     return Index == ~0u ? 2 : 0;
511   }
512   default:
513     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
514   }
515 }
516 
517 
518 
519 static bool isArgPassedInSGPR(const Argument *A) {
520   const Function *F = A->getParent();
521 
522   // Arguments to compute shaders are never a source of divergence.
523   CallingConv::ID CC = F->getCallingConv();
524   switch (CC) {
525   case CallingConv::AMDGPU_KERNEL:
526   case CallingConv::SPIR_KERNEL:
527     return true;
528   case CallingConv::AMDGPU_VS:
529   case CallingConv::AMDGPU_LS:
530   case CallingConv::AMDGPU_HS:
531   case CallingConv::AMDGPU_ES:
532   case CallingConv::AMDGPU_GS:
533   case CallingConv::AMDGPU_PS:
534   case CallingConv::AMDGPU_CS:
535     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
536     // Everything else is in VGPRs.
537     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
538            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
539   default:
540     // TODO: Should calls support inreg for SGPR inputs?
541     return false;
542   }
543 }
544 
545 /// \returns true if the result of the value could potentially be
546 /// different across workitems in a wavefront.
547 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
548   if (const Argument *A = dyn_cast<Argument>(V))
549     return !isArgPassedInSGPR(A);
550 
551   // Loads from the private and flat address spaces are divergent, because
552   // threads can execute the load instruction with the same inputs and get
553   // different results.
554   //
555   // All other loads are not divergent, because if threads issue loads with the
556   // same arguments, they will always get the same result.
557   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
558     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
559            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
560 
561   // Atomics are divergent because they are executed sequentially: when an
562   // atomic operation refers to the same address in each thread, then each
563   // thread after the first sees the value written by the previous thread as
564   // original value.
565   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
566     return true;
567 
568   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
569     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
570 
571   // Assume all function calls are a source of divergence.
572   if (isa<CallInst>(V) || isa<InvokeInst>(V))
573     return true;
574 
575   return false;
576 }
577 
578 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
579   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
580     switch (Intrinsic->getIntrinsicID()) {
581     default:
582       return false;
583     case Intrinsic::amdgcn_readfirstlane:
584     case Intrinsic::amdgcn_readlane:
585     case Intrinsic::amdgcn_icmp:
586     case Intrinsic::amdgcn_fcmp:
587       return true;
588     }
589   }
590   return false;
591 }
592 
593 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
594                                             Intrinsic::ID IID) const {
595   switch (IID) {
596   case Intrinsic::amdgcn_atomic_inc:
597   case Intrinsic::amdgcn_atomic_dec:
598   case Intrinsic::amdgcn_ds_fadd:
599   case Intrinsic::amdgcn_ds_fmin:
600   case Intrinsic::amdgcn_ds_fmax:
601   case Intrinsic::amdgcn_is_shared:
602   case Intrinsic::amdgcn_is_private:
603     OpIndexes.push_back(0);
604     return true;
605   default:
606     return false;
607   }
608 }
609 
610 bool GCNTTIImpl::rewriteIntrinsicWithAddressSpace(
611   IntrinsicInst *II, Value *OldV, Value *NewV) const {
612   auto IntrID = II->getIntrinsicID();
613   switch (IntrID) {
614   case Intrinsic::amdgcn_atomic_inc:
615   case Intrinsic::amdgcn_atomic_dec:
616   case Intrinsic::amdgcn_ds_fadd:
617   case Intrinsic::amdgcn_ds_fmin:
618   case Intrinsic::amdgcn_ds_fmax: {
619     const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
620     if (!IsVolatile->isZero())
621       return false;
622     Module *M = II->getParent()->getParent()->getParent();
623     Type *DestTy = II->getType();
624     Type *SrcTy = NewV->getType();
625     Function *NewDecl =
626         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
627     II->setArgOperand(0, NewV);
628     II->setCalledFunction(NewDecl);
629     return true;
630   }
631   case Intrinsic::amdgcn_is_shared:
632   case Intrinsic::amdgcn_is_private: {
633     unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
634       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
635     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
636     LLVMContext &Ctx = NewV->getType()->getContext();
637     ConstantInt *NewVal = (TrueAS == NewAS) ?
638       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
639     II->replaceAllUsesWith(NewVal);
640     II->eraseFromParent();
641     return true;
642   }
643   default:
644     return false;
645   }
646 }
647 
648 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
649                                        Type *SubTp) {
650   if (ST->hasVOP3PInsts()) {
651     VectorType *VT = cast<VectorType>(Tp);
652     if (VT->getNumElements() == 2 &&
653         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
654       // With op_sel VOP3P instructions freely can access the low half or high
655       // half of a register, so any swizzle is free.
