1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // \file
11 // This file implements a TargetTransformInfo analysis pass specific to the
12 // AMDGPU target machine. It uses the target's detailed information to provide
13 // more precise answers to certain TTI queries, while letting the target
14 // independent and default TTI implementations handle the rest.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "AMDGPUTargetTransformInfo.h"
19 #include "AMDGPUSubtarget.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/ISDOpcodes.h"
25 #include "llvm/CodeGen/MachineValueType.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/MC/SubtargetFeature.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <limits>
50 #include <utility>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "AMDGPUtti"
55 
56 static cl::opt<unsigned> UnrollThresholdPrivate(
57   "amdgpu-unroll-threshold-private",
58   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
59   cl::init(2500), cl::Hidden);
60 
61 static cl::opt<unsigned> UnrollThresholdLocal(
62   "amdgpu-unroll-threshold-local",
63   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
64   cl::init(1000), cl::Hidden);
65 
66 static cl::opt<unsigned> UnrollThresholdIf(
67   "amdgpu-unroll-threshold-if",
68   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
69   cl::init(150), cl::Hidden);
70 
71 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
72                               unsigned Depth = 0) {
73   const Instruction *I = dyn_cast<Instruction>(Cond);
74   if (!I)
75     return false;
76 
77   for (const Value *V : I->operand_values()) {
78     if (!L->contains(I))
79       continue;
80     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
81       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
82                   return SubLoop->contains(PHI); }))
83         return true;
84     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
85       return true;
86   }
87   return false;
88 }
89 
90 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
91                                             TTI::UnrollingPreferences &UP) {
92   UP.Threshold = 300; // Twice the default.
93   UP.MaxCount = std::numeric_limits<unsigned>::max();
94   UP.Partial = true;
95 
96   // TODO: Do we want runtime unrolling?
97 
98   // Maximum alloca size than can fit registers. Reserve 16 registers.
99   const unsigned MaxAlloca = (256 - 16) * 4;
100   unsigned ThresholdPrivate = UnrollThresholdPrivate;
101   unsigned ThresholdLocal = UnrollThresholdLocal;
102   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
103   AMDGPUAS ASST = ST->getAMDGPUAS();
104   for (const BasicBlock *BB : L->getBlocks()) {
105     const DataLayout &DL = BB->getModule()->getDataLayout();
106     unsigned LocalGEPsSeen = 0;
107 
108     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
109                return SubLoop->contains(BB); }))
110         continue; // Block belongs to an inner loop.
111 
112     for (const Instruction &I : *BB) {
113       // Unroll a loop which contains an "if" statement whose condition
114       // defined by a PHI belonging to the loop. This may help to eliminate
115       // if region and potentially even PHI itself, saving on both divergence
116       // and registers used for the PHI.
117       // Add a small bonus for each of such "if" statements.
118       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
119         if (UP.Threshold < MaxBoost && Br->isConditional()) {
120           if (L->isLoopExiting(Br->getSuccessor(0)) ||
121               L->isLoopExiting(Br->getSuccessor(1)))
122             continue;
123           if (dependsOnLocalPhi(L, Br->getCondition())) {
124             UP.Threshold += UnrollThresholdIf;
125             DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
126                          << " for loop:\n" << *L << " due to " << *Br << '\n');
127             if (UP.Threshold >= MaxBoost)
128               return;
129           }
130         }
131         continue;
132       }
133 
134       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
135       if (!GEP)
136         continue;
137 
138       unsigned AS = GEP->getAddressSpace();
139       unsigned Threshold = 0;
140       if (AS == ASST.PRIVATE_ADDRESS)
141         Threshold = ThresholdPrivate;
142       else if (AS == ASST.LOCAL_ADDRESS)
143         Threshold = ThresholdLocal;
144       else
145         continue;
146 
147       if (UP.Threshold >= Threshold)
148         continue;
149 
150       if (AS == ASST.PRIVATE_ADDRESS) {
151         const Value *Ptr = GEP->getPointerOperand();
152         const AllocaInst *Alloca =
153             dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
154         if (!Alloca || !Alloca->isStaticAlloca())
155           continue;
156         Type *Ty = Alloca->getAllocatedType();
157         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
158         if (AllocaSize > MaxAlloca)
159           continue;
160       } else if (AS == ASST.LOCAL_ADDRESS) {
161         LocalGEPsSeen++;
162         // Inhibit unroll for local memory if we have seen addressing not to
163         // a variable, most likely we will be unable to combine it.
164         // Do not unroll too deep inner loops for local memory to give a chance
165         // to unroll an outer loop for a more important reason.
