1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/IntrinsicsAMDGPU.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/Support/KnownBits.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "AMDGPUtti"
28 
29 static cl::opt<unsigned> UnrollThresholdPrivate(
30   "amdgpu-unroll-threshold-private",
31   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
32   cl::init(2700), cl::Hidden);
33 
34 static cl::opt<unsigned> UnrollThresholdLocal(
35   "amdgpu-unroll-threshold-local",
36   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
37   cl::init(1000), cl::Hidden);
38 
39 static cl::opt<unsigned> UnrollThresholdIf(
40   "amdgpu-unroll-threshold-if",
41   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
42   cl::init(200), cl::Hidden);
43 
44 static cl::opt<bool> UnrollRuntimeLocal(
45   "amdgpu-unroll-runtime-local",
46   cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
47   cl::init(true), cl::Hidden);
48 
49 static cl::opt<bool> UseLegacyDA(
50   "amdgpu-use-legacy-divergence-analysis",
51   cl::desc("Enable legacy divergence analysis for AMDGPU"),
52   cl::init(false), cl::Hidden);
53 
54 static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
55     "amdgpu-unroll-max-block-to-analyze",
56     cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
57     cl::init(32), cl::Hidden);
58 
59 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
60                                        cl::Hidden, cl::init(4000),
61                                        cl::desc("Cost of alloca argument"));
62 
63 // If the amount of scratch memory to eliminate exceeds our ability to allocate
64 // it into registers we gain nothing by aggressively inlining functions for that
65 // heuristic.
66 static cl::opt<unsigned>
67     ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
68                     cl::init(256),
69                     cl::desc("Maximum alloca size to use for inline cost"));
70 
71 // Inliner constraint to achieve reasonable compilation time.
72 static cl::opt<size_t> InlineMaxBB(
73     "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
74     cl::desc("Maximum number of BBs allowed in a function after inlining"
75              " (compile time constraint)"));
76 
77 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
78                               unsigned Depth = 0) {
79   const Instruction *I = dyn_cast<Instruction>(Cond);
80   if (!I)
81     return false;
82 
83   for (const Value *V : I->operand_values()) {
84     if (!L->contains(I))
85       continue;
86     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
87       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
88                   return SubLoop->contains(PHI); }))
89         return true;
90     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
91       return true;
92   }
93   return false;
94 }
95 
96 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
97     : BaseT(TM, F.getParent()->getDataLayout()),
98       TargetTriple(TM->getTargetTriple()),
99       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
100       TLI(ST->getTargetLowering()) {}
101 
102 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
103                                             TTI::UnrollingPreferences &UP) {
104   const Function &F = *L->getHeader()->getParent();
105   UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
106   UP.MaxCount = std::numeric_limits<unsigned>::max();
107   UP.Partial = true;
108 
109   // Conditional branch in a loop back edge needs 3 additional exec
110   // manipulations in average.
111   UP.BEInsns += 3;
112 
113   // TODO: Do we want runtime unrolling?
114 
115   // Maximum alloca size than can fit registers. Reserve 16 registers.
116   const unsigned MaxAlloca = (256 - 16) * 4;
117   unsigned ThresholdPrivate = UnrollThresholdPrivate;
118   unsigned ThresholdLocal = UnrollThresholdLocal;
119 
120   // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
121   // provided threshold value as the default for Threshold
122   if (MDNode *LoopUnrollThreshold =
123           findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
124     if (LoopUnrollThreshold->getNumOperands() == 2) {
125       ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
126           LoopUnrollThreshold->getOperand(1));
127       if (MetaThresholdValue) {
128         // We will also use the supplied value for PartialThreshold for now.
129         // We may introduce additional metadata if it becomes necessary in the
130         // future.
131         UP.Threshold = MetaThresholdValue->getSExtValue();
132         UP.PartialThreshold = UP.Threshold;
133         ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
134         ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
135       }
136     }
137   }
138 
139   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
140   for (const BasicBlock *BB : L->getBlocks()) {
141     const DataLayout &DL = BB->getModule()->getDataLayout();
142     unsigned LocalGEPsSeen = 0;
143 
144     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
145                return SubLoop->contains(BB); }))
146         continue; // Block belongs to an inner loop.
147 
148     for (const Instruction &I : *BB) {
149       // Unroll a loop which contains an "if" statement whose condition
150       // defined by a PHI belonging to the loop. This may help to eliminate
151       // if region and potentially even PHI itself, saving on both divergence
152       // and registers used for the PHI.
153       // Add a small bonus for each of such "if" statements.
154       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
155         if (UP.Threshold < MaxBoost && Br->isConditional()) {
156           BasicBlock *Succ0 = Br->getSuccessor(0);
157           BasicBlock *Succ1 = Br->getSuccessor(1);
158           if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
159               (L->contains(Succ1) && L->isLoopExiting(Succ1)))
160             continue;
161           if (dependsOnLocalPhi(L, Br->getCondition())) {
162             UP.Threshold += UnrollThresholdIf;
163             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
164                               << " for loop:\n"
165                               << *L << " due to " << *Br << '\n');
166             if (UP.Threshold >= MaxBoost)
167               return;
168           }
169         }
170         continue;
171       }
172 
173       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
174       if (!GEP)
175         continue;
176 
177       unsigned AS = GEP->getAddressSpace();
178       unsigned Threshold = 0;
179       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
180         Threshold = ThresholdPrivate;
181       else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
182         Threshold = ThresholdLocal;
183       else
184         continue;
185 
186       if (UP.Threshold >= Threshold)
187         continue;
188 
189       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
190         const Value *Ptr = GEP->getPointerOperand();
191         const AllocaInst *Alloca =
192             dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
193         if (!Alloca || !Alloca->isStaticAlloca())
194           continue;
195         Type *Ty = Alloca->getAllocatedType();
196         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
197         if (AllocaSize > MaxAlloca)
198           continue;
199       } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
200                  AS == AMDGPUAS::REGION_ADDRESS) {
201         LocalGEPsSeen++;
202         // Inhibit unroll for local memory if we have seen addressing not to
203         // a variable, most likely we will be unable to combine it.
