1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // \file
11 // This file implements a TargetTransformInfo analysis pass specific to the
12 // AMDGPU target machine. It uses the target's detailed information to provide
13 // more precise answers to certain TTI queries, while letting the target
14 // independent and default TTI implementations handle the rest.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "AMDGPUTargetTransformInfo.h"
19 #include "AMDGPUSubtarget.h"
20 #include "Utils/AMDGPUBaseInfo.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/ISDOpcodes.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/MC/SubtargetFeature.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MachineValueType.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <limits>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "AMDGPUtti"
57 
58 static cl::opt<unsigned> UnrollThresholdPrivate(
59   "amdgpu-unroll-threshold-private",
60   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
61   cl::init(2500), cl::Hidden);
62 
63 static cl::opt<unsigned> UnrollThresholdLocal(
64   "amdgpu-unroll-threshold-local",
65   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
66   cl::init(1000), cl::Hidden);
67 
68 static cl::opt<unsigned> UnrollThresholdIf(
69   "amdgpu-unroll-threshold-if",
70   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
71   cl::init(150), cl::Hidden);
72 
73 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
74                               unsigned Depth = 0) {
75   const Instruction *I = dyn_cast<Instruction>(Cond);
76   if (!I)
77     return false;
78 
79   for (const Value *V : I->operand_values()) {
80     if (!L->contains(I))
81       continue;
82     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
83       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
84                   return SubLoop->contains(PHI); }))
85         return true;
86     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
87       return true;
88   }
89   return false;
90 }
91 
92 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
93                                             TTI::UnrollingPreferences &UP) {
94   UP.Threshold = 300; // Twice the default.
95   UP.MaxCount = std::numeric_limits<unsigned>::max();
96   UP.Partial = true;
97 
98   // TODO: Do we want runtime unrolling?
99 
100   // Maximum alloca size than can fit registers. Reserve 16 registers.
101   const unsigned MaxAlloca = (256 - 16) * 4;
102   unsigned ThresholdPrivate = UnrollThresholdPrivate;
103   unsigned ThresholdLocal = UnrollThresholdLocal;
104   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
105   AMDGPUAS ASST = ST->getAMDGPUAS();
106   for (const BasicBlock *BB : L->getBlocks()) {
107     const DataLayout &DL = BB->getModule()->getDataLayout();
108     unsigned LocalGEPsSeen = 0;
109 
110     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
111                return SubLoop->contains(BB); }))
112         continue; // Block belongs to an inner loop.
113 
114     for (const Instruction &I : *BB) {
115       // Unroll a loop which contains an "if" statement whose condition
116       // defined by a PHI belonging to the loop. This may help to eliminate
117       // if region and potentially even PHI itself, saving on both divergence
118       // and registers used for the PHI.
119       // Add a small bonus for each of such "if" statements.
120       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
121         if (UP.Threshold < MaxBoost && Br->isConditional()) {
122           if (L->isLoopExiting(Br->getSuccessor(0)) ||
123               L->isLoopExiting(Br->getSuccessor(1)))
124             continue;
125           if (dependsOnLocalPhi(L, Br->getCondition())) {
126             UP.Threshold += UnrollThresholdIf;
127             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
128                               << " for loop:\n"
129                               << *L << " due to " << *Br << '\n');
130             if (UP.Threshold >= MaxBoost)
131               return;
132           }
133         }
134         continue;
135       }
136 
137       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
138       if (!GEP)
139         continue;
140 
141       unsigned AS = GEP->getAddressSpace();
142       unsigned Threshold = 0;
143       if (AS == ASST.PRIVATE_ADDRESS)
144         Threshold = ThresholdPrivate;
145       else if (AS == ASST.LOCAL_ADDRESS)
146         Threshold = ThresholdLocal;
147       else
148         continue;
149 
150       if (UP.Threshold >= Threshold)
151         continue;
152 
153       if (AS == ASST.PRIVATE_ADDRESS) {
154         const Value *Ptr = GEP->getPointerOperand();
155         const AllocaInst *Alloca =
156             dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
157         if (!Alloca || !Alloca->isStaticAlloca())
158           continue;
159         Type *Ty = Alloca->getAllocatedType();
160         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
161         if (AllocaSize > MaxAlloca)
162           continue;
163       } else if (AS == ASST.LOCAL_ADDRESS) {
164         LocalGEPsSeen++;
165         // Inhibit unroll for local memory if we have seen addressing not to
166         // a variable, most likely we will be unable to combine it.
167         // Do not unroll too deep inner loops for local memory to give a chance
168         // to unroll an outer loop for a more important reason.
169         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
170             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
171              !isa<Argument>(GEP->getPointerOperand())))
172           continue;
173       }
174 
175       // Check if GEP depends on a value defined by this loop itself.