166         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
167             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
168              !isa<Argument>(GEP->getPointerOperand())))
169           continue;
170       }
171 
172       // Check if GEP depends on a value defined by this loop itself.
173       bool HasLoopDef = false;
174       for (const Value *Op : GEP->operands()) {
175         const Instruction *Inst = dyn_cast<Instruction>(Op);
176         if (!Inst || L->isLoopInvariant(Op))
177           continue;
178 
179         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
180              return SubLoop->contains(Inst); }))
181           continue;
182         HasLoopDef = true;
183         break;
184       }
185       if (!HasLoopDef)
186         continue;
187 
188       // We want to do whatever we can to limit the number of alloca
189       // instructions that make it through to the code generator.  allocas
190       // require us to use indirect addressing, which is slow and prone to
191       // compiler bugs.  If this loop does an address calculation on an
192       // alloca ptr, then we want to use a higher than normal loop unroll
193       // threshold. This will give SROA a better chance to eliminate these
194       // allocas.
195       //
196       // We also want to have more unrolling for local memory to let ds
197       // instructions with different offsets combine.
198       //
199       // Don't use the maximum allowed value here as it will make some
200       // programs way too big.
201       UP.Threshold = Threshold;
202       DEBUG(dbgs() << "Set unroll threshold " << Threshold << " for loop:\n"
203                    << *L << " due to " << *GEP << '\n');
204       if (UP.Threshold >= MaxBoost)
205         return;
206     }
207   }
208 }
209 
210 unsigned AMDGPUTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
211   // The concept of vector registers doesn't really exist. Some packed vector
212   // operations operate on the normal 32-bit registers.
213 
214   // Number of VGPRs on SI.
215   if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)
216     return 256;
217 
218   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
219 }
220 
221 unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) const {
222   // This is really the number of registers to fill when vectorizing /
223   // interleaving loops, so we lie to avoid trying to use all registers.
224   return getHardwareNumberOfRegisters(Vec) >> 3;
225 }
226 
227 unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) const {
228   return 32;
229 }
230 
231 unsigned AMDGPUTTIImpl::getMinVectorRegisterBitWidth() const {
232   return 32;
233 }
234 
235 unsigned AMDGPUTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
236   AMDGPUAS AS = ST->getAMDGPUAS();
237   if (AddrSpace == AS.GLOBAL_ADDRESS ||
238       AddrSpace == AS.CONSTANT_ADDRESS ||
239       AddrSpace == AS.FLAT_ADDRESS)
240     return 128;
241   if (AddrSpace == AS.LOCAL_ADDRESS ||
242       AddrSpace == AS.REGION_ADDRESS)
243     return 64;
244   if (AddrSpace == AS.PRIVATE_ADDRESS)
245     return 8 * ST->getMaxPrivateElementSize();
246 
247   if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS &&
248       (AddrSpace == AS.PARAM_D_ADDRESS ||
249       AddrSpace == AS.PARAM_I_ADDRESS ||
250       (AddrSpace >= AS.CONSTANT_BUFFER_0 &&
251       AddrSpace <= AS.CONSTANT_BUFFER_15)))
252     return 128;
253   llvm_unreachable("unhandled address space");
254 }
255 
256 bool AMDGPUTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
257                                                unsigned Alignment,
258                                                unsigned AddrSpace) const {
259   // We allow vectorization of flat stores, even though we may need to decompose
260   // them later if they may access private memory. We don't have enough context
261   // here, and legalization can handle it.
262   if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS) {
263     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
264       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
265   }
266   return true;
267 }
268 
269 bool AMDGPUTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
270                                                 unsigned Alignment,
271                                                 unsigned AddrSpace) const {
272   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
273 }
274 
275 bool AMDGPUTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
276                                                  unsigned Alignment,
277                                                  unsigned AddrSpace) const {
278   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
279 }
280 
281 unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) {
282   // Disable unrolling if the loop is not vectorized.
283   // TODO: Enable this again.
284   if (VF == 1)
285     return 1;
286 
287   return 8;
288 }
289 
290 int AMDGPUTTIImpl::getArithmeticInstrCost(
291     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
292     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
293     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) {
294   EVT OrigTy = TLI->getValueType(DL, Ty);
295   if (!OrigTy.isSimple()) {
296     return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
297                                          Opd1PropInfo, Opd2PropInfo);
298   }
299 
300   // Legalize the type.
301   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
302   int ISD = TLI->InstructionOpcodeToISD(Opcode);
303 
304   // Because we don't have any legal vector operations, but the legal types, we
305   // need to account for split vectors.
306   unsigned NElts = LT.second.isVector() ?
