1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // \file 11 // This file implements a TargetTransformInfo analysis pass specific to the 12 // AMDGPU target machine. It uses the target's detailed information to provide 13 // more precise answers to certain TTI queries, while letting the target 14 // independent and default TTI implementations handle the rest. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "AMDGPUTargetTransformInfo.h" 19 #include "AMDGPUSubtarget.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/MachineValueType.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/MC/SubtargetFeature.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <limits> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "AMDGPUtti" 56 57 static cl::opt<unsigned> UnrollThresholdPrivate( 58 "amdgpu-unroll-threshold-private", 59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 60 cl::init(2500), cl::Hidden); 61 62 static cl::opt<unsigned> UnrollThresholdLocal( 63 "amdgpu-unroll-threshold-local", 64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 65 cl::init(1000), cl::Hidden); 66 67 static cl::opt<unsigned> UnrollThresholdIf( 68 "amdgpu-unroll-threshold-if", 69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 70 cl::init(150), cl::Hidden); 71 72 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 73 unsigned Depth = 0) { 74 const Instruction *I = dyn_cast<Instruction>(Cond); 75 if (!I) 76 return false; 77 78 for (const Value *V : I->operand_values()) { 79 if (!L->contains(I)) 80 continue; 81 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 82 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 83 return SubLoop->contains(PHI); })) 84 return true; 85 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 86 return true; 87 } 88 return false; 89 } 90 91 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 92 TTI::UnrollingPreferences &UP) { 93 UP.Threshold = 300; // Twice the default. 94 UP.MaxCount = std::numeric_limits<unsigned>::max(); 95 UP.Partial = true; 96 97 // TODO: Do we want runtime unrolling? 98 99 // Maximum alloca size than can fit registers. Reserve 16 registers. 100 const unsigned MaxAlloca = (256 - 16) * 4; 101 unsigned ThresholdPrivate = UnrollThresholdPrivate; 102 unsigned ThresholdLocal = UnrollThresholdLocal; 103 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 104 AMDGPUAS ASST = ST->getAMDGPUAS(); 105 for (const BasicBlock *BB : L->getBlocks()) { 106 const DataLayout &DL = BB->getModule()->getDataLayout(); 107 unsigned LocalGEPsSeen = 0; 108 109 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 110 return SubLoop->contains(BB); })) 111 continue; // Block belongs to an inner loop. 112 113 for (const Instruction &I : *BB) { 114 // Unroll a loop which contains an "if" statement whose condition 115 // defined by a PHI belonging to the loop. This may help to eliminate 116 // if region and potentially even PHI itself, saving on both divergence 117 // and registers used for the PHI. 118 // Add a small bonus for each of such "if" statements. 119 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 120 if (UP.Threshold < MaxBoost && Br->isConditional()) { 121 if (L->isLoopExiting(Br->getSuccessor(0)) || 122 L->isLoopExiting(Br->getSuccessor(1))) 123 continue; 124 if (dependsOnLocalPhi(L, Br->getCondition())) { 125 UP.Threshold += UnrollThresholdIf; 126 DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 127 << " for loop:\n" << *L << " due to " << *Br << '\n'); 128 if (UP.Threshold >= MaxBoost) 129 return; 130 } 131 } 132 continue; 133 } 134 135 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 136 if (!GEP) 137 continue; 138 139 unsigned AS = GEP->getAddressSpace(); 140 unsigned Threshold = 0; 141 if (AS == ASST.PRIVATE_ADDRESS) 142 Threshold = ThresholdPrivate; 143 else if (AS == ASST.LOCAL_ADDRESS) 144 Threshold = ThresholdLocal; 145 else 146 continue; 147 148 if (UP.Threshold >= Threshold) 149 continue; 150 151 if (AS == ASST.PRIVATE_ADDRESS) { 152 const Value *Ptr = GEP->getPointerOperand(); 153 const AllocaInst *Alloca = 154 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 155 if (!Alloca || !Alloca->isStaticAlloca()) 156 continue; 157 Type *Ty = Alloca->getAllocatedType(); 158 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 159 if (AllocaSize > MaxAlloca) 160 continue; 161 } else if (AS == ASST.LOCAL_ADDRESS) { 162 LocalGEPsSeen++; 163 // Inhibit unroll for local memory if we have seen addressing not to 164 // a variable, most likely we will be unable to combine it. 165 // Do not unroll too deep inner loops for local memory to give a chance 166 // to unroll an outer loop for a more important reason. 