176       bool HasLoopDef = false;
177       for (const Value *Op : GEP->operands()) {
178         const Instruction *Inst = dyn_cast<Instruction>(Op);
179         if (!Inst || L->isLoopInvariant(Op))
180           continue;
181 
182         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
183              return SubLoop->contains(Inst); }))
184           continue;
185         HasLoopDef = true;
186         break;
187       }
188       if (!HasLoopDef)
189         continue;
190 
191       // We want to do whatever we can to limit the number of alloca
192       // instructions that make it through to the code generator.  allocas
193       // require us to use indirect addressing, which is slow and prone to
194       // compiler bugs.  If this loop does an address calculation on an
195       // alloca ptr, then we want to use a higher than normal loop unroll
196       // threshold. This will give SROA a better chance to eliminate these
197       // allocas.
198       //
199       // We also want to have more unrolling for local memory to let ds
200       // instructions with different offsets combine.
201       //
202       // Don't use the maximum allowed value here as it will make some
203       // programs way too big.
204       UP.Threshold = Threshold;
205       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
206                         << " for loop:\n"
207                         << *L << " due to " << *GEP << '\n');
208       if (UP.Threshold >= MaxBoost)
209         return;
210     }
211   }
212 }
213 
214 unsigned AMDGPUTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
215   // The concept of vector registers doesn't really exist. Some packed vector
216   // operations operate on the normal 32-bit registers.
217 
218   // Number of VGPRs on SI.
219   if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)
220     return 256;
221 
222   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
223 }
224 
225 unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) const {
226   // This is really the number of registers to fill when vectorizing /
227   // interleaving loops, so we lie to avoid trying to use all registers.
228   return getHardwareNumberOfRegisters(Vec) >> 3;
229 }
230 
231 unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) const {
232   return 32;
233 }
234 
235 unsigned AMDGPUTTIImpl::getMinVectorRegisterBitWidth() const {
236   return 32;
237 }
238 
239 unsigned AMDGPUTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
240                                             unsigned ChainSizeInBytes,
241                                             VectorType *VecTy) const {
242   unsigned VecRegBitWidth = VF * LoadSize;
243   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
244     // TODO: Support element-size less than 32bit?
245     return 128 / LoadSize;
246 
247   return VF;
248 }
249 
250 unsigned AMDGPUTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
251                                              unsigned ChainSizeInBytes,
252                                              VectorType *VecTy) const {
253   unsigned VecRegBitWidth = VF * StoreSize;
254   if (VecRegBitWidth > 128)
255     return 128 / StoreSize;
256 
257   return VF;
258 }
259 
260 unsigned AMDGPUTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
261   AMDGPUAS AS = ST->getAMDGPUAS();
262   if (AddrSpace == AS.GLOBAL_ADDRESS ||
263       AddrSpace == AS.CONSTANT_ADDRESS ||
264       AddrSpace == AS.CONSTANT_ADDRESS_32BIT) {
265     if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
266       return 128;
267     return 512;
268   }
269 
270   if (AddrSpace == AS.FLAT_ADDRESS)
271     return 128;
272 
273   if (AddrSpace == AS.LOCAL_ADDRESS ||
274       AddrSpace == AS.REGION_ADDRESS)
275     return ST->useDS128() ? 128 : 64;
276 
277   if (AddrSpace == AS.PRIVATE_ADDRESS)
278     return 8 * ST->getMaxPrivateElementSize();
279 
280   if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS &&
281       (AddrSpace == AS.PARAM_D_ADDRESS ||
282       AddrSpace == AS.PARAM_I_ADDRESS ||
283        (AddrSpace >= AS.CONSTANT_BUFFER_0 &&
284         AddrSpace <= AS.CONSTANT_BUFFER_15)))
285     return 128;
286   llvm_unreachable("unhandled address space");
287 }
288 
289 bool AMDGPUTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
290                                                unsigned Alignment,
291                                                unsigned AddrSpace) const {
292   // We allow vectorization of flat stores, even though we may need to decompose
293   // them later if they may access private memory. We don't have enough context
294   // here, and legalization can handle it.
295   if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS) {
296     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
297       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
298   }
299   return true;
300 }
301 
302 bool AMDGPUTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
303                                                 unsigned Alignment,
304                                                 unsigned AddrSpace) const {
305   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
306 }
307 
308 bool AMDGPUTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
309                                                  unsigned Alignment,
310                                                  unsigned AddrSpace) const {
311   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
312 }
313 
314 unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) {
315   // Disable unrolling if the loop is not vectorized.
316   // TODO: Enable this again.