656 
657       switch (Kind) {
658       case TTI::SK_Broadcast:
659       case TTI::SK_Reverse:
660       case TTI::SK_PermuteSingleSrc:
661         return 0;
662       default:
663         break;
664       }
665     }
666   }
667 
668   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
669 }
670 
671 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
672                                      const Function *Callee) const {
673   const TargetMachine &TM = getTLI()->getTargetMachine();
674   const GCNSubtarget *CallerST
675     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
676   const GCNSubtarget *CalleeST
677     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
678 
679   const FeatureBitset &CallerBits = CallerST->getFeatureBits();
680   const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
681 
682   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
683   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
684   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
685     return false;
686 
687   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
688   // no way to support merge for backend defined attributes.
689   AMDGPU::SIModeRegisterDefaults CallerMode(*Caller, *CallerST);
690   AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee, *CalleeST);
691   return CallerMode.isInlineCompatible(CalleeMode);
692 }
693 
694 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
695                                          TTI::UnrollingPreferences &UP) {
696   CommonTTI.getUnrollingPreferences(L, SE, UP);
697 }
698 
699 unsigned GCNTTIImpl::getUserCost(const User *U,
700                                  ArrayRef<const Value *> Operands) {
701   const Instruction *I = dyn_cast<Instruction>(U);
702   if (!I)
703     return BaseT::getUserCost(U, Operands);
704 
705   // Estimate different operations to be optimized out
706   switch (I->getOpcode()) {
707   case Instruction::ExtractElement: {
708     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
709     unsigned Idx = -1;
710     if (CI)
711       Idx = CI->getZExtValue();
712     return getVectorInstrCost(I->getOpcode(), I->getOperand(0)->getType(), Idx);
713   }
714   case Instruction::InsertElement: {
715     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
716     unsigned Idx = -1;
717     if (CI)
718       Idx = CI->getZExtValue();
719     return getVectorInstrCost(I->getOpcode(), I->getType(), Idx);
720   }
721   case Instruction::Call: {
722     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
723       SmallVector<Value *, 4> Args(II->arg_operands());
724       FastMathFlags FMF;
725       if (auto *FPMO = dyn_cast<FPMathOperator>(II))
726         FMF = FPMO->getFastMathFlags();
727       return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args,
728                                    FMF);
729     } else {
730       return BaseT::getUserCost(U, Operands);
731     }
732   }
733   case Instruction::ShuffleVector: {
734     const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
735     Type *Ty = Shuffle->getType();
736     Type *SrcTy = Shuffle->getOperand(0)->getType();
737 
738     // TODO: Identify and add costs for insert subvector, etc.