204         // Do not unroll too deep inner loops for local memory to give a chance
205         // to unroll an outer loop for a more important reason.
206         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
207             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
208              !isa<Argument>(GEP->getPointerOperand())))
209           continue;
210         LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
211                           << *L << " due to LDS use.\n");
212         UP.Runtime = UnrollRuntimeLocal;
213       }
214 
215       // Check if GEP depends on a value defined by this loop itself.
216       bool HasLoopDef = false;
217       for (const Value *Op : GEP->operands()) {
218         const Instruction *Inst = dyn_cast<Instruction>(Op);
219         if (!Inst || L->isLoopInvariant(Op))
220           continue;
221 
222         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
223              return SubLoop->contains(Inst); }))
224           continue;
225         HasLoopDef = true;
226         break;
227       }
228       if (!HasLoopDef)
229         continue;
230 
231       // We want to do whatever we can to limit the number of alloca
232       // instructions that make it through to the code generator.  allocas
233       // require us to use indirect addressing, which is slow and prone to
234       // compiler bugs.  If this loop does an address calculation on an
235       // alloca ptr, then we want to use a higher than normal loop unroll
236       // threshold. This will give SROA a better chance to eliminate these
237       // allocas.
238       //
239       // We also want to have more unrolling for local memory to let ds
240       // instructions with different offsets combine.
241       //
242       // Don't use the maximum allowed value here as it will make some
243       // programs way too big.
244       UP.Threshold = Threshold;
245       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
246                         << " for loop:\n"
247                         << *L << " due to " << *GEP << '\n');
248       if (UP.Threshold >= MaxBoost)
249         return;
250     }
251 
252     // If we got a GEP in a small BB from inner loop then increase max trip
253     // count to analyze for better estimation cost in unroll
254     if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
255       UP.MaxIterationsCountToAnalyze = 32;
256   }
257 }
258 
259 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
260                                           TTI::PeelingPreferences &PP) {
261   BaseT::getPeelingPreferences(L, SE, PP);
262 }
263 
264 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
265     // Codegen control options which don't matter.
266     AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
267     AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
268     AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
269     AMDGPU::FeatureUnalignedAccessMode,
270 
271     AMDGPU::FeatureAutoWaitcntBeforeBarrier,
272 
273     // Property of the kernel/environment which can't actually differ.
274     AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
275     AMDGPU::FeatureTrapHandler,
276 
277     // The default assumption needs to be ecc is enabled, but no directly
278     // exposed operations depend on it, so it can be safely inlined.
279     AMDGPU::FeatureSRAMECC,
280 
281     // Perf-tuning features
282     AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
283 
284 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
285     : BaseT(TM, F.getParent()->getDataLayout()),
286       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
287       TLI(ST->getTargetLowering()), CommonTTI(TM, F),
288       IsGraphics(AMDGPU::isGraphics(F.getCallingConv())),
289       MaxVGPRs(ST->getMaxNumVGPRs(
290           std::max(ST->getWavesPerEU(F).first,
291                    ST->getWavesPerEUForWorkGroup(
292                        ST->getFlatWorkGroupSizes(F).second)))) {
293   AMDGPU::SIModeRegisterDefaults Mode(F);
294   HasFP32Denormals = Mode.allFP32Denormals();
295   HasFP64FP16Denormals = Mode.allFP64FP16Denormals();
296 }
297 
298 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
299   // The concept of vector registers doesn't really exist. Some packed vector
300   // operations operate on the normal 32-bit registers.
301   return MaxVGPRs;
302 }
303 
304 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
305   // This is really the number of registers to fill when vectorizing /
306   // interleaving loops, so we lie to avoid trying to use all registers.
307   return getHardwareNumberOfRegisters(Vec) >> 3;
308 }
309 
310 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
311   const SIRegisterInfo *TRI = ST->getRegisterInfo();
312   const TargetRegisterClass *RC = TRI->getRegClass(RCID);
313   unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32;
314   return getHardwareNumberOfRegisters(false) / NumVGPRs;
315 }
316 
317 TypeSize
318 GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
319   switch (K) {
320   case TargetTransformInfo::RGK_Scalar:
321     return TypeSize::getFixed(32);
322   case TargetTransformInfo::RGK_FixedWidthVector:
323     return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
324   case TargetTransformInfo::RGK_ScalableVector:
325     return TypeSize::getScalable(0);
326   }
327   llvm_unreachable("Unsupported register kind");
328 }
329 
330 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
331   return 32;
332 }
333 
334 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
335   if (Opcode == Instruction::Load || Opcode == Instruction::Store)
336     return 32 * 4 / ElemWidth;
337   return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
338        : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
339        : 1;
340 }
341 
342 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
343                                          unsigned ChainSizeInBytes,
344                                          VectorType *VecTy) const {
345   unsigned VecRegBitWidth = VF * LoadSize;
346   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
347     // TODO: Support element-size less than 32bit?