317   if (VF == 1)
318     return 1;
319 
320   return 8;
321 }
322 
323 bool AMDGPUTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
324                                        MemIntrinsicInfo &Info) const {
325   switch (Inst->getIntrinsicID()) {
326   case Intrinsic::amdgcn_atomic_inc:
327   case Intrinsic::amdgcn_atomic_dec:
328   case Intrinsic::amdgcn_ds_fadd:
329   case Intrinsic::amdgcn_ds_fmin:
330   case Intrinsic::amdgcn_ds_fmax: {
331     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
332     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
333     if (!Ordering || !Volatile)
334       return false; // Invalid.
335 
336     unsigned OrderingVal = Ordering->getZExtValue();
337     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
338       return false;
339 
340     Info.PtrVal = Inst->getArgOperand(0);
341     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
342     Info.ReadMem = true;
343     Info.WriteMem = true;
344     Info.IsVolatile = !Volatile->isNullValue();
345     return true;
346   }
347   default:
348     return false;
349   }
350 }
351 
352 int AMDGPUTTIImpl::getArithmeticInstrCost(
353     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
354     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
355     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) {
356   EVT OrigTy = TLI->getValueType(DL, Ty);
357   if (!OrigTy.isSimple()) {
358     return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
359                                          Opd1PropInfo, Opd2PropInfo);
360   }
361 
362   // Legalize the type.
363   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
364   int ISD = TLI->InstructionOpcodeToISD(Opcode);
365 
366   // Because we don't have any legal vector operations, but the legal types, we
367   // need to account for split vectors.
368   unsigned NElts = LT.second.isVector() ?
369     LT.second.getVectorNumElements() : 1;
370 
371   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
372 
373   switch (ISD) {
374   case ISD::SHL:
375   case ISD::SRL:
376   case ISD::SRA:
377     if (SLT == MVT::i64)
378       return get64BitInstrCost() * LT.first * NElts;
379 
380     // i32
381     return getFullRateInstrCost() * LT.first * NElts;
382   case ISD::ADD:
383   case ISD::SUB:
384   case ISD::AND:
385   case ISD::OR:
386   case ISD::XOR:
387     if (SLT == MVT::i64){
388       // and, or and xor are typically split into 2 VALU instructions.
389       return 2 * getFullRateInstrCost() * LT.first * NElts;
390     }
391 
392     return LT.first * NElts * getFullRateInstrCost();
393   case ISD::MUL: {
394     const int QuarterRateCost = getQuarterRateInstrCost();
395     if (SLT == MVT::i64) {
396       const int FullRateCost = getFullRateInstrCost();
397       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
398     }
399 
400     // i32
401     return QuarterRateCost * NElts * LT.first;
402   }
403   case ISD::FADD:
404   case ISD::FSUB:
405   case ISD::FMUL:
406     if (SLT == MVT::f64)
407       return LT.first * NElts * get64BitInstrCost();
408 
409     if (SLT == MVT::f32 || SLT == MVT::f16)
410       return LT.first * NElts * getFullRateInstrCost();
411     break;
412   case ISD::FDIV:
413   case ISD::FREM:
414     // FIXME: frem should be handled separately. The fdiv in it is most of it,
415     // but the current lowering is also not entirely correct.
416     if (SLT == MVT::f64) {
417       int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
418       // Add cost of workaround.
419       if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS)
420         Cost += 3 * getFullRateInstrCost();
421 
422       return LT.first * Cost * NElts;
423     }
424 
425     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
426       // TODO: This is more complicated, unsafe flags etc.
427       if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) ||
428           (SLT == MVT::f16 && ST->has16BitInsts())) {
429         return LT.first * getQuarterRateInstrCost() * NElts;
430       }
431     }
432 
433     if (SLT == MVT::f16 && ST->has16BitInsts()) {
434       // 2 x v_cvt_f32_f16
435       // f32 rcp
436       // f32 fmul
437       // v_cvt_f16_f32
438       // f16 div_fixup
439       int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost();
440       return LT.first * Cost * NElts;
441     }
442 
443     if (SLT == MVT::f32 || SLT == MVT::f16) {
444       int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
445 
446       if (!ST->hasFP32Denormals()) {
447         // FP mode switches.
448         Cost += 2 * getFullRateInstrCost();
449       }
450 
451       return LT.first * NElts * Cost;
452     }
453     break;
454   default:
455     break;
456   }
457 
458   return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
459                                        Opd1PropInfo, Opd2PropInfo);
460 }
461 
462 unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) {
463   // XXX - For some reason this isn't called for switch.
464   switch (Opcode) {
465   case Instruction::Br:
466   case Instruction::Ret:
467     return 10;
468   default:
469     return BaseT::getCFInstrCost(Opcode);
470   }
471 }
472 
473 int AMDGPUTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
474                                               bool IsPairwise) {
475   EVT OrigTy = TLI->getValueType(DL, Ty);
476 
477   // Computes cost on targets that have packed math instructions(which support
478   // 16-bit types only).
