1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/IntrinsicsAMDGPU.h" 22 #include "llvm/IR/PatternMatch.h" 23 #include "llvm/Support/KnownBits.h" 24 25 using namespace llvm; 26 27 #define DEBUG_TYPE "AMDGPUtti" 28 29 static cl::opt<unsigned> UnrollThresholdPrivate( 30 "amdgpu-unroll-threshold-private", 31 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 32 cl::init(2700), cl::Hidden); 33 34 static cl::opt<unsigned> UnrollThresholdLocal( 35 "amdgpu-unroll-threshold-local", 36 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 37 cl::init(1000), cl::Hidden); 38 39 static cl::opt<unsigned> UnrollThresholdIf( 40 "amdgpu-unroll-threshold-if", 41 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 42 cl::init(200), cl::Hidden); 43 44 static cl::opt<bool> UnrollRuntimeLocal( 45 "amdgpu-unroll-runtime-local", 46 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 47 cl::init(true), cl::Hidden); 48 49 static cl::opt<bool> UseLegacyDA( 50 "amdgpu-use-legacy-divergence-analysis", 51 cl::desc("Enable legacy divergence analysis for AMDGPU"), 52 cl::init(false), cl::Hidden); 53 54 static cl::opt<unsigned> UnrollMaxBlockToAnalyze( 55 "amdgpu-unroll-max-block-to-analyze", 56 cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"), 57 cl::init(32), cl::Hidden); 58 59 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost", 60 cl::Hidden, cl::init(4000), 61 cl::desc("Cost of alloca argument")); 62 63 // If the amount of scratch memory to eliminate exceeds our ability to allocate 64 // it into registers we gain nothing by aggressively inlining functions for that 65 // heuristic. 66 static cl::opt<unsigned> 67 ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden, 68 cl::init(256), 69 cl::desc("Maximum alloca size to use for inline cost")); 70 71 // Inliner constraint to achieve reasonable compilation time. 72 static cl::opt<size_t> InlineMaxBB( 73 "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100), 74 cl::desc("Maximum number of BBs allowed in a function after inlining" 75 " (compile time constraint)")); 76 77 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 78 unsigned Depth = 0) { 79 const Instruction *I = dyn_cast<Instruction>(Cond); 80 if (!I) 81 return false; 82 83 for (const Value *V : I->operand_values()) { 84 if (!L->contains(I)) 85 continue; 86 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 87 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 88 return SubLoop->contains(PHI); })) 89 return true; 90 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 91 return true; 92 } 93 return false; 94 } 95 96 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 97 : BaseT(TM, F.getParent()->getDataLayout()), 98 TargetTriple(TM->getTargetTriple()), 99 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))), 100 TLI(ST->getTargetLowering()) {} 101 102 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 103 TTI::UnrollingPreferences &UP) { 104 const Function &F = *L->getHeader()->getParent(); 105 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 106 UP.MaxCount = std::numeric_limits<unsigned>::max(); 107 UP.Partial = true; 108 109 // Conditional branch in a loop back edge needs 3 additional exec 110 // manipulations in average. 111 UP.BEInsns += 3; 112 113 // TODO: Do we want runtime unrolling? 114 115 // Maximum alloca size than can fit registers. Reserve 16 registers. 116 const unsigned MaxAlloca = (256 - 16) * 4; 117 unsigned ThresholdPrivate = UnrollThresholdPrivate; 118 unsigned ThresholdLocal = UnrollThresholdLocal; 119 120 // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the 121 // provided threshold value as the default for Threshold 122 if (MDNode *LoopUnrollThreshold = 123 findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) { 124 if (LoopUnrollThreshold->getNumOperands() == 2) { 125 ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>( 126 LoopUnrollThreshold->getOperand(1)); 127 if (MetaThresholdValue) { 128 // We will also use the supplied value for PartialThreshold for now. 129 // We may introduce additional metadata if it becomes necessary in the 130 // future. 131 UP.Threshold = MetaThresholdValue->getSExtValue(); 132 UP.PartialThreshold = UP.Threshold; 133 ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold); 134 ThresholdLocal = std::min(ThresholdLocal, UP.Threshold); 135 } 136 } 137 } 138 139 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 140 for (const BasicBlock *BB : L->getBlocks()) { 141 const DataLayout &DL = BB->getModule()->getDataLayout(); 142 unsigned LocalGEPsSeen = 0; 143 144 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 145 return SubLoop->contains(BB); })) 146 continue; // Block belongs to an inner loop. 147 148 for (const Instruction &I : *BB) { 149 // Unroll a loop which contains an "if" statement whose condition 150 // defined by a PHI belonging to the loop. This may help to eliminate 151 // if region and potentially even PHI itself, saving on both divergence 152 // and registers used for the PHI. 153 // Add a small bonus for each of such "if" statements. 