348     return 128 / LoadSize;
349 
350   return VF;
351 }
352 
353 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
354                                              unsigned ChainSizeInBytes,
355                                              VectorType *VecTy) const {
356   unsigned VecRegBitWidth = VF * StoreSize;
357   if (VecRegBitWidth > 128)
358     return 128 / StoreSize;
359 
360   return VF;
361 }
362 
363 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
364   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
365       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
366       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
367       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
368     return 512;
369   }
370 
371   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
372     return 8 * ST->getMaxPrivateElementSize();
373 
374   // Common to flat, global, local and region. Assume for unknown addrspace.
375   return 128;
376 }
377 
378 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
379                                             Align Alignment,
380                                             unsigned AddrSpace) const {
381   // We allow vectorization of flat stores, even though we may need to decompose
382   // them later if they may access private memory. We don't have enough context
383   // here, and legalization can handle it.
384   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
385     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
386       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
387   }
388   return true;
389 }
390 
391 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
392                                              Align Alignment,
393                                              unsigned AddrSpace) const {
394   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
395 }
396 
397 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
398                                               Align Alignment,
399                                               unsigned AddrSpace) const {
400   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
401 }
402 
403 // FIXME: Really we would like to issue multiple 128-bit loads and stores per
404 // iteration. Should we report a larger size and let it legalize?
405 //
406 // FIXME: Should we use narrower types for local/region, or account for when
407 // unaligned access is legal?
408 //
409 // FIXME: This could use fine tuning and microbenchmarks.
410 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
411                                             unsigned SrcAddrSpace,
412                                             unsigned DestAddrSpace,
413                                             unsigned SrcAlign,
414                                             unsigned DestAlign) const {
415   unsigned MinAlign = std::min(SrcAlign, DestAlign);
416 
417   // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
418   // hardware into byte accesses. If you assume all alignments are equally
419   // probable, it's more efficient on average to use short accesses for this
420   // case.
421   if (MinAlign == 2)
422     return Type::getInt16Ty(Context);
423 
424   // Not all subtargets have 128-bit DS instructions, and we currently don't
425   // form them by default.
426   if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
427       SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
428       DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
429       DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
430     return FixedVectorType::get(Type::getInt32Ty(Context), 2);
431   }
432 
433   // Global memory works best with 16-byte accesses. Private memory will also
434   // hit this, although they'll be decomposed.
435   return FixedVectorType::get(Type::getInt32Ty(Context), 4);
436 }
437 
438 void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
439   SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
440   unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
441   unsigned SrcAlign, unsigned DestAlign) const {
442   assert(RemainingBytes < 16);
443 
444   unsigned MinAlign = std::min(SrcAlign, DestAlign);
445 
446   if (MinAlign != 2) {
447     Type *I64Ty = Type::getInt64Ty(Context);
448     while (RemainingBytes >= 8) {
449       OpsOut.push_back(I64Ty);
450       RemainingBytes -= 8;
451     }
452 
453     Type *I32Ty = Type::getInt32Ty(Context);
454     while (RemainingBytes >= 4) {
455       OpsOut.push_back(I32Ty);
456       RemainingBytes -= 4;
457     }
458   }
459 
460   Type *I16Ty = Type::getInt16Ty(Context);
461   while (RemainingBytes >= 2) {
462     OpsOut.push_back(I16Ty);
463     RemainingBytes -= 2;
464   }
465 
466   Type *I8Ty = Type::getInt8Ty(Context);
467   while (RemainingBytes) {
468     OpsOut.push_back(I8Ty);
469     --RemainingBytes;
470   }
471 }
472 
473 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
474   // Disable unrolling if the loop is not vectorized.
475   // TODO: Enable this again.
476   if (VF == 1)
477     return 1;
478 
479   return 8;
480 }
481 
482 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
483                                        MemIntrinsicInfo &Info) const {
484   switch (Inst->getIntrinsicID()) {
485   case Intrinsic::amdgcn_atomic_inc:
486   case Intrinsic::amdgcn_atomic_dec:
487   case Intrinsic::amdgcn_ds_ordered_add:
488   case Intrinsic::amdgcn_ds_ordered_swap:
489   case Intrinsic::amdgcn_ds_fadd:
490   case Intrinsic::amdgcn_ds_fmin:
491   case Intrinsic::amdgcn_ds_fmax: {
492     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
493     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
494     if (!Ordering || !Volatile)
495       return false; // Invalid.
496 
497     unsigned OrderingVal = Ordering->getZExtValue();
498     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
499       return false;
500 
501     Info.PtrVal = Inst->getArgOperand(0);
502     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
503     Info.ReadMem = true;
504     Info.WriteMem = true;
505     Info.IsVolatile = !Volatile->isNullValue();
506     return true;
507   }
508   default:
509     return false;
510   }
511 }
512 
513 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
514                                        TTI::TargetCostKind CostKind,
515                                        TTI::OperandValueKind Opd1Info,
516                                        TTI::OperandValueKind Opd2Info,
517                                        TTI::OperandValueProperties Opd1PropInfo,
518                                        TTI::OperandValueProperties Opd2PropInfo,
519                                        ArrayRef<const Value *> Args,
520                                        const Instruction *CxtI) {
521   EVT OrigTy = TLI->getValueType(DL, Ty);
522   if (!OrigTy.isSimple()) {
523     // FIXME: We're having to query the throughput cost so that the basic
524     // implementation tries to generate legalize and scalarization costs. Maybe
525     // we could hoist the scalarization code here?