167 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 168 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 169 !isa<Argument>(GEP->getPointerOperand()))) 170 continue; 171 } 172 173 // Check if GEP depends on a value defined by this loop itself. 174 bool HasLoopDef = false; 175 for (const Value *Op : GEP->operands()) { 176 const Instruction *Inst = dyn_cast<Instruction>(Op); 177 if (!Inst || L->isLoopInvariant(Op)) 178 continue; 179 180 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 181 return SubLoop->contains(Inst); })) 182 continue; 183 HasLoopDef = true; 184 break; 185 } 186 if (!HasLoopDef) 187 continue; 188 189 // We want to do whatever we can to limit the number of alloca 190 // instructions that make it through to the code generator. allocas 191 // require us to use indirect addressing, which is slow and prone to 192 // compiler bugs. If this loop does an address calculation on an 193 // alloca ptr, then we want to use a higher than normal loop unroll 194 // threshold. This will give SROA a better chance to eliminate these 195 // allocas. 196 // 197 // We also want to have more unrolling for local memory to let ds 198 // instructions with different offsets combine. 199 // 200 // Don't use the maximum allowed value here as it will make some 201 // programs way too big. 202 UP.Threshold = Threshold; 203 DEBUG(dbgs() << "Set unroll threshold " << Threshold << " for loop:\n" 204 << *L << " due to " << *GEP << '\n'); 205 if (UP.Threshold >= MaxBoost) 206 return; 207 } 208 } 209 } 210 211 unsigned AMDGPUTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 212 // The concept of vector registers doesn't really exist. Some packed vector 213 // operations operate on the normal 32-bit registers. 214 215 // Number of VGPRs on SI. 216 if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) 217 return 256; 218 219 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 220 } 221 222 unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) const { 223 // This is really the number of registers to fill when vectorizing / 224 // interleaving loops, so we lie to avoid trying to use all registers. 225 return getHardwareNumberOfRegisters(Vec) >> 3; 226 } 227 228 unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) const { 229 return 32; 230 } 231 232 unsigned AMDGPUTTIImpl::getMinVectorRegisterBitWidth() const { 233 return 32; 234 } 235 236 unsigned AMDGPUTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 237 AMDGPUAS AS = ST->getAMDGPUAS(); 238 if (AddrSpace == AS.GLOBAL_ADDRESS || 239 AddrSpace == AS.CONSTANT_ADDRESS || 240 AddrSpace == AS.FLAT_ADDRESS) 241 return 128; 242 if (AddrSpace == AS.LOCAL_ADDRESS || 243 AddrSpace == AS.REGION_ADDRESS) 244 return 64; 245 if (AddrSpace == AS.PRIVATE_ADDRESS) 246 return 8 * ST->getMaxPrivateElementSize(); 247 248 if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS && 249 (AddrSpace == AS.PARAM_D_ADDRESS || 250 AddrSpace == AS.PARAM_I_ADDRESS || 251 (AddrSpace >= AS.CONSTANT_BUFFER_0 && 252 AddrSpace <= AS.CONSTANT_BUFFER_15))) 253 return 128; 254 llvm_unreachable("unhandled address space"); 255 } 256 257 bool AMDGPUTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 258 unsigned Alignment, 259 unsigned AddrSpace) const { 260 // We allow vectorization of flat stores, even though we may need to decompose 261 // them later if they may access private memory. We don't have enough context 262 // here, and legalization can handle it. 263 if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS) { 264 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 265 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 266 } 267 return true; 268 } 269 270 bool AMDGPUTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 271 unsigned Alignment, 272 unsigned AddrSpace) const { 273 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 274 } 275 276 bool AMDGPUTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 277 unsigned Alignment, 278 unsigned AddrSpace) const { 279 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 280 } 281 282 unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) { 283 // Disable unrolling if the loop is not vectorized. 284 // TODO: Enable this again. 285 if (VF == 1) 286 return 1; 287 288 return 8; 289 } 290 291 int AMDGPUTTIImpl::getArithmeticInstrCost( 292 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, 293 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 294 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) { 295 EVT OrigTy = TLI->getValueType(DL, Ty); 296 if (!OrigTy.isSimple()) { 297 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 298 Opd1PropInfo, Opd2PropInfo); 299 } 300 301 // Legalize the type. 302 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 303 int ISD = TLI->InstructionOpcodeToISD(Opcode); 304 305 // Because we don't have any legal vector operations, but the legal types, we 306 // need to account for split vectors. 