307     LT.second.getVectorNumElements() : 1;
308 
309   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
310 
311   switch (ISD) {
312   case ISD::SHL:
313   case ISD::SRL:
314   case ISD::SRA:
315     if (SLT == MVT::i64)
316       return get64BitInstrCost() * LT.first * NElts;
317 
318     // i32
319     return getFullRateInstrCost() * LT.first * NElts;
320   case ISD::ADD:
321   case ISD::SUB:
322   case ISD::AND:
323   case ISD::OR:
324   case ISD::XOR:
325     if (SLT == MVT::i64){
326       // and, or and xor are typically split into 2 VALU instructions.
327       return 2 * getFullRateInstrCost() * LT.first * NElts;
328     }
329 
330     return LT.first * NElts * getFullRateInstrCost();
331   case ISD::MUL: {
332     const int QuarterRateCost = getQuarterRateInstrCost();
333     if (SLT == MVT::i64) {
334       const int FullRateCost = getFullRateInstrCost();
335       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
336     }
337 
338     // i32
339     return QuarterRateCost * NElts * LT.first;
340   }
341   case ISD::FADD:
342   case ISD::FSUB:
343   case ISD::FMUL:
344     if (SLT == MVT::f64)
345       return LT.first * NElts * get64BitInstrCost();
346 
347     if (SLT == MVT::f32 || SLT == MVT::f16)
348       return LT.first * NElts * getFullRateInstrCost();
349     break;
350   case ISD::FDIV:
351   case ISD::FREM:
352     // FIXME: frem should be handled separately. The fdiv in it is most of it,
353     // but the current lowering is also not entirely correct.
354     if (SLT == MVT::f64) {
355       int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
356 
357       // Add cost of workaround.
358       if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS)
359         Cost += 3 * getFullRateInstrCost();
360 
361       return LT.first * Cost * NElts;
362     }
363 
364     // Assuming no fp32 denormals lowering.
365     if (SLT == MVT::f32 || SLT == MVT::f16) {
366       assert(!ST->hasFP32Denormals() && "will change when supported");
367       int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
368       return LT.first * NElts * Cost;
369     }
370     break;
371   default:
372     break;
373   }
374 
375   return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
376                                        Opd1PropInfo, Opd2PropInfo);
377 }
378 
379 unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) {
380   // XXX - For some reason this isn't called for switch.
381   switch (Opcode) {
382   case Instruction::Br:
383   case Instruction::Ret:
384     return 10;
385   default:
386     return BaseT::getCFInstrCost(Opcode);
387   }
388 }
389 
390 int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
391                                       unsigned Index) {
392   switch (Opcode) {
393   case Instruction::ExtractElement:
394   case Instruction::InsertElement: {
395     unsigned EltSize
396       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
397     if (EltSize < 32) {
398       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
399         return 0;
400       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
401     }
402 
403     // Extracts are just reads of a subregister, so are free. Inserts are
404     // considered free because we don't want to have any cost for scalarizing
405     // operations, and we don't have to copy into a different register class.
406 
407     // Dynamic indexing isn't free and is best avoided.
408     return Index == ~0u ? 2 : 0;
409   }
410   default:
411     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
412   }
413 }
414 
415 static bool isIntrinsicSourceOfDivergence(const IntrinsicInst *I) {
416   switch (I->getIntrinsicID()) {
417   case Intrinsic::amdgcn_workitem_id_x:
418   case Intrinsic::amdgcn_workitem_id_y:
419   case Intrinsic::amdgcn_workitem_id_z:
420   case Intrinsic::amdgcn_interp_mov:
421   case Intrinsic::amdgcn_interp_p1:
422   case Intrinsic::amdgcn_interp_p2:
423   case Intrinsic::amdgcn_mbcnt_hi:
424   case Intrinsic::amdgcn_mbcnt_lo:
425   case Intrinsic::r600_read_tidig_x:
426   case Intrinsic::r600_read_tidig_y:
427   case Intrinsic::r600_read_tidig_z:
428   case Intrinsic::amdgcn_atomic_inc:
429   case Intrinsic::amdgcn_atomic_dec:
430   case Intrinsic::amdgcn_image_atomic_swap:
431   case Intrinsic::amdgcn_image_atomic_add:
432   case Intrinsic::amdgcn_image_atomic_sub:
433   case Intrinsic::amdgcn_image_atomic_smin:
434   case Intrinsic::amdgcn_image_atomic_umin:
435   case Intrinsic::amdgcn_image_atomic_smax:
436   case Intrinsic::amdgcn_image_atomic_umax:
437   case Intrinsic::amdgcn_image_atomic_and:
438   case Intrinsic::amdgcn_image_atomic_or:
439   case Intrinsic::amdgcn_image_atomic_xor:
440   case Intrinsic::amdgcn_image_atomic_inc:
441   case Intrinsic::amdgcn_image_atomic_dec:
442   case Intrinsic::amdgcn_image_atomic_cmpswap:
443   case Intrinsic::amdgcn_buffer_atomic_swap:
444   case Intrinsic::amdgcn_buffer_atomic_add:
445   case Intrinsic::amdgcn_buffer_atomic_sub:
446   case Intrinsic::amdgcn_buffer_atomic_smin:
447   case Intrinsic::amdgcn_buffer_atomic_umin:
448   case Intrinsic::amdgcn_buffer_atomic_smax:
449   case Intrinsic::amdgcn_buffer_atomic_umax:
450   case Intrinsic::amdgcn_buffer_atomic_and:
451   case Intrinsic::amdgcn_buffer_atomic_or:
452   case Intrinsic::amdgcn_buffer_atomic_xor:
453   case Intrinsic::amdgcn_buffer_atomic_cmpswap:
454   case Intrinsic::amdgcn_ps_live:
455   case Intrinsic::amdgcn_ds_swizzle:
456     return true;
457   default:
458     return false;
459   }
460 }
461 
462 static bool isArgPassedInSGPR(const Argument *A) {
463   const Function *F = A->getParent();
464 
465   // Arguments to compute shaders are never a source of divergence.