526     if (CostKind != TTI::TCK_CodeSize)
527       return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput,
528                                            Opd1Info, Opd2Info, Opd1PropInfo,
529                                            Opd2PropInfo, Args, CxtI);
530     // Scalarization
531 
532     // Check if any of the operands are vector operands.
533     int ISD = TLI->InstructionOpcodeToISD(Opcode);
534     assert(ISD && "Invalid opcode");
535 
536     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
537 
538     bool IsFloat = Ty->isFPOrFPVectorTy();
539     // Assume that floating point arithmetic operations cost twice as much as
540     // integer operations.
541     unsigned OpCost = (IsFloat ? 2 : 1);
542 
543     if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
544       // The operation is legal. Assume it costs 1.
545       // TODO: Once we have extract/insert subvector cost we need to use them.
546       return LT.first * OpCost;
547     }
548 
549     if (!TLI->isOperationExpand(ISD, LT.second)) {
550       // If the operation is custom lowered, then assume that the code is twice
551       // as expensive.
552       return LT.first * 2 * OpCost;
553     }
554 
555     // Else, assume that we need to scalarize this op.
556     // TODO: If one of the types get legalized by splitting, handle this
557     // similarly to what getCastInstrCost() does.
558     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
559       unsigned Num = cast<FixedVectorType>(VTy)->getNumElements();
560       unsigned Cost = getArithmeticInstrCost(
561           Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
562           Opd1PropInfo, Opd2PropInfo, Args, CxtI);
563       // Return the cost of multiple scalar invocation plus the cost of
564       // inserting and extracting the values.
565       SmallVector<Type *> Tys(Args.size(), Ty);
566       return getScalarizationOverhead(VTy, Args, Tys) + Num * Cost;
567     }
568 
569     // We don't know anything about this scalar instruction.
570     return OpCost;
571   }
572 
573   // Legalize the type.
574   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
575   int ISD = TLI->InstructionOpcodeToISD(Opcode);
576 
577   // Because we don't have any legal vector operations, but the legal types, we
578   // need to account for split vectors.
579   unsigned NElts = LT.second.isVector() ?
580     LT.second.getVectorNumElements() : 1;
581 
582   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
583 
584   switch (ISD) {
585   case ISD::SHL:
586   case ISD::SRL:
587   case ISD::SRA:
588     if (SLT == MVT::i64)
589       return get64BitInstrCost(CostKind) * LT.first * NElts;
590 
591     if (ST->has16BitInsts() && SLT == MVT::i16)
592       NElts = (NElts + 1) / 2;
593 
594     // i32
595     return getFullRateInstrCost() * LT.first * NElts;
596   case ISD::ADD:
597   case ISD::SUB:
598   case ISD::AND:
599   case ISD::OR:
600   case ISD::XOR:
601     if (SLT == MVT::i64) {
602       // and, or and xor are typically split into 2 VALU instructions.
603       return 2 * getFullRateInstrCost() * LT.first * NElts;
604     }
605 
606     if (ST->has16BitInsts() && SLT == MVT::i16)
607       NElts = (NElts + 1) / 2;
608 
609     return LT.first * NElts * getFullRateInstrCost();
610   case ISD::MUL: {
611     const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
612     if (SLT == MVT::i64) {
613       const int FullRateCost = getFullRateInstrCost();
614       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
615     }
616 
617     if (ST->has16BitInsts() && SLT == MVT::i16)
618       NElts = (NElts + 1) / 2;
619 
620     // i32
621     return QuarterRateCost * NElts * LT.first;
622   }
623   case ISD::FMUL:
624     // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
625     // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
626     // fused operation.
627     if (CxtI && CxtI->hasOneUse())
628       if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
629         const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
630         if (OPC == ISD::FADD || OPC == ISD::FSUB) {
631           if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
632             return TargetTransformInfo::TCC_Free;
633           if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
634             return TargetTransformInfo::TCC_Free;
635 
636           // Estimate all types may be fused with contract/unsafe flags
637           const TargetOptions &Options = TLI->getTargetMachine().Options;
638           if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
639               Options.UnsafeFPMath ||
640               (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
641             return TargetTransformInfo::TCC_Free;
642         }
643       }
644     LLVM_FALLTHROUGH;
645   case ISD::FADD:
646   case ISD::FSUB:
647     if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
648       NElts = (NElts + 1) / 2;
649     if (SLT == MVT::f64)
650       return LT.first * NElts * get64BitInstrCost(CostKind);
651 
652     if (ST->has16BitInsts() && SLT == MVT::f16)
653       NElts = (NElts + 1) / 2;
654 
655     if (SLT == MVT::f32 || SLT == MVT::f16)
656       return LT.first * NElts * getFullRateInstrCost();
657     break;
658   case ISD::FDIV:
659   case ISD::FREM:
660     // FIXME: frem should be handled separately. The fdiv in it is most of it,
661     // but the current lowering is also not entirely correct.
662     if (SLT == MVT::f64) {
663       int Cost = 7 * get64BitInstrCost(CostKind) +
664                  getQuarterRateInstrCost(CostKind) +
665                  3 * getHalfRateInstrCost(CostKind);
666       // Add cost of workaround.