307 unsigned NElts = LT.second.isVector() ? 308 LT.second.getVectorNumElements() : 1; 309 310 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 311 312 switch (ISD) { 313 case ISD::SHL: 314 case ISD::SRL: 315 case ISD::SRA: 316 if (SLT == MVT::i64) 317 return get64BitInstrCost() * LT.first * NElts; 318 319 // i32 320 return getFullRateInstrCost() * LT.first * NElts; 321 case ISD::ADD: 322 case ISD::SUB: 323 case ISD::AND: 324 case ISD::OR: 325 case ISD::XOR: 326 if (SLT == MVT::i64){ 327 // and, or and xor are typically split into 2 VALU instructions. 328 return 2 * getFullRateInstrCost() * LT.first * NElts; 329 } 330 331 return LT.first * NElts * getFullRateInstrCost(); 332 case ISD::MUL: { 333 const int QuarterRateCost = getQuarterRateInstrCost(); 334 if (SLT == MVT::i64) { 335 const int FullRateCost = getFullRateInstrCost(); 336 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 337 } 338 339 // i32 340 return QuarterRateCost * NElts * LT.first; 341 } 342 case ISD::FADD: 343 case ISD::FSUB: 344 case ISD::FMUL: 345 if (SLT == MVT::f64) 346 return LT.first * NElts * get64BitInstrCost(); 347 348 if (SLT == MVT::f32 || SLT == MVT::f16) 349 return LT.first * NElts * getFullRateInstrCost(); 350 break; 351 case ISD::FDIV: 352 case ISD::FREM: 353 // FIXME: frem should be handled separately. The fdiv in it is most of it, 354 // but the current lowering is also not entirely correct. 355 if (SLT == MVT::f64) { 356 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 357 // Add cost of workaround. 358 if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) 359 Cost += 3 * getFullRateInstrCost(); 360 361 return LT.first * Cost * NElts; 362 } 363 364 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 365 // TODO: This is more complicated, unsafe flags etc. 366 if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) || 367 (SLT == MVT::f16 && ST->has16BitInsts())) { 368 return LT.first * getQuarterRateInstrCost() * NElts; 369 } 370 } 371 372 if (SLT == MVT::f16 && ST->has16BitInsts()) { 373 // 2 x v_cvt_f32_f16 374 // f32 rcp 375 // f32 fmul 376 // v_cvt_f16_f32 377 // f16 div_fixup 378 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 379 return LT.first * Cost * NElts; 380 } 381 382 if (SLT == MVT::f32 || SLT == MVT::f16) { 383 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 384 385 if (!ST->hasFP32Denormals()) { 386 // FP mode switches. 387 Cost += 2 * getFullRateInstrCost(); 388 } 389 390 return LT.first * NElts * Cost; 391 } 392 break; 393 default: 394 break; 395 } 396 397 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 398 Opd1PropInfo, Opd2PropInfo); 399 } 400 401 unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) { 402 // XXX - For some reason this isn't called for switch. 403 switch (Opcode) { 404 case Instruction::Br: 405 case Instruction::Ret: 406 return 10; 407 default: 408 return BaseT::getCFInstrCost(Opcode); 409 } 410 } 411 412 int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 413 unsigned Index) { 414 switch (Opcode) { 415 case Instruction::ExtractElement: 416 case Instruction::InsertElement: { 417 unsigned EltSize 418 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 419 if (EltSize < 32) { 420 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 421 return 0; 422 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 423 } 424 425 // Extracts are just reads of a subregister, so are free. Inserts are 426 // considered free because we don't want to have any cost for scalarizing 427 // operations, and we don't have to copy into a different register class. 428 429 // Dynamic indexing isn't free and is best avoided. 430 return Index == ~0u ? 2 : 0; 431 } 432 default: 433 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 434 } 435 } 436 437 static bool isIntrinsicSourceOfDivergence(const IntrinsicInst *I) { 438 switch (I->getIntrinsicID()) { 439 case Intrinsic::amdgcn_workitem_id_x: 440 case Intrinsic::amdgcn_workitem_id_y: 441 case Intrinsic::amdgcn_workitem_id_z: 442 case Intrinsic::amdgcn_interp_mov: 443 case Intrinsic::amdgcn_interp_p1: 444 case Intrinsic::amdgcn_interp_p2: 445 case Intrinsic::amdgcn_mbcnt_hi: 446 case Intrinsic::amdgcn_mbcnt_lo: 447 case Intrinsic::r600_read_tidig_x: 448 case Intrinsic::r600_read_tidig_y: 449 case Intrinsic::r600_read_tidig_z: 450 case Intrinsic::amdgcn_atomic_inc: 451 case Intrinsic::amdgcn_atomic_dec: 452 case Intrinsic::amdgcn_image_atomic_swap: 453 case Intrinsic::amdgcn_image_atomic_add: 454 case Intrinsic::amdgcn_image_atomic_sub: 455 case Intrinsic::amdgcn_image_atomic_smin: 456 case