154 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 155 if (UP.Threshold < MaxBoost && Br->isConditional()) { 156 BasicBlock *Succ0 = Br->getSuccessor(0); 157 BasicBlock *Succ1 = Br->getSuccessor(1); 158 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 159 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 160 continue; 161 if (dependsOnLocalPhi(L, Br->getCondition())) { 162 UP.Threshold += UnrollThresholdIf; 163 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 164 << " for loop:\n" 165 << *L << " due to " << *Br << '\n'); 166 if (UP.Threshold >= MaxBoost) 167 return; 168 } 169 } 170 continue; 171 } 172 173 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 174 if (!GEP) 175 continue; 176 177 unsigned AS = GEP->getAddressSpace(); 178 unsigned Threshold = 0; 179 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 180 Threshold = ThresholdPrivate; 181 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 182 Threshold = ThresholdLocal; 183 else 184 continue; 185 186 if (UP.Threshold >= Threshold) 187 continue; 188 189 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 190 const Value *Ptr = GEP->getPointerOperand(); 191 const AllocaInst *Alloca = 192 dyn_cast<AllocaInst>(getUnderlyingObject(Ptr)); 193 if (!Alloca || !Alloca->isStaticAlloca()) 194 continue; 195 Type *Ty = Alloca->getAllocatedType(); 196 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 197 if (AllocaSize > MaxAlloca) 198 continue; 199 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 200 AS == AMDGPUAS::REGION_ADDRESS) { 201 LocalGEPsSeen++; 202 // Inhibit unroll for local memory if we have seen addressing not to 203 // a variable, most likely we will be unable to combine it. 204 // Do not unroll too deep inner loops for local memory to give a chance 205 // to unroll an outer loop for a more important reason. 206 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 207 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 208 !isa<Argument>(GEP->getPointerOperand()))) 209 continue; 210 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 211 << *L << " due to LDS use.\n"); 212 UP.Runtime = UnrollRuntimeLocal; 213 } 214 215 // Check if GEP depends on a value defined by this loop itself. 216 bool HasLoopDef = false; 217 for (const Value *Op : GEP->operands()) { 218 const Instruction *Inst = dyn_cast<Instruction>(Op); 219 if (!Inst || L->isLoopInvariant(Op)) 220 continue; 221 222 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 223 return SubLoop->contains(Inst); })) 224 continue; 225 HasLoopDef = true; 226 break; 227 } 228 if (!HasLoopDef) 229 continue; 230 231 // We want to do whatever we can to limit the number of alloca 232 // instructions that make it through to the code generator. allocas 233 // require us to use indirect addressing, which is slow and prone to 234 // compiler bugs. If this loop does an address calculation on an 235 // alloca ptr, then we want to use a higher than normal loop unroll 236 // threshold. This will give SROA a better chance to eliminate these 237 // allocas. 238 // 239 // We also want to have more unrolling for local memory to let ds 240 // instructions with different offsets combine. 241 // 242 // Don't use the maximum allowed value here as it will make some 243 // programs way too big. 244 UP.Threshold = Threshold; 245 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 246 << " for loop:\n" 247 << *L << " due to " << *GEP << '\n'); 248 if (UP.Threshold >= MaxBoost) 249 return; 250 } 251 252 // If we got a GEP in a small BB from inner loop then increase max trip 253 // count to analyze for better estimation cost in unroll 254 if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze) 255 UP.MaxIterationsCountToAnalyze = 32; 256 } 257 } 258 259 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 260 TTI::PeelingPreferences &PP) { 261 BaseT::getPeelingPreferences(L, SE, PP); 262 } 263 264 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = { 265 // Codegen control options which don't matter. 266 AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler, 267 AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal, 268 AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess, 269 AMDGPU::FeatureUnalignedAccessMode, 270 271 AMDGPU::FeatureAutoWaitcntBeforeBarrier, 272 273 // Property of the kernel/environment which can't actually differ. 274 AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK, 275 AMDGPU::FeatureTrapHandler, 276 277 // The default assumption needs to be ecc is enabled, but no directly 278 // exposed operations depend on it, so it can be safely inlined. 279 AMDGPU::FeatureSRAMECC, 280 281 // Perf-tuning features 282 AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops}; 283 284 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 285 : BaseT(TM, F.getParent()->getDataLayout()), 286 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))), 287 TLI(ST->getTargetLowering()), CommonTTI(TM, F), 288 IsGraphics(AMDGPU::isGraphics(F.getCallingConv())), 289 MaxVGPRs(ST->getMaxNumVGPRs( 290 std::max(ST->getWavesPerEU(F).first, 291 ST->getWavesPerEUForWorkGroup( 292 ST->getFlatWorkGroupSizes(F).second)))) { 293 AMDGPU::SIModeRegisterDefaults Mode(F); 294 HasFP32Denormals = Mode.allFP32Denormals(); 295 HasFP64FP16Denormals = Mode.allFP64FP16Denormals(); 296 } 297 298 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 299 // The concept of vector registers doesn't really exist. Some packed vector 300 // operations operate on the normal 32-bit registers. 301 return MaxVGPRs; 302 } 303 304 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 305 // This is really the number of registers to fill when vectorizing / 306 // interleaving loops, so we lie to avoid trying to use all registers. 307 return getHardwareNumberOfRegisters(Vec) >> 3; 308 } 309 310 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const { 311 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 312 const TargetRegisterClass *RC = TRI->getRegClass(RCID); 313 unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32; 314 return getHardwareNumberOfRegisters(false) / NumVGPRs; 315 } 316 317 TypeSize 318 GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 319 switch (K) { 320 case TargetTransformInfo::RGK_Scalar: 321 return TypeSize::getFixed(32); 322 case TargetTransformInfo::RGK_FixedWidthVector: 323 return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32); 324 case TargetTransformInfo::RGK_ScalableVector: 325 return TypeSize::getScalable(0); 326 } 327 llvm_unreachable("Unsupported register kind"); 328 } 329 330 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 331 return 32; 332 } 333 334 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 335 if (Opcode == Instruction::Load || Opcode == Instruction::Store) 336 return 32 * 4 / ElemWidth; 337 return (ElemWidth == 16 && ST->has16BitInsts()) ? 