667       if (!ST->hasUsableDivScaleConditionOutput())
668         Cost += 3 * getFullRateInstrCost();
669 
670       return LT.first * Cost * NElts;
671     }
672 
673     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
674       // TODO: This is more complicated, unsafe flags etc.
675       if ((SLT == MVT::f32 && !HasFP32Denormals) ||
676           (SLT == MVT::f16 && ST->has16BitInsts())) {
677         return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
678       }
679     }
680 
681     if (SLT == MVT::f16 && ST->has16BitInsts()) {
682       // 2 x v_cvt_f32_f16
683       // f32 rcp
684       // f32 fmul
685       // v_cvt_f16_f32
686       // f16 div_fixup
687       int Cost =
688           4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
689       return LT.first * Cost * NElts;
690     }
691 
692     if (SLT == MVT::f32 || SLT == MVT::f16) {
693       // 4 more v_cvt_* insts without f16 insts support
694       int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
695                  1 * getQuarterRateInstrCost(CostKind);
696 
697       if (!HasFP32Denormals) {
698         // FP mode switches.
699         Cost += 2 * getFullRateInstrCost();
700       }
701 
702       return LT.first * NElts * Cost;
703     }
704     break;
705   case ISD::FNEG:
706     // Use the backend' estimation. If fneg is not free each element will cost
707     // one additional instruction.
708     return TLI->isFNegFree(SLT) ? 0 : NElts;
709   default:
710     break;
711   }
712 
713   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
714                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
715 }
716 
717 // Return true if there's a potential benefit from using v2f16/v2i16
718 // instructions for an intrinsic, even if it requires nontrivial legalization.
719 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
720   switch (ID) {
721   case Intrinsic::fma: // TODO: fmuladd
722   // There's a small benefit to using vector ops in the legalized code.
723   case Intrinsic::round:
724   case Intrinsic::uadd_sat:
725   case Intrinsic::usub_sat:
726   case Intrinsic::sadd_sat:
727   case Intrinsic::ssub_sat:
728     return true;
729   default:
730     return false;
731   }
732 }
733 
734 InstructionCost
735 GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
736                                   TTI::TargetCostKind CostKind) {
737   if (ICA.getID() == Intrinsic::fabs)
738     return 0;
739 
740   if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
741     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
742 
743   Type *RetTy = ICA.getReturnType();
744   EVT OrigTy = TLI->getValueType(DL, RetTy);
745   if (!OrigTy.isSimple()) {
746     if (CostKind != TTI::TCK_CodeSize)
747       return BaseT::getIntrinsicInstrCost(ICA, CostKind);
748 
749     // TODO: Combine these two logic paths.
750     if (ICA.isTypeBasedOnly())
751       return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
752 
753     unsigned RetVF =
754         (RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements()
755                              : 1);
756     const IntrinsicInst *I = ICA.getInst();
757     const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
758     FastMathFlags FMF = ICA.getFlags();
759     // Assume that we need to scalarize this intrinsic.
760 
761     // Compute the scalarization overhead based on Args for a vector
762     // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
763     // CostModel will pass a vector RetTy and VF is 1.
764     unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
765     if (RetVF > 1) {
766       ScalarizationCost = 0;
767       if (!RetTy->isVoidTy())
768         ScalarizationCost +=
769             getScalarizationOverhead(cast<VectorType>(RetTy), true, false);
770       ScalarizationCost +=
771           getOperandsScalarizationOverhead(Args, ICA.getArgTypes());
772     }
773 
774     IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, ICA.getArgTypes(), FMF, I,
775                                   ScalarizationCost);
776     return getIntrinsicInstrCost(Attrs, CostKind);
777   }
778 
779   // Legalize the type.
780   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
781 
782   unsigned NElts = LT.second.isVector() ?
783     LT.second.getVectorNumElements() : 1;
784 
785   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
786 
787   if (SLT == MVT::f64)
788     return LT.first * NElts * get64BitInstrCost(CostKind);
789 
790   if ((ST->has16BitInsts() && SLT == MVT::f16) ||
791       (ST->hasPackedFP32Ops() && SLT == MVT::f32))
792     NElts = (NElts + 1) / 2;
793 
794   // TODO: Get more refined intrinsic costs?
795   unsigned InstRate = getQuarterRateInstrCost(CostKind);
796 
797   switch (ICA.getID()) {
798   case Intrinsic::fma:
799     InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
800                                    : getQuarterRateInstrCost(CostKind);
801     break;
802   case Intrinsic::uadd_sat:
803   case Intrinsic::usub_sat:
804   case Intrinsic::sadd_sat:
805   case Intrinsic::ssub_sat:
806     static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
807     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
808       NElts = 1;
809     break;
810   }
811 
812   return LT.first * NElts * InstRate;
813 }
814 
815 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode,
816                                     TTI::TargetCostKind CostKind,
817                                     const Instruction *I) {
818   assert((I == nullptr || I->getOpcode() == Opcode) &&
819          "Opcode should reflect passed instruction.");
820   const bool SCost =
821       (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency);
822   const int CBrCost = SCost ? 5 : 7;
823   switch (Opcode) {
824   case Instruction::Br: {
825     // Branch instruction takes about 4 slots on gfx900.
826     auto BI = dyn_cast_or_null<BranchInst>(I);
827     if (BI && BI->isUnconditional())
828       return SCost ? 1 : 4;
829     // Suppose conditional branch takes additional 3 exec manipulations
830     // instructions in average.