Intrinsic::amdgcn_image_atomic_umin: 457 case Intrinsic::amdgcn_image_atomic_smax: 458 case Intrinsic::amdgcn_image_atomic_umax: 459 case Intrinsic::amdgcn_image_atomic_and: 460 case Intrinsic::amdgcn_image_atomic_or: 461 case Intrinsic::amdgcn_image_atomic_xor: 462 case Intrinsic::amdgcn_image_atomic_inc: 463 case Intrinsic::amdgcn_image_atomic_dec: 464 case Intrinsic::amdgcn_image_atomic_cmpswap: 465 case Intrinsic::amdgcn_buffer_atomic_swap: 466 case Intrinsic::amdgcn_buffer_atomic_add: 467 case Intrinsic::amdgcn_buffer_atomic_sub: 468 case Intrinsic::amdgcn_buffer_atomic_smin: 469 case Intrinsic::amdgcn_buffer_atomic_umin: 470 case Intrinsic::amdgcn_buffer_atomic_smax: 471 case Intrinsic::amdgcn_buffer_atomic_umax: 472 case Intrinsic::amdgcn_buffer_atomic_and: 473 case Intrinsic::amdgcn_buffer_atomic_or: 474 case Intrinsic::amdgcn_buffer_atomic_xor: 475 case Intrinsic::amdgcn_buffer_atomic_cmpswap: 476 case Intrinsic::amdgcn_ps_live: 477 case Intrinsic::amdgcn_ds_swizzle: 478 return true; 479 default: 480 return false; 481 } 482 } 483 484 static bool isArgPassedInSGPR(const Argument *A) { 485 const Function *F = A->getParent(); 486 487 // Arguments to compute shaders are never a source of divergence. 488 CallingConv::ID CC = F->getCallingConv(); 489 switch (CC) { 490 case CallingConv::AMDGPU_KERNEL: 491 case CallingConv::SPIR_KERNEL: 492 return true; 493 case CallingConv::AMDGPU_VS: 494 case CallingConv::AMDGPU_HS: 495 case CallingConv::AMDGPU_GS: 496 case CallingConv::AMDGPU_PS: 497 case CallingConv::AMDGPU_CS: 498 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 499 // Everything else is in VGPRs. 500 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 501 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 502 default: 503 // TODO: Should calls support inreg for SGPR inputs? 504 return false; 505 } 506 } 507 508 /// \returns true if the result of the value could potentially be 509 /// different across workitems in a wavefront. 510 bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const { 511 if (const Argument *A = dyn_cast<Argument>(V)) 512 return !isArgPassedInSGPR(A); 513 514 // Loads from the private address space are divergent, because threads 515 // can execute the load instruction with the same inputs and get different 516 // results. 517 // 518 // All other loads are not divergent, because if threads issue loads with the 519 // same arguments, they will always get the same result. 520 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 521 return Load->getPointerAddressSpace() == ST->getAMDGPUAS().PRIVATE_ADDRESS; 522 523 // Atomics are divergent because they are executed sequentially: when an 524 // atomic operation refers to the same address in each thread, then each 525 // thread after the first sees the value written by the previous thread as 526 // original value. 527 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 528 return true; 529 530 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 531 return isIntrinsicSourceOfDivergence(Intrinsic); 532 533 // Assume all function calls are a source of divergence. 534 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 535 return true; 536 537 return false; 538 } 539 540 bool AMDGPUTTIImpl::isAlwaysUniform(const Value *V) const { 541 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 542 switch (Intrinsic->getIntrinsicID()) { 543 default: 544 return false; 545 case Intrinsic::amdgcn_readfirstlane: 546 case Intrinsic::amdgcn_readlane: 547 return true; 548 } 549 } 550 return false; 551 } 552 553 unsigned AMDGPUTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 554 Type *SubTp) { 555 if (ST->hasVOP3PInsts()) { 556 VectorType *VT = cast<VectorType>(Tp); 557 if (VT->getNumElements() == 2 && 558 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 559 // With op_sel VOP3P instructions freely can access the low half or high 560 // half of a register, so any swizzle is free. 561 562 switch (Kind) { 563 case TTI::SK_Broadcast: 564 case TTI::SK_Reverse: 565 case TTI::SK_PermuteSingleSrc: 566 return 0; 567 default: 568 break; 569 } 570 } 571 } 572 573 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 574 } 575 576 bool AMDGPUTTIImpl::areInlineCompatible(const Function *Caller, 577 const Function *Callee) const { 578 const TargetMachine &TM = getTLI()->getTargetMachine(); 579 const FeatureBitset &CallerBits = 580 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 581 const FeatureBitset &CalleeBits = 582 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 583 584 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 585 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 586 return ((RealCallerBits & RealCalleeBits) == RealCalleeBits); 587 } 588