2 338 : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2 339 : 1; 340 } 341 342 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 343 unsigned ChainSizeInBytes, 344 VectorType *VecTy) const { 345 unsigned VecRegBitWidth = VF * LoadSize; 346 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 347 // TODO: Support element-size less than 32bit? 348 return 128 / LoadSize; 349 350 return VF; 351 } 352 353 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 354 unsigned ChainSizeInBytes, 355 VectorType *VecTy) const { 356 unsigned VecRegBitWidth = VF * StoreSize; 357 if (VecRegBitWidth > 128) 358 return 128 / StoreSize; 359 360 return VF; 361 } 362 363 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 364 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 365 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 366 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 367 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 368 return 512; 369 } 370 371 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 372 return 8 * ST->getMaxPrivateElementSize(); 373 374 // Common to flat, global, local and region. Assume for unknown addrspace. 375 return 128; 376 } 377 378 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 379 Align Alignment, 380 unsigned AddrSpace) const { 381 // We allow vectorization of flat stores, even though we may need to decompose 382 // them later if they may access private memory. We don't have enough context 383 // here, and legalization can handle it. 384 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 385 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 386 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 387 } 388 return true; 389 } 390 391 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 392 Align Alignment, 393 unsigned AddrSpace) const { 394 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 395 } 396 397 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 398 Align Alignment, 399 unsigned AddrSpace) const { 400 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 401 } 402 403 // FIXME: Really we would like to issue multiple 128-bit loads and stores per 404 // iteration. Should we report a larger size and let it legalize? 405 // 406 // FIXME: Should we use narrower types for local/region, or account for when 407 // unaligned access is legal? 408 // 409 // FIXME: This could use fine tuning and microbenchmarks. 410 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, 411 unsigned SrcAddrSpace, 412 unsigned DestAddrSpace, 413 unsigned SrcAlign, 414 unsigned DestAlign) const { 415 unsigned MinAlign = std::min(SrcAlign, DestAlign); 416 417 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 418 // hardware into byte accesses. If you assume all alignments are equally 419 // probable, it's more efficient on average to use short accesses for this 420 // case. 421 if (MinAlign == 2) 422 return Type::getInt16Ty(Context); 423 424 // Not all subtargets have 128-bit DS instructions, and we currently don't 425 // form them by default. 426 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 427 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 428 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 429 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 430 return FixedVectorType::get(Type::getInt32Ty(Context), 2); 431 } 432 433 // Global memory works best with 16-byte accesses. Private memory will also 434 // hit this, although they'll be decomposed. 435 return FixedVectorType::get(Type::getInt32Ty(Context), 4); 436 } 437 438 void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 439 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 440 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 441 unsigned SrcAlign, unsigned DestAlign) const { 442 assert(RemainingBytes < 16); 443 444 unsigned MinAlign = std::min(SrcAlign, DestAlign); 445 446 if (MinAlign != 2) { 447 Type *I64Ty = Type::getInt64Ty(Context); 448 while (RemainingBytes >= 8) { 449 OpsOut.push_back(I64Ty); 450 RemainingBytes -= 8; 451 } 452 453 Type *I32Ty = Type::getInt32Ty(Context); 454 while (RemainingBytes >= 4) { 455 OpsOut.push_back(I32Ty); 456 RemainingBytes -= 4; 457 } 458 } 459 460 Type *I16Ty = Type::getInt16Ty(Context); 461 while (RemainingBytes >= 2) { 462 OpsOut.push_back(I16Ty); 463 RemainingBytes -= 2; 464 } 465 466 Type *I8Ty = Type::getInt8Ty(Context); 467 while (RemainingBytes) { 468 OpsOut.push_back(I8Ty); 469 --RemainingBytes; 470 } 471 } 472 473 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 474 // Disable unrolling if the loop is not vectorized. 475 // TODO: Enable this again. 476 if (VF == 1) 477 return 1; 478 479 return 8; 480 } 481 482 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 483 MemIntrinsicInfo &Info) const { 484 switch (Inst->getIntrinsicID()) { 485 case Intrinsic::amdgcn_atomic_inc: 486 case Intrinsic::amdgcn_atomic_dec: 487 case Intrinsic::amdgcn_ds_ordered_add: 488 case Intrinsic::amdgcn_ds_ordered_swap: 489 case Intrinsic::amdgcn_ds_fadd: 490 case Intrinsic::amdgcn_ds_fmin: 491 case Intrinsic::amdgcn_ds_fmax: { 492 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 493 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 494 if (!Ordering || !Volatile) 495 return false; // Invalid. 