831     return CBrCost;
832   }
833   case Instruction::Switch: {
834     auto SI = dyn_cast_or_null<SwitchInst>(I);
835     // Each case (including default) takes 1 cmp + 1 cbr instructions in
836     // average.
837     return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1);
838   }
839   case Instruction::Ret:
840     return SCost ? 1 : 10;
841   case Instruction::PHI:
842     // TODO: 1. A prediction phi won't be eliminated?
843     //       2. Estimate data copy instructions in this case.
844     return 1;
845   }
846   return BaseT::getCFInstrCost(Opcode, CostKind, I);
847 }
848 
849 InstructionCost
850 GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
851                                        bool IsPairwise,
852                                        TTI::TargetCostKind CostKind) {
853   EVT OrigTy = TLI->getValueType(DL, Ty);
854 
855   // Computes cost on targets that have packed math instructions(which support
856   // 16-bit types only).
857   if (IsPairwise ||
858       !ST->hasVOP3PInsts() ||
859       OrigTy.getScalarSizeInBits() != 16)
860     return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind);
861 
862   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
863   return LT.first * getFullRateInstrCost();
864 }
865 
866 InstructionCost
867 GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
868                                    bool IsPairwise, bool IsUnsigned,
869                                    TTI::TargetCostKind CostKind) {
870   EVT OrigTy = TLI->getValueType(DL, Ty);
871 
872   // Computes cost on targets that have packed math instructions(which support
873   // 16-bit types only).
874   if (IsPairwise ||
875       !ST->hasVOP3PInsts() ||
876       OrigTy.getScalarSizeInBits() != 16)
877     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned,
878                                          CostKind);
879 
880   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
881   return LT.first * getHalfRateInstrCost(CostKind);
882 }
883 
884 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
885                                       unsigned Index) {
886   switch (Opcode) {
887   case Instruction::ExtractElement:
888   case Instruction::InsertElement: {
889     unsigned EltSize
890       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
891     if (EltSize < 32) {
892       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
893         return 0;
894       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
895     }
896 
897     // Extracts are just reads of a subregister, so are free. Inserts are
898     // considered free because we don't want to have any cost for scalarizing
899     // operations, and we don't have to copy into a different register class.
900 
901     // Dynamic indexing isn't free and is best avoided.
902     return Index == ~0u ? 2 : 0;
903   }
904   default:
905     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
906   }
907 }
908 
909 /// Analyze if the results of inline asm are divergent. If \p Indices is empty,
910 /// this is analyzing the collective result of all output registers. Otherwise,
911 /// this is only querying a specific result index if this returns multiple
912 /// registers in a struct.
913 bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
914   const CallInst *CI, ArrayRef<unsigned> Indices) const {
915   // TODO: Handle complex extract indices
916   if (Indices.size() > 1)
917     return true;
918 
919   const DataLayout &DL = CI->getModule()->getDataLayout();
920   const SIRegisterInfo *TRI = ST->getRegisterInfo();
921   TargetLowering::AsmOperandInfoVector TargetConstraints =
922       TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
923 
924   const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
925 
926   int OutputIdx = 0;
927   for (auto &TC : TargetConstraints) {
928     if (TC.Type != InlineAsm::isOutput)
929       continue;
930 
931     // Skip outputs we don't care about.
932     if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
933       continue;
934 
935     TLI->ComputeConstraintToUse(TC, SDValue());
936 
937     Register AssignedReg;
938     const TargetRegisterClass *RC;
939     std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint(
940       TRI, TC.ConstraintCode, TC.ConstraintVT);
941     if (AssignedReg) {
942       // FIXME: This is a workaround for getRegForInlineAsmConstraint
943       // returning VS_32
944       RC = TRI->getPhysRegClass(AssignedReg);
945     }
946 
947     // For AGPR constraints null is returned on subtargets without AGPRs, so
948     // assume divergent for null.
949     if (!RC || !TRI->isSGPRClass(RC))
950       return true;
951   }
952 
953   return false;
954 }
955 
956 /// \returns true if the new GPU divergence analysis is enabled.
957 bool GCNTTIImpl::useGPUDivergenceAnalysis() const {
958   return !UseLegacyDA;
959 }
960 
961 /// \returns true if the result of the value could potentially be
962 /// different across workitems in a wavefront.
963 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
964   if (const Argument *A = dyn_cast<Argument>(V))
965     return !AMDGPU::isArgPassedInSGPR(A);
966 
967   // Loads from the private and flat address spaces are divergent, because
968   // threads can execute the load instruction with the same inputs and get
969   // different results.
970   //
971   // All other loads are not divergent, because if threads issue loads with the
972   // same arguments, they will always get the same result.
973   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
974     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
975            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
976 
977   // Atomics are divergent because they are executed sequentially: when an
978   // atomic operation refers to the same address in each thread, then each
979   // thread after the first sees the value written by the previous thread as
980   // original value.
981   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
982     return true;
983 
984   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
985     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
986 
987   // Assume all function calls are a source of divergence.
988   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
989     if (CI->isInlineAsm())
990       return isInlineAsmSourceOfDivergence(CI);
991     return true;
992   }
993 
994   // Assume all function calls are a source of divergence.
