1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // \file 11 // This file implements a TargetTransformInfo analysis pass specific to the 12 // AMDGPU target machine. It uses the target's detailed information to provide 13 // more precise answers to certain TTI queries, while letting the target 14 // independent and default TTI implementations handle the rest. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "AMDGPUTargetTransformInfo.h" 19 #include "AMDGPUSubtarget.h" 20 #include "Utils/AMDGPUBaseInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/ISDOpcodes.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/MC/SubtargetFeature.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MachineValueType.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <limits> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "AMDGPUtti" 57 58 static cl::opt<unsigned> UnrollThresholdPrivate( 59 "amdgpu-unroll-threshold-private", 60 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 61 cl::init(2500), cl::Hidden); 62 63 static cl::opt<unsigned> UnrollThresholdLocal( 64 "amdgpu-unroll-threshold-local", 65 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 66 cl::init(1000), cl::Hidden); 67 68 static cl::opt<unsigned> UnrollThresholdIf( 69 "amdgpu-unroll-threshold-if", 70 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 71 cl::init(150), cl::Hidden); 72 73 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 74 unsigned Depth = 0) { 75 const Instruction *I = dyn_cast<Instruction>(Cond); 76 if (!I) 77 return false; 78 79 for (const Value *V : I->operand_values()) { 80 if (!L->contains(I)) 81 continue; 82 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 83 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 84 return SubLoop->contains(PHI); })) 85 return true; 86 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 87 return true; 88 } 89 return false; 90 } 91 92 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 93 TTI::UnrollingPreferences &UP) { 94 UP.Threshold = 300; // Twice the default. 95 UP.MaxCount = std::numeric_limits<unsigned>::max(); 96 UP.Partial = true; 97 98 // TODO: Do we want runtime unrolling? 99 100 // Maximum alloca size than can fit registers. Reserve 16 registers. 101 const unsigned MaxAlloca = (256 - 16) * 4; 102 unsigned ThresholdPrivate = UnrollThresholdPrivate; 103 unsigned ThresholdLocal = UnrollThresholdLocal; 104 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 105 AMDGPUAS ASST = ST->getAMDGPUAS(); 106 for (const BasicBlock *BB : L->getBlocks()) { 107 const DataLayout &DL = BB->getModule()->getDataLayout(); 108 unsigned LocalGEPsSeen = 0; 109 110 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 111 return SubLoop->contains(BB); })) 112 continue; // Block belongs to an inner loop. 113 114 for (const Instruction &I : *BB) { 115 // Unroll a loop which contains an "if" statement whose condition 116 // defined by a PHI belonging to the loop. This may help to eliminate 117 // if region and potentially even PHI itself, saving on both divergence 118 // and registers used for the PHI. 119 // Add a small bonus for each of such "if" statements. 120 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 121 if (UP.Threshold < MaxBoost && Br->isConditional()) { 122 if (L->isLoopExiting(Br->getSuccessor(0)) || 123 L->isLoopExiting(Br->getSuccessor(1))) 124 continue; 125 if (dependsOnLocalPhi(L, Br->getCondition())) { 126 UP.Threshold += UnrollThresholdIf; 127 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 128 << " for loop:\n" 129 << *L << " due to " << *Br << '\n'); 130 if (UP.Threshold >= MaxBoost) 131 return; 132 } 133 } 134 continue; 135 } 136 137 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 138 if (!GEP) 139 continue; 140 141 unsigned AS = GEP->getAddressSpace(); 142 unsigned Threshold = 0; 143 if (AS == ASST.PRIVATE_ADDRESS) 144 Threshold = ThresholdPrivate; 145 else if (AS == ASST.LOCAL_ADDRESS) 146 Threshold = ThresholdLocal; 147 else 148 continue; 149 150 if (UP.Threshold >= Threshold) 151 continue; 152 153 if (AS == ASST.PRIVATE_ADDRESS) { 154 const Value *Ptr = GEP->getPointerOperand(); 155 const AllocaInst *Alloca = 156 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 157 if (!Alloca || !Alloca->isStaticAlloca()) 158 continue; 159 Type *Ty = Alloca->getAllocatedType(); 160 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 161 if (AllocaSize > MaxAlloca) 162 continue; 163 } else if (AS == ASST.LOCAL_ADDRESS) { 164 LocalGEPsSeen++; 165 // Inhibit unroll for local memory if we have seen addressing not to 166 // a variable, most likely we will be unable to combine it. 167 // Do not unroll too deep inner loops for local memory to give a chance 168 // to unroll an outer loop for a more important reason. 169 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 170 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 171 !isa<Argument>(GEP->getPointerOperand()))) 172 continue; 173 } 174 175 // Check if GEP depends on a value defined by this loop itself. 