496 497 unsigned OrderingVal = Ordering->getZExtValue(); 498 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 499 return false; 500 501 Info.PtrVal = Inst->getArgOperand(0); 502 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 503 Info.ReadMem = true; 504 Info.WriteMem = true; 505 Info.IsVolatile = !Volatile->isNullValue(); 506 return true; 507 } 508 default: 509 return false; 510 } 511 } 512 513 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 514 TTI::TargetCostKind CostKind, 515 TTI::OperandValueKind Opd1Info, 516 TTI::OperandValueKind Opd2Info, 517 TTI::OperandValueProperties Opd1PropInfo, 518 TTI::OperandValueProperties Opd2PropInfo, 519 ArrayRef<const Value *> Args, 520 const Instruction *CxtI) { 521 EVT OrigTy = TLI->getValueType(DL, Ty); 522 if (!OrigTy.isSimple()) { 523 // FIXME: We're having to query the throughput cost so that the basic 524 // implementation tries to generate legalize and scalarization costs. Maybe 525 // we could hoist the scalarization code here? 526 if (CostKind != TTI::TCK_CodeSize) 527 return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput, 528 Opd1Info, Opd2Info, Opd1PropInfo, 529 Opd2PropInfo, Args, CxtI); 530 // Scalarization 531 532 // Check if any of the operands are vector operands. 533 int ISD = TLI->InstructionOpcodeToISD(Opcode); 534 assert(ISD && "Invalid opcode"); 535 536 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 537 538 bool IsFloat = Ty->isFPOrFPVectorTy(); 539 // Assume that floating point arithmetic operations cost twice as much as 540 // integer operations. 541 unsigned OpCost = (IsFloat ? 2 : 1); 542 543 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 544 // The operation is legal. Assume it costs 1. 545 // TODO: Once we have extract/insert subvector cost we need to use them. 546 return LT.first * OpCost; 547 } 548 549 if (!TLI->isOperationExpand(ISD, LT.second)) { 550 // If the operation is custom lowered, then assume that the code is twice 551 // as expensive. 552 return LT.first * 2 * OpCost; 553 } 554 555 // Else, assume that we need to scalarize this op. 556 // TODO: If one of the types get legalized by splitting, handle this 557 // similarly to what getCastInstrCost() does. 558 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 559 unsigned Num = cast<FixedVectorType>(VTy)->getNumElements(); 560 unsigned Cost = getArithmeticInstrCost( 561 Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info, 562 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 563 // Return the cost of multiple scalar invocation plus the cost of 564 // inserting and extracting the values. 565 SmallVector<Type *> Tys(Args.size(), Ty); 566 return getScalarizationOverhead(VTy, Args, Tys) + Num * Cost; 567 } 568 569 // We don't know anything about this scalar instruction. 570 return OpCost; 571 } 572 573 // Legalize the type. 574 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 575 int ISD = TLI->InstructionOpcodeToISD(Opcode); 576 577 // Because we don't have any legal vector operations, but the legal types, we 578 // need to account for split vectors. 579 unsigned NElts = LT.second.isVector() ? 580 LT.second.getVectorNumElements() : 1; 581 582 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 583 584 switch (ISD) { 585 case ISD::SHL: 586 case ISD::SRL: 587 case ISD::SRA: 588 if (SLT == MVT::i64) 589 return get64BitInstrCost(CostKind) * LT.first * NElts; 590 591 if (ST->has16BitInsts() && SLT == MVT::i16) 592 NElts = (NElts + 1) / 2; 593 594 // i32 595 return getFullRateInstrCost() * LT.first * NElts; 596 case ISD::ADD: 597 case ISD::SUB: 598 case ISD::AND: 599 case ISD::OR: 600 case ISD::XOR: 601 if (SLT == MVT::i64) { 602 // and, or and xor are typically split into 2 VALU instructions. 603 return 2 * getFullRateInstrCost() * LT.first * NElts; 604 } 605 606 if (ST->has16BitInsts() && SLT == MVT::i16) 607 NElts = (NElts + 1) / 2; 608 609 return LT.first * NElts * getFullRateInstrCost(); 610 case ISD::MUL: { 611 const int QuarterRateCost = getQuarterRateInstrCost(CostKind); 612 if (SLT == MVT::i64) { 613 const int FullRateCost = getFullRateInstrCost(); 614 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 615 } 616 617 if (ST->has16BitInsts() && SLT == MVT::i16) 618 NElts = (NElts + 1) / 2; 619 620 // i32 621 return QuarterRateCost * NElts * LT.first; 622 } 623 case ISD::FMUL: 624 // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for 625 // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole 626 // fused operation. 627 if (CxtI && CxtI->hasOneUse()) 628 if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) { 629 const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode()); 630 if (OPC == ISD::FADD || OPC == ISD::FSUB) { 631 if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals) 632 return TargetTransformInfo::TCC_Free; 633 if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals) 634 return TargetTransformInfo::TCC_Free; 635 636 // Estimate all types may be fused with contract/unsafe flags 637 const TargetOptions &Options = TLI->getTargetMachine().Options; 638 if (Options.AllowFPOpFusion == FPOpFusion::Fast || 639 Options.UnsafeFPMath || 640 (FAdd->hasAllowContract() && CxtI->hasAllowContract())) 641 return TargetTransformInfo::TCC_Free; 642 } 643 } 644 LLVM_FALLTHROUGH; 645 case ISD::FADD: 646 case ISD::FSUB: 647 if (ST->hasPackedFP32Ops() && SLT == MVT::f32) 648 NElts = (NElts + 1) / 2; 649 if (SLT == MVT::f64) 650 return LT.first * NElts * get64BitInstrCost(CostKind); 651 652 if (ST->has16BitInsts() && SLT == MVT::f16) 653 NElts = (NElts + 1) / 2; 654 655 if (SLT == MVT::f32 || SLT == MVT::f16) 656 return LT.first * NElts * getFullRateInstrCost(); 657 break; 658 case ISD::FDIV: 659 case ISD::FREM: 660 // FIXME: frem should be handled separately. The fdiv in it is most of it, 661 // but the current lowering is also not entirely correct. 662 if (SLT == MVT::f64) { 663 int Cost = 7 * get64BitInstrCost(CostKind) + 664 getQuarterRateInstrCost(CostKind) + 665 3 * getHalfRateInstrCost(CostKind); 666 // Add cost of workaround. 