995   if (isa<InvokeInst>(V))
996     return true;
997 
998   return false;
999 }
1000 
1001 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
1002   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
1003     switch (Intrinsic->getIntrinsicID()) {
1004     default:
1005       return false;
1006     case Intrinsic::amdgcn_readfirstlane:
1007     case Intrinsic::amdgcn_readlane:
1008     case Intrinsic::amdgcn_icmp:
1009     case Intrinsic::amdgcn_fcmp:
1010     case Intrinsic::amdgcn_ballot:
1011     case Intrinsic::amdgcn_if_break:
1012       return true;
1013     }
1014   }
1015 
1016   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
1017     if (CI->isInlineAsm())
1018       return !isInlineAsmSourceOfDivergence(CI);
1019     return false;
1020   }
1021 
1022   const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
1023   if (!ExtValue)
1024     return false;
1025 
1026   const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
1027   if (!CI)
1028     return false;
1029 
1030   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
1031     switch (Intrinsic->getIntrinsicID()) {
1032     default:
1033       return false;
1034     case Intrinsic::amdgcn_if:
1035     case Intrinsic::amdgcn_else: {
1036       ArrayRef<unsigned> Indices = ExtValue->getIndices();
1037       return Indices.size() == 1 && Indices[0] == 1;
1038     }
1039     }
1040   }
1041 
1042   // If we have inline asm returning mixed SGPR and VGPR results, we inferred
1043   // divergent for the overall struct return. We need to override it in the
1044   // case we're extracting an SGPR component here.
1045   if (CI->isInlineAsm())
1046     return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
1047 
1048   return false;
1049 }
1050 
1051 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1052                                             Intrinsic::ID IID) const {
1053   switch (IID) {
1054   case Intrinsic::amdgcn_atomic_inc:
1055   case Intrinsic::amdgcn_atomic_dec:
1056   case Intrinsic::amdgcn_ds_fadd:
1057   case Intrinsic::amdgcn_ds_fmin:
1058   case Intrinsic::amdgcn_ds_fmax:
1059   case Intrinsic::amdgcn_is_shared:
1060   case Intrinsic::amdgcn_is_private:
1061     OpIndexes.push_back(0);
1062     return true;
1063   default:
1064     return false;
1065   }
1066 }
1067 
1068 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1069                                                     Value *OldV,
1070                                                     Value *NewV) const {
1071   auto IntrID = II->getIntrinsicID();
1072   switch (IntrID) {
1073   case Intrinsic::amdgcn_atomic_inc:
1074   case Intrinsic::amdgcn_atomic_dec:
1075   case Intrinsic::amdgcn_ds_fadd:
1076   case Intrinsic::amdgcn_ds_fmin:
1077   case Intrinsic::amdgcn_ds_fmax: {
1078     const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
1079     if (!IsVolatile->isZero())
1080       return nullptr;
1081     Module *M = II->getParent()->getParent()->getParent();
1082     Type *DestTy = II->getType();
1083     Type *SrcTy = NewV->getType();
1084     Function *NewDecl =
1085         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
1086     II->setArgOperand(0, NewV);
1087     II->setCalledFunction(NewDecl);
1088     return II;
1089   }
1090   case Intrinsic::amdgcn_is_shared:
1091   case Intrinsic::amdgcn_is_private: {
1092     unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
1093       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
1094     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1095     LLVMContext &Ctx = NewV->getType()->getContext();
1096     ConstantInt *NewVal = (TrueAS == NewAS) ?
1097       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
1098     return NewVal;
1099   }
1100   case Intrinsic::ptrmask: {
1101     unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1102     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1103     Value *MaskOp = II->getArgOperand(1);
1104     Type *MaskTy = MaskOp->getType();
1105 
1106     bool DoTruncate = false;
1107 
1108     const GCNTargetMachine &TM =
1109         static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
1110     if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
1111       // All valid 64-bit to 32-bit casts work by chopping off the high
1112       // bits. Any masking only clearing the low bits will also apply in the new
1113       // address space.
1114       if (DL.getPointerSizeInBits(OldAS) != 64 ||
1115           DL.getPointerSizeInBits(NewAS) != 32)
1116         return nullptr;
1117 
1118       // TODO: Do we need to thread more context in here?
1119       KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
1120       if (Known.countMinLeadingOnes() < 32)
1121         return nullptr;
1122 
1123       DoTruncate = true;
1124     }
1125 
1126     IRBuilder<> B(II);
1127     if (DoTruncate) {
1128       MaskTy = B.getInt32Ty();
1129       MaskOp = B.CreateTrunc(MaskOp, MaskTy);
1130     }
1131 
1132     return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
1133                              {NewV, MaskOp});
1134   }
1135   default:
1136     return nullptr;
1137   }
1138 }
1139 
1140 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT,
1141                                     ArrayRef<int> Mask, int Index,
1142                                     VectorType *SubTp) {
1143   if (ST->hasVOP3PInsts()) {
1144     if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
1145         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
1146       // With op_sel VOP3P instructions freely can access the low half or high
1147       // half of a register, so any swizzle is free.
1148 
1149       switch (Kind) {
1150       case TTI::SK_Broadcast:
1151       case TTI::SK_Reverse:
1152       case TTI::SK_PermuteSingleSrc:
1153         return 0;
1154       default:
1155         break;
1156       }
1157     }
1158   }
1159 
1160   return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp);
1161 }
1162 
1163 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
1164                                      const Function *Callee) const {
1165   const TargetMachine &TM = getTLI()->getTargetMachine();
1166   const GCNSubtarget *CallerST
1167     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1168   const GCNSubtarget *CalleeST
1169     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1170 
1171   const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1172   const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1173 
1174   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1175   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1176   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1177     return false;
1178 
1179   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1180   // no way to support merge for backend defined attributes.