739     int SubIndex;
740     if (Shuffle->isExtractSubvectorMask(SubIndex))
741       return getShuffleCost(TTI::SK_ExtractSubvector, SrcTy, SubIndex, Ty);
742 
743     if (Shuffle->changesLength())
744       return BaseT::getUserCost(U, Operands);
745 
746     if (Shuffle->isIdentity())
747       return 0;
748 
749     if (Shuffle->isReverse())
750       return getShuffleCost(TTI::SK_Reverse, Ty, 0, nullptr);
751 
752     if (Shuffle->isSelect())
753       return getShuffleCost(TTI::SK_Select, Ty, 0, nullptr);
754 
755     if (Shuffle->isTranspose())
756       return getShuffleCost(TTI::SK_Transpose, Ty, 0, nullptr);
757 
758     if (Shuffle->isZeroEltSplat())
759       return getShuffleCost(TTI::SK_Broadcast, Ty, 0, nullptr);
760 
761     if (Shuffle->isSingleSource())
762       return getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, nullptr);
763 
764     return getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, 0, nullptr);
765   }
766   case Instruction::ZExt:
767   case Instruction::SExt:
768   case Instruction::FPToUI:
769   case Instruction::FPToSI:
770   case Instruction::FPExt:
771   case Instruction::PtrToInt:
772   case Instruction::IntToPtr:
773   case Instruction::SIToFP:
774   case Instruction::UIToFP:
775   case Instruction::Trunc:
776   case Instruction::FPTrunc:
777   case Instruction::BitCast:
778   case Instruction::AddrSpaceCast: {
779     return getCastInstrCost(I->getOpcode(), I->getType(),
780                             I->getOperand(0)->getType(), I);
781   }
782   case Instruction::Add:
783   case Instruction::FAdd:
784   case Instruction::Sub:
785   case Instruction::FSub:
786   case Instruction::Mul:
787   case Instruction::FMul:
788   case Instruction::UDiv:
789   case Instruction::SDiv:
790   case Instruction::FDiv:
791   case Instruction::URem:
792   case Instruction::SRem:
793   case Instruction::FRem:
794   case Instruction::Shl:
795   case Instruction::LShr:
796   case Instruction::AShr:
797   case Instruction::And:
798   case Instruction::Or:
799   case Instruction::Xor:
800   case Instruction::FNeg: {
801     return getArithmeticInstrCost(I->getOpcode(), I->getType(),
802                                   TTI::OK_AnyValue, TTI::OK_AnyValue,
803                                   TTI::OP_None, TTI::OP_None, Operands);
804   }
805   default:
806     break;
807   }
808 
809   return BaseT::getUserCost(U, Operands);
810 }
811 
812 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
813   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
814 }
815 
816 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
817   return getHardwareNumberOfRegisters(Vec);
818 }
819 
820 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
821   return 32;
822 }
823 
824 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
825   return 32;
826 }
827 
828 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
829   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
830       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
831     return 128;
832   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
833       AddrSpace == AMDGPUAS::REGION_ADDRESS)
834     return 64;
835   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
836     return 32;
837 
838   if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
839       AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
840       (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
841       AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
842     return 128;
843   llvm_unreachable("unhandled address space");
844 }
845 
846 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
847                                              unsigned Alignment,
848                                              unsigned AddrSpace) const {
849   // We allow vectorization of flat stores, even though we may need to decompose
850   // them later if they may access private memory. We don't have enough context
851   // here, and legalization can handle it.
852   return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
853 }
854 
855 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
856                                               unsigned Alignment,
857                                               unsigned AddrSpace) const {
858   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
859 }
860 
861 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
862                                                unsigned Alignment,
863                                                unsigned AddrSpace) const {
864   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
865 }
866 
867 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
868   // Disable unrolling if the loop is not vectorized.
869   // TODO: Enable this again.
870   if (VF == 1)
871     return 1;
872 
873   return 8;
874 }
875 
876 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) {
877   // XXX - For some reason this isn't called for switch.
878   switch (Opcode) {
879   case Instruction::Br:
880   case Instruction::Ret:
881     return 10;
882   default:
883     return BaseT::getCFInstrCost(Opcode);
884   }
885 }
886 
887 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
888                                     unsigned Index) {
889   switch (Opcode) {
890   case Instruction::ExtractElement:
891   case Instruction::InsertElement: {
892     unsigned EltSize
893       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
894     if (EltSize < 32) {
895       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
896     }
897 
898     // Extracts are just reads of a subregister, so are free. Inserts are
899     // considered free because we don't want to have any cost for scalarizing
900     // operations, and we don't have to copy into a different register class.
901 
902     // Dynamic indexing isn't free and is best avoided.
903     return Index == ~0u ? 2 : 0;
904   }
905   default:
906     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
907   }
908 }
909 
910 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
911                                           TTI::UnrollingPreferences &UP) {
912   CommonTTI.getUnrollingPreferences(L, SE, UP);
913 }
914