667 if (!ST->hasUsableDivScaleConditionOutput()) 668 Cost += 3 * getFullRateInstrCost(); 669 670 return LT.first * Cost * NElts; 671 } 672 673 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 674 // TODO: This is more complicated, unsafe flags etc. 675 if ((SLT == MVT::f32 && !HasFP32Denormals) || 676 (SLT == MVT::f16 && ST->has16BitInsts())) { 677 return LT.first * getQuarterRateInstrCost(CostKind) * NElts; 678 } 679 } 680 681 if (SLT == MVT::f16 && ST->has16BitInsts()) { 682 // 2 x v_cvt_f32_f16 683 // f32 rcp 684 // f32 fmul 685 // v_cvt_f16_f32 686 // f16 div_fixup 687 int Cost = 688 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind); 689 return LT.first * Cost * NElts; 690 } 691 692 if (SLT == MVT::f32 || SLT == MVT::f16) { 693 // 4 more v_cvt_* insts without f16 insts support 694 int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() + 695 1 * getQuarterRateInstrCost(CostKind); 696 697 if (!HasFP32Denormals) { 698 // FP mode switches. 699 Cost += 2 * getFullRateInstrCost(); 700 } 701 702 return LT.first * NElts * Cost; 703 } 704 break; 705 case ISD::FNEG: 706 // Use the backend' estimation. If fneg is not free each element will cost 707 // one additional instruction. 708 return TLI->isFNegFree(SLT) ? 0 : NElts; 709 default: 710 break; 711 } 712 713 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info, 714 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 715 } 716 717 // Return true if there's a potential benefit from using v2f16/v2i16 718 // instructions for an intrinsic, even if it requires nontrivial legalization. 719 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 720 switch (ID) { 721 case Intrinsic::fma: // TODO: fmuladd 722 // There's a small benefit to using vector ops in the legalized code. 723 case Intrinsic::round: 724 case Intrinsic::uadd_sat: 725 case Intrinsic::usub_sat: 726 case Intrinsic::sadd_sat: 727 case Intrinsic::ssub_sat: 728 return true; 729 default: 730 return false; 731 } 732 } 733 734 InstructionCost 735 GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 736 TTI::TargetCostKind CostKind) { 737 if (ICA.getID() == Intrinsic::fabs) 738 return 0; 739 740 if (!intrinsicHasPackedVectorBenefit(ICA.getID())) 741 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 742 743 Type *RetTy = ICA.getReturnType(); 744 EVT OrigTy = TLI->getValueType(DL, RetTy); 745 if (!OrigTy.isSimple()) { 746 if (CostKind != TTI::TCK_CodeSize) 747 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 748 749 // TODO: Combine these two logic paths. 750 if (ICA.isTypeBasedOnly()) 751 return getTypeBasedIntrinsicInstrCost(ICA, CostKind); 752 753 unsigned RetVF = 754 (RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements() 755 : 1); 756 const IntrinsicInst *I = ICA.getInst(); 757 const SmallVectorImpl<const Value *> &Args = ICA.getArgs(); 758 FastMathFlags FMF = ICA.getFlags(); 759 // Assume that we need to scalarize this intrinsic. 760 761 // Compute the scalarization overhead based on Args for a vector 762 // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while 763 // CostModel will pass a vector RetTy and VF is 1. 764 unsigned ScalarizationCost = std::numeric_limits<unsigned>::max(); 765 if (RetVF > 1) { 766 ScalarizationCost = 0; 767 if (!RetTy->isVoidTy()) 768 ScalarizationCost += 769 getScalarizationOverhead(cast<VectorType>(RetTy), true, false); 770 ScalarizationCost += 771 getOperandsScalarizationOverhead(Args, ICA.getArgTypes()); 772 } 773 774 IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, ICA.getArgTypes(), FMF, I, 775 ScalarizationCost); 776 return getIntrinsicInstrCost(Attrs, CostKind); 777 } 778 779 // Legalize the type. 780 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 781 782 unsigned NElts = LT.second.isVector() ? 783 LT.second.getVectorNumElements() : 1; 784 785 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 786 787 if (SLT == MVT::f64) 788 return LT.first * NElts * get64BitInstrCost(CostKind); 789 790 if ((ST->has16BitInsts() && SLT == MVT::f16) || 791 (ST->hasPackedFP32Ops() && SLT == MVT::f32)) 792 NElts = (NElts + 1) / 2; 793 794 // TODO: Get more refined intrinsic costs? 795 unsigned InstRate = getQuarterRateInstrCost(CostKind); 796 797 switch (ICA.getID()) { 798 case Intrinsic::fma: 799 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind) 800 : getQuarterRateInstrCost(CostKind); 801 break; 802 case Intrinsic::uadd_sat: 803 case Intrinsic::usub_sat: 804 case Intrinsic::sadd_sat: 805 case Intrinsic::ssub_sat: 806 static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16}; 807 if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) 808 NElts = 1; 809 break; 810 } 811 812 return LT.first * NElts * InstRate; 813 } 814 815 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode, 816 TTI::TargetCostKind CostKind, 817 const Instruction *I) { 818 assert((I == nullptr || I->getOpcode() == Opcode) && 819 "Opcode should reflect passed instruction."); 820 const bool SCost = 821 (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency); 822 const int CBrCost = SCost ? 5 : 7; 823 switch (Opcode) { 824 case Instruction::Br: { 825 // Branch instruction takes about 4 slots on gfx900. 826 auto BI = dyn_cast_or_null<BranchInst>(I); 827 if (BI && BI->isUnconditional()) 828 return SCost ? 1 : 4; 829 // Suppose conditional branch takes additional 3 exec manipulations 830 // instructions in average. 831 return CBrCost; 832 } 833 case Instruction::Switch: { 834 auto SI = dyn_cast_or_null<SwitchInst>(I); 835 // Each case (including default) takes 1 cmp + 1 cbr instructions in 836 // average. 837 return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1); 838 } 839 case Instruction::Ret: 840 return SCost ? 1 : 10; 841 case Instruction::PHI: 842 // TODO: 1. A prediction phi won't be eliminated? 843 // 2. Estimate data copy instructions in this case. 844 return 1; 845 } 846 return BaseT::getCFInstrCost(Opcode, CostKind, I); 847 } 848 849 InstructionCost 850 GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 851 bool IsPairwise, 852 TTI::TargetCostKind CostKind) { 853 EVT OrigTy = TLI->getValueType(DL, Ty); 854 855 // Computes cost on targets that have packed math instructions(which support 856 // 16-bit types only). 