1181   AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
1182   AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
1183   if (!CallerMode.isInlineCompatible(CalleeMode))
1184     return false;
1185 
1186   if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
1187       Callee->hasFnAttribute(Attribute::InlineHint))
1188     return true;
1189 
1190   // Hack to make compile times reasonable.
1191   if (InlineMaxBB) {
1192     // Single BB does not increase total BB amount.
1193     if (Callee->size() == 1)
1194       return true;
1195     size_t BBSize = Caller->size() + Callee->size() - 1;
1196     return BBSize <= InlineMaxBB;
1197   }
1198 
1199   return true;
1200 }
1201 
1202 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
1203   // If we have a pointer to private array passed into a function
1204   // it will not be optimized out, leaving scratch usage.
1205   // Increase the inline threshold to allow inlining in this case.
1206   uint64_t AllocaSize = 0;
1207   SmallPtrSet<const AllocaInst *, 8> AIVisited;
1208   for (Value *PtrArg : CB->args()) {
1209     PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
1210     if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS &&
1211                 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS))
1212       continue;
1213 
1214     PtrArg = getUnderlyingObject(PtrArg);
1215     if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) {
1216       if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second)
1217         continue;
1218       AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
1219       // If the amount of stack memory is excessive we will not be able
1220       // to get rid of the scratch anyway, bail out.
1221       if (AllocaSize > ArgAllocaCutoff) {
1222         AllocaSize = 0;
1223         break;
1224       }
1225     }
1226   }
1227   if (AllocaSize)
1228     return ArgAllocaCost;
1229   return 0;
1230 }
1231 
1232 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1233                                          TTI::UnrollingPreferences &UP) {
1234   CommonTTI.getUnrollingPreferences(L, SE, UP);
1235 }
1236 
1237 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1238                                        TTI::PeelingPreferences &PP) {
1239   CommonTTI.getPeelingPreferences(L, SE, PP);
1240 }
1241 
1242 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
1243   return ST->hasFullRate64Ops()
1244              ? getFullRateInstrCost()
1245              : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
1246                                       : getQuarterRateInstrCost(CostKind);
1247 }
1248 
1249 R600TTIImpl::R600TTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
1250     : BaseT(TM, F.getParent()->getDataLayout()),
1251       ST(static_cast<const R600Subtarget *>(TM->getSubtargetImpl(F))),
1252       TLI(ST->getTargetLowering()), CommonTTI(TM, F) {}
1253 
1254 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
1255   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
1256 }
1257 
1258 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
1259   return getHardwareNumberOfRegisters(Vec);
1260 }
1261 
1262 TypeSize
1263 R600TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
1264   return TypeSize::getFixed(32);
1265 }
1266 
1267 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
1268   return 32;
1269 }
1270 
1271 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
1272   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
1273       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
1274     return 128;
1275   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1276       AddrSpace == AMDGPUAS::REGION_ADDRESS)
1277     return 64;
1278   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
1279     return 32;
1280 
1281   if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
1282       AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
1283       (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
1284       AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
1285     return 128;
1286   llvm_unreachable("unhandled address space");
1287 }
1288 
1289 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
1290                                              Align Alignment,
1291                                              unsigned AddrSpace) const {
1292   // We allow vectorization of flat stores, even though we may need to decompose
1293   // them later if they may access private memory. We don't have enough context
1294   // here, and legalization can handle it.
1295   return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
1296 }
1297 
1298 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1299                                               Align Alignment,
1300                                               unsigned AddrSpace) const {
1301   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
1302 }
1303 
1304 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1305                                                Align Alignment,
1306                                                unsigned AddrSpace) const {
1307   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
1308 }
1309 
1310 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
1311   // Disable unrolling if the loop is not vectorized.
1312   // TODO: Enable this again.
1313   if (VF == 1)
1314     return 1;
1315 
1316   return 8;
1317 }
1318 
1319 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode,
1320                                      TTI::TargetCostKind CostKind,
1321                                      const Instruction *I) {
1322   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
1323     return Opcode == Instruction::PHI ? 0 : 1;
1324 
1325   // XXX - For some reason this isn't called for switch.
1326   switch (Opcode) {
1327   case Instruction::Br:
1328   case Instruction::Ret:
1329     return 10;
1330   default:
1331     return BaseT::getCFInstrCost(Opcode, CostKind, I);
1332   }
1333 }
1334 
1335 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
1336                                     unsigned Index) {
1337   switch (Opcode) {
1338   case Instruction::ExtractElement:
1339   case Instruction::InsertElement: {
1340     unsigned EltSize
1341       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
1342     if (EltSize < 32) {
1343       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
1344     }
1345 
1346     // Extracts are just reads of a subregister, so are free. Inserts are
1347     // considered free because we don't want to have any cost for scalarizing
1348     // operations, and we don't have to copy into a different register class.
1349 
1350     // Dynamic indexing isn't free and is best avoided.
1351     return Index == ~0u ? 2 : 0;
1352   }
1353   default:
1354     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
1355   }
1356 }
1357 
1358 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1359                                           TTI::UnrollingPreferences &UP) {
1360   CommonTTI.getUnrollingPreferences(L, SE, UP);
1361 }
1362 
1363 void R600TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1364                                         TTI::PeelingPreferences &PP) {
1365   CommonTTI.getPeelingPreferences(L, SE, PP);
1366 }
1367