176 bool HasLoopDef = false; 177 for (const Value *Op : GEP->operands()) { 178 const Instruction *Inst = dyn_cast<Instruction>(Op); 179 if (!Inst || L->isLoopInvariant(Op)) 180 continue; 181 182 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 183 return SubLoop->contains(Inst); })) 184 continue; 185 HasLoopDef = true; 186 break; 187 } 188 if (!HasLoopDef) 189 continue; 190 191 // We want to do whatever we can to limit the number of alloca 192 // instructions that make it through to the code generator. allocas 193 // require us to use indirect addressing, which is slow and prone to 194 // compiler bugs. If this loop does an address calculation on an 195 // alloca ptr, then we want to use a higher than normal loop unroll 196 // threshold. This will give SROA a better chance to eliminate these 197 // allocas. 198 // 199 // We also want to have more unrolling for local memory to let ds 200 // instructions with different offsets combine. 201 // 202 // Don't use the maximum allowed value here as it will make some 203 // programs way too big. 204 UP.Threshold = Threshold; 205 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 206 << " for loop:\n" 207 << *L << " due to " << *GEP << '\n'); 208 if (UP.Threshold >= MaxBoost) 209 return; 210 } 211 } 212 } 213 214 unsigned AMDGPUTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 215 // The concept of vector registers doesn't really exist. Some packed vector 216 // operations operate on the normal 32-bit registers. 217 218 // Number of VGPRs on SI. 219 if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) 220 return 256; 221 222 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 223 } 224 225 unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) const { 226 // This is really the number of registers to fill when vectorizing / 227 // interleaving loops, so we lie to avoid trying to use all registers. 228 return getHardwareNumberOfRegisters(Vec) >> 3; 229 } 230 231 unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) const { 232 return 32; 233 } 234 235 unsigned AMDGPUTTIImpl::getMinVectorRegisterBitWidth() const { 236 return 32; 237 } 238 239 unsigned AMDGPUTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 240 unsigned ChainSizeInBytes, 241 VectorType *VecTy) const { 242 unsigned VecRegBitWidth = VF * LoadSize; 243 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 244 // TODO: Support element-size less than 32bit? 245 return 128 / LoadSize; 246 247 return VF; 248 } 249 250 unsigned AMDGPUTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 251 unsigned ChainSizeInBytes, 252 VectorType *VecTy) const { 253 unsigned VecRegBitWidth = VF * StoreSize; 254 if (VecRegBitWidth > 128) 255 return 128 / StoreSize; 256 257 return VF; 258 } 259 260 unsigned AMDGPUTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 261 AMDGPUAS AS = ST->getAMDGPUAS(); 262 if (AddrSpace == AS.GLOBAL_ADDRESS || 263 AddrSpace == AS.CONSTANT_ADDRESS || 264 AddrSpace == AS.CONSTANT_ADDRESS_32BIT) { 265 if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) 266 return 128; 267 return 512; 268 } 269 270 if (AddrSpace == AS.FLAT_ADDRESS) 271 return 128; 272 273 if (AddrSpace == AS.LOCAL_ADDRESS || 274 AddrSpace == AS.REGION_ADDRESS) 275 return ST->useDS128() ? 128 : 64; 276 277 if (AddrSpace == AS.PRIVATE_ADDRESS) 278 return 8 * ST->getMaxPrivateElementSize(); 279 280 if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS && 281 (AddrSpace == AS.PARAM_D_ADDRESS || 282 AddrSpace == AS.PARAM_I_ADDRESS || 283 (AddrSpace >= AS.CONSTANT_BUFFER_0 && 284 AddrSpace <= AS.CONSTANT_BUFFER_15))) 285 return 128; 286 llvm_unreachable("unhandled address space"); 287 } 288 289 bool AMDGPUTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 290 unsigned Alignment, 291 unsigned AddrSpace) const { 292 // We allow vectorization of flat stores, even though we may need to decompose 293 // them later if they may access private memory. We don't have enough context 294 // here, and legalization can handle it. 295 if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS) { 296 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 297 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 298 } 299 return true; 300 } 301 302 bool AMDGPUTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 303 unsigned Alignment, 304 unsigned AddrSpace) const { 305 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 306 } 307 308 bool AMDGPUTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 309 unsigned Alignment, 310 unsigned AddrSpace) const { 311 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 312 } 313 314 unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) { 315 // Disable unrolling if the loop is not vectorized. 316 // TODO: Enable this again. 