857 if (IsPairwise || 858 !ST->hasVOP3PInsts() || 859 OrigTy.getScalarSizeInBits() != 16) 860 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind); 861 862 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 863 return LT.first * getFullRateInstrCost(); 864 } 865 866 InstructionCost 867 GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 868 bool IsPairwise, bool IsUnsigned, 869 TTI::TargetCostKind CostKind) { 870 EVT OrigTy = TLI->getValueType(DL, Ty); 871 872 // Computes cost on targets that have packed math instructions(which support 873 // 16-bit types only). 874 if (IsPairwise || 875 !ST->hasVOP3PInsts() || 876 OrigTy.getScalarSizeInBits() != 16) 877 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned, 878 CostKind); 879 880 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 881 return LT.first * getHalfRateInstrCost(CostKind); 882 } 883 884 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 885 unsigned Index) { 886 switch (Opcode) { 887 case Instruction::ExtractElement: 888 case Instruction::InsertElement: { 889 unsigned EltSize 890 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 891 if (EltSize < 32) { 892 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 893 return 0; 894 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 895 } 896 897 // Extracts are just reads of a subregister, so are free. Inserts are 898 // considered free because we don't want to have any cost for scalarizing 899 // operations, and we don't have to copy into a different register class. 900 901 // Dynamic indexing isn't free and is best avoided. 902 return Index == ~0u ? 2 : 0; 903 } 904 default: 905 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 906 } 907 } 908 909 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 910 /// this is analyzing the collective result of all output registers. Otherwise, 911 /// this is only querying a specific result index if this returns multiple 912 /// registers in a struct. 913 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 914 const CallInst *CI, ArrayRef<unsigned> Indices) const { 915 // TODO: Handle complex extract indices 916 if (Indices.size() > 1) 917 return true; 918 919 const DataLayout &DL = CI->getModule()->getDataLayout(); 920 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 921 TargetLowering::AsmOperandInfoVector TargetConstraints = 922 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 923 924 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 925 926 int OutputIdx = 0; 927 for (auto &TC : TargetConstraints) { 928 if (TC.Type != InlineAsm::isOutput) 929 continue; 930 931 // Skip outputs we don't care about. 932 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 933 continue; 934 935 TLI->ComputeConstraintToUse(TC, SDValue()); 936 937 Register AssignedReg; 938 const TargetRegisterClass *RC; 939 std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( 940 TRI, TC.ConstraintCode, TC.ConstraintVT); 941 if (AssignedReg) { 942 // FIXME: This is a workaround for getRegForInlineAsmConstraint 943 // returning VS_32 944 RC = TRI->getPhysRegClass(AssignedReg); 945 } 946 947 // For AGPR constraints null is returned on subtargets without AGPRs, so 948 // assume divergent for null. 949 if (!RC || !TRI->isSGPRClass(RC)) 950 return true; 951 } 952 953 return false; 954 } 955 956 /// \returns true if the new GPU divergence analysis is enabled. 957 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 958 return !UseLegacyDA; 959 } 960 961 /// \returns true if the result of the value could potentially be 962 /// different across workitems in a wavefront. 963 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 964 if (const Argument *A = dyn_cast<Argument>(V)) 965 return !AMDGPU::isArgPassedInSGPR(A); 966 967 // Loads from the private and flat address spaces are divergent, because 968 // threads can execute the load instruction with the same inputs and get 969 // different results. 970 // 971 // All other loads are not divergent, because if threads issue loads with the 972 // same arguments, they will always get the same result. 973 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 974 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 975 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 976 977 // Atomics are divergent because they are executed sequentially: when an 978 // atomic operation refers to the same address in each thread, then each 979 // thread after the first sees the value written by the previous thread as 980 // original value. 981 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 982 return true; 983 984 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 985 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 986 987 // Assume all function calls are a source of divergence. 988 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 989 if (CI->isInlineAsm()) 990 return isInlineAsmSourceOfDivergence(CI); 991 return true; 992 } 993 994 // Assume all function calls are a source of divergence. 