466   CallingConv::ID CC = F->getCallingConv();
467   switch (CC) {
468   case CallingConv::AMDGPU_KERNEL:
469   case CallingConv::SPIR_KERNEL:
470     return true;
471   case CallingConv::AMDGPU_VS:
472   case CallingConv::AMDGPU_HS:
473   case CallingConv::AMDGPU_GS:
474   case CallingConv::AMDGPU_PS:
475   case CallingConv::AMDGPU_CS:
476     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
477     // Everything else is in VGPRs.
478     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
479            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
480   default:
481     // TODO: Should calls support inreg for SGPR inputs?
482     return false;
483   }
484 }
485 
486 /// \returns true if the result of the value could potentially be
487 /// different across workitems in a wavefront.
488 bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const {
489   if (const Argument *A = dyn_cast<Argument>(V))
490     return !isArgPassedInSGPR(A);
491 
492   // Loads from the private address space are divergent, because threads
493   // can execute the load instruction with the same inputs and get different
494   // results.
495   //
496   // All other loads are not divergent, because if threads issue loads with the
497   // same arguments, they will always get the same result.
498   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
499     return Load->getPointerAddressSpace() == ST->getAMDGPUAS().PRIVATE_ADDRESS;
500 
501   // Atomics are divergent because they are executed sequentially: when an
502   // atomic operation refers to the same address in each thread, then each
503   // thread after the first sees the value written by the previous thread as
504   // original value.
505   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
506     return true;
507 
508   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
509     return isIntrinsicSourceOfDivergence(Intrinsic);
510 
511   // Assume all function calls are a source of divergence.
512   if (isa<CallInst>(V) || isa<InvokeInst>(V))
513     return true;
514 
515   return false;
516 }
517 
518 bool AMDGPUTTIImpl::isAlwaysUniform(const Value *V) const {
519   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
520     switch (Intrinsic->getIntrinsicID()) {
521     default:
522       return false;
523     case Intrinsic::amdgcn_readfirstlane:
524     case Intrinsic::amdgcn_readlane:
525       return true;
526     }
527   }
528   return false;
529 }
530 
531 unsigned AMDGPUTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
532                                        Type *SubTp) {
533   if (ST->hasVOP3PInsts()) {
534     VectorType *VT = cast<VectorType>(Tp);
535     if (VT->getNumElements() == 2 &&
536         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
537       // With op_sel VOP3P instructions freely can access the low half or high
538       // half of a register, so any swizzle is free.
539 
540       switch (Kind) {
541       case TTI::SK_Broadcast:
542       case TTI::SK_Reverse:
543       case TTI::SK_PermuteSingleSrc:
544         return 0;
545       default:
546         break;
547       }
548     }
549   }
550 
551   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
552 }
553 
554 bool AMDGPUTTIImpl::areInlineCompatible(const Function *Caller,
555                                         const Function *Callee) const {
556   const TargetMachine &TM = getTLI()->getTargetMachine();
557   const FeatureBitset &CallerBits =
558     TM.getSubtargetImpl(*Caller)->getFeatureBits();
559   const FeatureBitset &CalleeBits =
560     TM.getSubtargetImpl(*Callee)->getFeatureBits();
561 
562   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
563   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
564   return ((RealCallerBits & RealCalleeBits) == RealCalleeBits);
565 }
566