317 if (VF == 1) 318 return 1; 319 320 return 8; 321 } 322 323 bool AMDGPUTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 324 MemIntrinsicInfo &Info) const { 325 switch (Inst->getIntrinsicID()) { 326 case Intrinsic::amdgcn_atomic_inc: 327 case Intrinsic::amdgcn_atomic_dec: 328 case Intrinsic::amdgcn_ds_fadd: 329 case Intrinsic::amdgcn_ds_fmin: 330 case Intrinsic::amdgcn_ds_fmax: { 331 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 332 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 333 if (!Ordering || !Volatile) 334 return false; // Invalid. 335 336 unsigned OrderingVal = Ordering->getZExtValue(); 337 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 338 return false; 339 340 Info.PtrVal = Inst->getArgOperand(0); 341 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 342 Info.ReadMem = true; 343 Info.WriteMem = true; 344 Info.IsVolatile = !Volatile->isNullValue(); 345 return true; 346 } 347 default: 348 return false; 349 } 350 } 351 352 int AMDGPUTTIImpl::getArithmeticInstrCost( 353 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, 354 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 355 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) { 356 EVT OrigTy = TLI->getValueType(DL, Ty); 357 if (!OrigTy.isSimple()) { 358 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 359 Opd1PropInfo, Opd2PropInfo); 360 } 361 362 // Legalize the type. 363 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 364 int ISD = TLI->InstructionOpcodeToISD(Opcode); 365 366 // Because we don't have any legal vector operations, but the legal types, we 367 // need to account for split vectors. 368 unsigned NElts = LT.second.isVector() ? 369 LT.second.getVectorNumElements() : 1; 370 371 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 372 373 switch (ISD) { 374 case ISD::SHL: 375 case ISD::SRL: 376 case ISD::SRA: 377 if (SLT == MVT::i64) 378 return get64BitInstrCost() * LT.first * NElts; 379 380 // i32 381 return getFullRateInstrCost() * LT.first * NElts; 382 case ISD::ADD: 383 case ISD::SUB: 384 case ISD::AND: 385 case ISD::OR: 386 case ISD::XOR: 387 if (SLT == MVT::i64){ 388 // and, or and xor are typically split into 2 VALU instructions. 389 return 2 * getFullRateInstrCost() * LT.first * NElts; 390 } 391 392 return LT.first * NElts * getFullRateInstrCost(); 393 case ISD::MUL: { 394 const int QuarterRateCost = getQuarterRateInstrCost(); 395 if (SLT == MVT::i64) { 396 const int FullRateCost = getFullRateInstrCost(); 397 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 398 } 399 400 // i32 401 return QuarterRateCost * NElts * LT.first; 402 } 403 case ISD::FADD: 404 case ISD::FSUB: 405 case ISD::FMUL: 406 if (SLT == MVT::f64) 407 return LT.first * NElts * get64BitInstrCost(); 408 409 if (SLT == MVT::f32 || SLT == MVT::f16) 410 return LT.first * NElts * getFullRateInstrCost(); 411 break; 412 case ISD::FDIV: 413 case ISD::FREM: 414 // FIXME: frem should be handled separately. The fdiv in it is most of it, 415 // but the current lowering is also not entirely correct. 416 if (SLT == MVT::f64) { 417 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 418 // Add cost of workaround. 419 if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) 420 Cost += 3 * getFullRateInstrCost(); 421 422 return LT.first * Cost * NElts; 423 } 424 425 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 426 // TODO: This is more complicated, unsafe flags etc. 427 if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) || 428 (SLT == MVT::f16 && ST->has16BitInsts())) { 429 return LT.first * getQuarterRateInstrCost() * NElts; 430 } 431 } 432 433 if (SLT == MVT::f16 && ST->has16BitInsts()) { 434 // 2 x v_cvt_f32_f16 435 // f32 rcp 436 // f32 fmul 437 // v_cvt_f16_f32 438 // f16 div_fixup 439 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 440 return LT.first * Cost * NElts; 441 } 442 443 if (SLT == MVT::f32 || SLT == MVT::f16) { 444 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 445 446 if (!ST->hasFP32Denormals()) { 447 // FP mode switches. 448 Cost += 2 * getFullRateInstrCost(); 449 } 450 451 return LT.first * NElts * Cost; 452 } 453 break; 454 default: 455 break; 456 } 457 458 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 459 Opd1PropInfo, Opd2PropInfo); 460 } 461 462 unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) { 463 // XXX - For some reason this isn't called for switch. 464 switch (Opcode) { 465 case Instruction::Br: 466 case Instruction::Ret: 467 return 10; 468 default: 469 return BaseT::getCFInstrCost(Opcode); 470 } 471 } 472 473 int AMDGPUTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 474 bool IsPairwise) { 475 EVT OrigTy = TLI->getValueType(DL, Ty); 476 477 // Computes cost on targets that have packed math instructions(which support 478 // 16-bit types only). 479 if (IsPairwise || 480 !ST->hasVOP3PInsts() || 481 OrigTy.getScalarSizeInBits() != 16) 482 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise); 483 484 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 485 return LT.first * getFullRateInstrCost(); 486 } 487 488 int AMDGPUTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy, 489 bool IsPairwise, 490 bool IsUnsigned) { 491 EVT OrigTy = TLI->getValueType(DL, Ty); 492 493 // Computes cost on targets that have packed math instructions(which support 494 // 16-bit types only). 