995 if (isa<InvokeInst>(V)) 996 return true; 997 998 return false; 999 } 1000 1001 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 1002 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 1003 switch (Intrinsic->getIntrinsicID()) { 1004 default: 1005 return false; 1006 case Intrinsic::amdgcn_readfirstlane: 1007 case Intrinsic::amdgcn_readlane: 1008 case Intrinsic::amdgcn_icmp: 1009 case Intrinsic::amdgcn_fcmp: 1010 case Intrinsic::amdgcn_ballot: 1011 case Intrinsic::amdgcn_if_break: 1012 return true; 1013 } 1014 } 1015 1016 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 1017 if (CI->isInlineAsm()) 1018 return !isInlineAsmSourceOfDivergence(CI); 1019 return false; 1020 } 1021 1022 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 1023 if (!ExtValue) 1024 return false; 1025 1026 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 1027 if (!CI) 1028 return false; 1029 1030 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 1031 switch (Intrinsic->getIntrinsicID()) { 1032 default: 1033 return false; 1034 case Intrinsic::amdgcn_if: 1035 case Intrinsic::amdgcn_else: { 1036 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 1037 return Indices.size() == 1 && Indices[0] == 1; 1038 } 1039 } 1040 } 1041 1042 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 1043 // divergent for the overall struct return. We need to override it in the 1044 // case we're extracting an SGPR component here. 1045 if (CI->isInlineAsm()) 1046 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 1047 1048 return false; 1049 } 1050 1051 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 1052 Intrinsic::ID IID) const { 1053 switch (IID) { 1054 case Intrinsic::amdgcn_atomic_inc: 1055 case Intrinsic::amdgcn_atomic_dec: 1056 case Intrinsic::amdgcn_ds_fadd: 1057 case Intrinsic::amdgcn_ds_fmin: 1058 case Intrinsic::amdgcn_ds_fmax: 1059 case Intrinsic::amdgcn_is_shared: 1060 case Intrinsic::amdgcn_is_private: 1061 OpIndexes.push_back(0); 1062 return true; 1063 default: 1064 return false; 1065 } 1066 } 1067 1068 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 1069 Value *OldV, 1070 Value *NewV) const { 1071 auto IntrID = II->getIntrinsicID(); 1072 switch (IntrID) { 1073 case Intrinsic::amdgcn_atomic_inc: 1074 case Intrinsic::amdgcn_atomic_dec: 1075 case Intrinsic::amdgcn_ds_fadd: 1076 case Intrinsic::amdgcn_ds_fmin: 1077 case Intrinsic::amdgcn_ds_fmax: { 1078 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 1079 if (!IsVolatile->isZero()) 1080 return nullptr; 1081 Module *M = II->getParent()->getParent()->getParent(); 1082 Type *DestTy = II->getType(); 1083 Type *SrcTy = NewV->getType(); 1084 Function *NewDecl = 1085 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 1086 II->setArgOperand(0, NewV); 1087 II->setCalledFunction(NewDecl); 1088 return II; 1089 } 1090 case Intrinsic::amdgcn_is_shared: 1091 case Intrinsic::amdgcn_is_private: { 1092 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 1093 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 1094 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1095 LLVMContext &Ctx = NewV->getType()->getContext(); 1096 ConstantInt *NewVal = (TrueAS == NewAS) ? 1097 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 1098 return NewVal; 1099 } 1100 case Intrinsic::ptrmask: { 1101 unsigned OldAS = OldV->getType()->getPointerAddressSpace(); 1102 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1103 Value *MaskOp = II->getArgOperand(1); 1104 Type *MaskTy = MaskOp->getType(); 1105 1106 bool DoTruncate = false; 1107 1108 const GCNTargetMachine &TM = 1109 static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine()); 1110 if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) { 1111 // All valid 64-bit to 32-bit casts work by chopping off the high 1112 // bits. Any masking only clearing the low bits will also apply in the new 1113 // address space. 1114 if (DL.getPointerSizeInBits(OldAS) != 64 || 1115 DL.getPointerSizeInBits(NewAS) != 32) 1116 return nullptr; 1117 1118 // TODO: Do we need to thread more context in here? 1119 KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II); 1120 if (Known.countMinLeadingOnes() < 32) 1121 return nullptr; 1122 1123 DoTruncate = true; 1124 } 1125 1126 IRBuilder<> B(II); 1127 if (DoTruncate) { 1128 MaskTy = B.getInt32Ty(); 1129 MaskOp = B.CreateTrunc(MaskOp, MaskTy); 1130 } 1131 1132 return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy}, 1133 {NewV, MaskOp}); 1134 } 1135 default: 1136 return nullptr; 1137 } 1138 } 1139 1140 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT, 1141 ArrayRef<int> Mask, int Index, 1142 VectorType *SubTp) { 1143 if (ST->hasVOP3PInsts()) { 1144 if (cast<FixedVectorType>(VT)->getNumElements() == 2 && 1145 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 1146 // With op_sel VOP3P instructions freely can access the low half or high 1147 // half of a register, so any swizzle is free. 1148 1149 switch (Kind) { 1150 case TTI::SK_Broadcast: 1151 case TTI::SK_Reverse: 1152 case TTI::SK_PermuteSingleSrc: 1153 return 0; 1154 default: 1155 break; 1156 } 1157 } 1158 } 1159 1160 return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp); 1161 } 1162 1163 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 1164 const Function *Callee) const { 1165 const TargetMachine &TM = getTLI()->getTargetMachine(); 1166 const GCNSubtarget *CallerST 1167 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 1168 const GCNSubtarget *CalleeST 1169 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 1170 1171 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 1172 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 1173 1174 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 1175 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 1176 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 1177 return false; 1178 1179 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 1180 // no way to support merge for backend defined attributes. 1181 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); 1182 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); 1183 if (!CallerMode.isInlineCompatible(CalleeMode)) 1184 return false; 1185 1186 if (Callee->hasFnAttribute(Attribute::AlwaysInline) || 1187 Callee->hasFnAttribute(Attribute::InlineHint)) 1188 return true; 1189 1190 // Hack to make compile times reasonable. 1191 if (InlineMaxBB) { 1192 // Single BB does not increase total BB amount. 