479   if (IsPairwise ||
480       !ST->hasVOP3PInsts() ||
481       OrigTy.getScalarSizeInBits() != 16)
482     return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise);
483 
484   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
485   return LT.first * getFullRateInstrCost();
486 }
487 
488 int AMDGPUTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy,
489                                           bool IsPairwise,
490                                           bool IsUnsigned) {
491   EVT OrigTy = TLI->getValueType(DL, Ty);
492 
493   // Computes cost on targets that have packed math instructions(which support
494   // 16-bit types only).
495   if (IsPairwise ||
496       !ST->hasVOP3PInsts() ||
497       OrigTy.getScalarSizeInBits() != 16)
498     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned);
499 
500   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
501   return LT.first * getHalfRateInstrCost();
502 }
503 
504 int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
505                                       unsigned Index) {
506   switch (Opcode) {
507   case Instruction::ExtractElement:
508   case Instruction::InsertElement: {
509     unsigned EltSize
510       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
511     if (EltSize < 32) {
512       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
513         return 0;
514       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
515     }
516 
517     // Extracts are just reads of a subregister, so are free. Inserts are
518     // considered free because we don't want to have any cost for scalarizing
519     // operations, and we don't have to copy into a different register class.
520 
521     // Dynamic indexing isn't free and is best avoided.
522     return Index == ~0u ? 2 : 0;
523   }
524   default:
525     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
526   }
527 }
528 
529 
530 
531 static bool isArgPassedInSGPR(const Argument *A) {
532   const Function *F = A->getParent();
533 
534   // Arguments to compute shaders are never a source of divergence.
535   CallingConv::ID CC = F->getCallingConv();
536   switch (CC) {
537   case CallingConv::AMDGPU_KERNEL:
538   case CallingConv::SPIR_KERNEL:
539     return true;
540   case CallingConv::AMDGPU_VS:
541   case CallingConv::AMDGPU_LS:
542   case CallingConv::AMDGPU_HS:
543   case CallingConv::AMDGPU_ES:
544   case CallingConv::AMDGPU_GS:
545   case CallingConv::AMDGPU_PS:
546   case CallingConv::AMDGPU_CS:
547     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
548     // Everything else is in VGPRs.
549     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
550            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
551   default:
552     // TODO: Should calls support inreg for SGPR inputs?
553     return false;
554   }
555 }
556 
557 /// \returns true if the result of the value could potentially be
558 /// different across workitems in a wavefront.
559 bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const {
560   if (const Argument *A = dyn_cast<Argument>(V))
561     return !isArgPassedInSGPR(A);
562 
563   // Loads from the private address space are divergent, because threads
564   // can execute the load instruction with the same inputs and get different
565   // results.
566   //
567   // All other loads are not divergent, because if threads issue loads with the
568   // same arguments, they will always get the same result.
569   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
570     return Load->getPointerAddressSpace() == ST->getAMDGPUAS().PRIVATE_ADDRESS;
571 
572   // Atomics are divergent because they are executed sequentially: when an
573   // atomic operation refers to the same address in each thread, then each
574   // thread after the first sees the value written by the previous thread as
575   // original value.
576   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
577     return true;
578 
579   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
580     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
581 
582   // Assume all function calls are a source of divergence.
583   if (isa<CallInst>(V) || isa<InvokeInst>(V))
584     return true;
585 
586   return false;
587 }
588 
589 bool AMDGPUTTIImpl::isAlwaysUniform(const Value *V) const {
590   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
591     switch (Intrinsic->getIntrinsicID()) {
592     default:
593       return false;
594     case Intrinsic::amdgcn_readfirstlane:
595     case Intrinsic::amdgcn_readlane:
596       return true;
597     }
598   }
599   return false;
600 }
601 
602 unsigned AMDGPUTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
603                                        Type *SubTp) {
604   if (ST->hasVOP3PInsts()) {
605     VectorType *VT = cast<VectorType>(Tp);
606     if (VT->getNumElements() == 2 &&
607         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
608       // With op_sel VOP3P instructions freely can access the low half or high
609       // half of a register, so any swizzle is free.
610 
611       switch (Kind) {
612       case TTI::SK_Broadcast:
613       case TTI::SK_Reverse:
614       case TTI::SK_PermuteSingleSrc:
615         return 0;
616       default:
617         break;
618       }
619     }
620   }
621 
622   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
623 }
624 
625 bool AMDGPUTTIImpl::areInlineCompatible(const Function *Caller,
626                                         const Function *Callee) const {
627   const TargetMachine &TM = getTLI()->getTargetMachine();
628   const FeatureBitset &CallerBits =
629     TM.getSubtargetImpl(*Caller)->getFeatureBits();
630   const FeatureBitset &CalleeBits =
631     TM.getSubtargetImpl(*Callee)->getFeatureBits();
632 
633   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
634   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
635   return ((RealCallerBits & RealCalleeBits) == RealCalleeBits);
636 }
637