495 if (IsPairwise || 496 !ST->hasVOP3PInsts() || 497 OrigTy.getScalarSizeInBits() != 16) 498 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned); 499 500 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 501 return LT.first * getHalfRateInstrCost(); 502 } 503 504 int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 505 unsigned Index) { 506 switch (Opcode) { 507 case Instruction::ExtractElement: 508 case Instruction::InsertElement: { 509 unsigned EltSize 510 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 511 if (EltSize < 32) { 512 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 513 return 0; 514 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 515 } 516 517 // Extracts are just reads of a subregister, so are free. Inserts are 518 // considered free because we don't want to have any cost for scalarizing 519 // operations, and we don't have to copy into a different register class. 520 521 // Dynamic indexing isn't free and is best avoided. 522 return Index == ~0u ? 2 : 0; 523 } 524 default: 525 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 526 } 527 } 528 529 530 531 static bool isArgPassedInSGPR(const Argument *A) { 532 const Function *F = A->getParent(); 533 534 // Arguments to compute shaders are never a source of divergence. 535 CallingConv::ID CC = F->getCallingConv(); 536 switch (CC) { 537 case CallingConv::AMDGPU_KERNEL: 538 case CallingConv::SPIR_KERNEL: 539 return true; 540 case CallingConv::AMDGPU_VS: 541 case CallingConv::AMDGPU_LS: 542 case CallingConv::AMDGPU_HS: 543 case CallingConv::AMDGPU_ES: 544 case CallingConv::AMDGPU_GS: 545 case CallingConv::AMDGPU_PS: 546 case CallingConv::AMDGPU_CS: 547 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 548 // Everything else is in VGPRs. 549 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 550 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 551 default: 552 // TODO: Should calls support inreg for SGPR inputs? 553 return false; 554 } 555 } 556 557 /// \returns true if the result of the value could potentially be 558 /// different across workitems in a wavefront. 559 bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const { 560 if (const Argument *A = dyn_cast<Argument>(V)) 561 return !isArgPassedInSGPR(A); 562 563 // Loads from the private address space are divergent, because threads 564 // can execute the load instruction with the same inputs and get different 565 // results. 566 // 567 // All other loads are not divergent, because if threads issue loads with the 568 // same arguments, they will always get the same result. 569 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 570 return Load->getPointerAddressSpace() == ST->getAMDGPUAS().PRIVATE_ADDRESS; 571 572 // Atomics are divergent because they are executed sequentially: when an 573 // atomic operation refers to the same address in each thread, then each 574 // thread after the first sees the value written by the previous thread as 575 // original value. 576 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 577 return true; 578 579 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 580 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 581 582 // Assume all function calls are a source of divergence. 583 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 584 return true; 585 586 return false; 587 } 588 589 bool AMDGPUTTIImpl::isAlwaysUniform(const Value *V) const { 590 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 591 switch (Intrinsic->getIntrinsicID()) { 592 default: 593 return false; 594 case Intrinsic::amdgcn_readfirstlane: 595 case Intrinsic::amdgcn_readlane: 596 return true; 597 } 598 } 599 return false; 600 } 601 602 unsigned AMDGPUTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 603 Type *SubTp) { 604 if (ST->hasVOP3PInsts()) { 605 VectorType *VT = cast<VectorType>(Tp); 606 if (VT->getNumElements() == 2 && 607 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 608 // With op_sel VOP3P instructions freely can access the low half or high 609 // half of a register, so any swizzle is free. 610 611 switch (Kind) { 612 case TTI::SK_Broadcast: 613 case TTI::SK_Reverse: 614 case TTI::SK_PermuteSingleSrc: 615 return 0; 616 default: 617 break; 618 } 619 } 620 } 621 622 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 623 } 624 625 bool AMDGPUTTIImpl::areInlineCompatible(const Function *Caller, 626 const Function *Callee) const { 627 const TargetMachine &TM = getTLI()->getTargetMachine(); 628 const FeatureBitset &CallerBits = 629 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 630 const FeatureBitset &CalleeBits = 631 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 632 633 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 634 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 635 return ((RealCallerBits & RealCalleeBits) == RealCalleeBits); 636 } 637