1193 if (Callee->size() == 1) 1194 return true; 1195 size_t BBSize = Caller->size() + Callee->size() - 1; 1196 return BBSize <= InlineMaxBB; 1197 } 1198 1199 return true; 1200 } 1201 1202 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const { 1203 // If we have a pointer to private array passed into a function 1204 // it will not be optimized out, leaving scratch usage. 1205 // Increase the inline threshold to allow inlining in this case. 1206 uint64_t AllocaSize = 0; 1207 SmallPtrSet<const AllocaInst *, 8> AIVisited; 1208 for (Value *PtrArg : CB->args()) { 1209 PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType()); 1210 if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS && 1211 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS)) 1212 continue; 1213 1214 PtrArg = getUnderlyingObject(PtrArg); 1215 if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) { 1216 if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second) 1217 continue; 1218 AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType()); 1219 // If the amount of stack memory is excessive we will not be able 1220 // to get rid of the scratch anyway, bail out. 1221 if (AllocaSize > ArgAllocaCutoff) { 1222 AllocaSize = 0; 1223 break; 1224 } 1225 } 1226 } 1227 if (AllocaSize) 1228 return ArgAllocaCost; 1229 return 0; 1230 } 1231 1232 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1233 TTI::UnrollingPreferences &UP) { 1234 CommonTTI.getUnrollingPreferences(L, SE, UP); 1235 } 1236 1237 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1238 TTI::PeelingPreferences &PP) { 1239 CommonTTI.getPeelingPreferences(L, SE, PP); 1240 } 1241 1242 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const { 1243 return ST->hasFullRate64Ops() 1244 ? getFullRateInstrCost() 1245 : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind) 1246 : getQuarterRateInstrCost(CostKind); 1247 } 1248 1249 R600TTIImpl::R600TTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 1250 : BaseT(TM, F.getParent()->getDataLayout()), 1251 ST(static_cast<const R600Subtarget *>(TM->getSubtargetImpl(F))), 1252 TLI(ST->getTargetLowering()), CommonTTI(TM, F) {} 1253 1254 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 1255 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 1256 } 1257 1258 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 1259 return getHardwareNumberOfRegisters(Vec); 1260 } 1261 1262 TypeSize 1263 R600TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 1264 return TypeSize::getFixed(32); 1265 } 1266 1267 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 1268 return 32; 1269 } 1270 1271 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 1272 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 1273 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 1274 return 128; 1275 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1276 AddrSpace == AMDGPUAS::REGION_ADDRESS) 1277 return 64; 1278 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 1279 return 32; 1280 1281 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 1282 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 1283 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 1284 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 1285 return 128; 1286 llvm_unreachable("unhandled address space"); 1287 } 1288 1289 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 1290 Align Alignment, 1291 unsigned AddrSpace) const { 1292 // We allow vectorization of flat stores, even though we may need to decompose 1293 // them later if they may access private memory. We don't have enough context 1294 // here, and legalization can handle it. 1295 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 1296 } 1297 1298 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 1299 Align Alignment, 1300 unsigned AddrSpace) const { 1301 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1302 } 1303 1304 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 1305 Align Alignment, 1306 unsigned AddrSpace) const { 1307 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1308 } 1309 1310 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1311 // Disable unrolling if the loop is not vectorized. 1312 // TODO: Enable this again. 1313 if (VF == 1) 1314 return 1; 1315 1316 return 8; 1317 } 1318 1319 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode, 1320 TTI::TargetCostKind CostKind, 1321 const Instruction *I) { 1322 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 1323 return Opcode == Instruction::PHI ? 0 : 1; 1324 1325 // XXX - For some reason this isn't called for switch. 1326 switch (Opcode) { 1327 case Instruction::Br: 1328 case Instruction::Ret: 1329 return 10; 1330 default: 1331 return BaseT::getCFInstrCost(Opcode, CostKind, I); 1332 } 1333 } 1334 1335 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 1336 unsigned Index) { 1337 switch (Opcode) { 1338 case Instruction::ExtractElement: 1339 case Instruction::InsertElement: { 1340 unsigned EltSize 1341 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 1342 if (EltSize < 32) { 1343 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1344 } 1345 1346 // Extracts are just reads of a subregister, so are free. Inserts are 1347 // considered free because we don't want to have any cost for scalarizing 1348 // operations, and we don't have to copy into a different register class. 1349 1350 // Dynamic indexing isn't free and is best avoided. 1351 return Index == ~0u ? 2 : 0; 1352 } 1353 default: 1354 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1355 } 1356 } 1357 1358 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1359 TTI::UnrollingPreferences &UP) { 1360 CommonTTI.getUnrollingPreferences(L, SE, UP); 1361 } 1362 1363 void R600TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1364 TTI::PeelingPreferences &PP) { 1365 CommonTTI.getPeelingPreferences(L, SE, PP); 1366 } 1367