1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // \file 11 // This file implements a TargetTransformInfo analysis pass specific to the 12 // AMDGPU target machine. It uses the target's detailed information to provide 13 // more precise answers to certain TTI queries, while letting the target 14 // independent and default TTI implementations handle the rest. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "AMDGPUTargetTransformInfo.h" 19 #include "AMDGPUSubtarget.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/MachineValueType.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/MC/SubtargetFeature.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <limits> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "AMDGPUtti" 56 57 static cl::opt<unsigned> UnrollThresholdPrivate( 58 "amdgpu-unroll-threshold-private", 59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 60 cl::init(2500), cl::Hidden); 61 62 static cl::opt<unsigned> UnrollThresholdLocal( 63 "amdgpu-unroll-threshold-local", 64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 65 cl::init(1000), cl::Hidden); 66 67 static cl::opt<unsigned> UnrollThresholdIf( 68 "amdgpu-unroll-threshold-if", 69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 70 cl::init(150), cl::Hidden); 71 72 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 73 unsigned Depth = 0) { 74 const Instruction *I = dyn_cast<Instruction>(Cond); 75 if (!I) 76 return false; 77 78 for (const Value *V : I->operand_values()) { 79 if (!L->contains(I)) 80 continue; 81 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 82 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 83 return SubLoop->contains(PHI); })) 84 return true; 85 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 86 return true; 87 } 88 return false; 89 } 90 91 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 92 TTI::UnrollingPreferences &UP) { 93 UP.Threshold = 300; // Twice the default. 94 UP.MaxCount = std::numeric_limits<unsigned>::max(); 95 UP.Partial = true; 96 97 // TODO: Do we want runtime unrolling? 98 99 // Maximum alloca size than can fit registers. Reserve 16 registers. 100 const unsigned MaxAlloca = (256 - 16) * 4; 101 unsigned ThresholdPrivate = UnrollThresholdPrivate; 102 unsigned ThresholdLocal = UnrollThresholdLocal; 103 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 104 AMDGPUAS ASST = ST->getAMDGPUAS(); 105 for (const BasicBlock *BB : L->getBlocks()) { 106 const DataLayout &DL = BB->getModule()->getDataLayout(); 107 unsigned LocalGEPsSeen = 0; 108 109 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 110 return SubLoop->contains(BB); })) 111 continue; // Block belongs to an inner loop. 112 113 for (const Instruction &I : *BB) { 114 // Unroll a loop which contains an "if" statement whose condition 115 // defined by a PHI belonging to the loop. This may help to eliminate 116 // if region and potentially even PHI itself, saving on both divergence 117 // and registers used for the PHI. 118 // Add a small bonus for each of such "if" statements. 119 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 120 if (UP.Threshold < MaxBoost && Br->isConditional()) { 121 if (L->isLoopExiting(Br->getSuccessor(0)) || 122 L->isLoopExiting(Br->getSuccessor(1))) 123 continue; 124 if (dependsOnLocalPhi(L, Br->getCondition())) { 125 UP.Threshold += UnrollThresholdIf; 126 DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 127 << " for loop:\n" << *L << " due to " << *Br << '\n'); 128 if (UP.Threshold >= MaxBoost) 129 return; 130 } 131 } 132 continue; 133 } 134 135 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 136 if (!GEP) 137 continue; 138 139 unsigned AS = GEP->getAddressSpace(); 140 unsigned Threshold = 0; 141 if (AS == ASST.PRIVATE_ADDRESS) 142 Threshold = ThresholdPrivate; 143 else if (AS == ASST.LOCAL_ADDRESS) 144 Threshold = ThresholdLocal; 145 else 146 continue; 147 148 if (UP.Threshold >= Threshold) 149 continue; 150 151 if (AS == ASST.PRIVATE_ADDRESS) { 152 const Value *Ptr = GEP->getPointerOperand(); 153 const AllocaInst *Alloca = 154 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 155 if (!Alloca || !Alloca->isStaticAlloca()) 156 continue; 157 Type *Ty = Alloca->getAllocatedType(); 158 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 159 if (AllocaSize > MaxAlloca) 160 continue; 161 } else if (AS == ASST.LOCAL_ADDRESS) { 162 LocalGEPsSeen++; 163 // Inhibit unroll for local memory if we have seen addressing not to 164 // a variable, most likely we will be unable to combine it. 165 // Do not unroll too deep inner loops for local memory to give a chance 166 // to unroll an outer loop for a more important reason. 167 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 168 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 169 !isa<Argument>(GEP->getPointerOperand()))) 170 continue; 171 } 172 173 // Check if GEP depends on a value defined by this loop itself. 174 bool HasLoopDef = false; 175 for (const Value *Op : GEP->operands()) { 176 const Instruction *Inst = dyn_cast<Instruction>(Op); 177 if (!Inst || L->isLoopInvariant(Op)) 178 continue; 179 180 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 181 return SubLoop->contains(Inst); })) 182 continue; 183 HasLoopDef = true; 184 break; 185 } 186 if (!HasLoopDef) 187 continue; 188 189 // We want to do whatever we can to limit the number of alloca 190 // instructions that make it through to the code generator. allocas 191 // require us to use indirect addressing, which is slow and prone to 192 // compiler bugs. If this loop does an address calculation on an 193 // alloca ptr, then we want to use a higher than normal loop unroll 194 // threshold. This will give SROA a better chance to eliminate these 195 // allocas. 196 // 197 // We also want to have more unrolling for local memory to let ds 198 // instructions with different offsets combine. 199 // 200 // Don't use the maximum allowed value here as it will make some 201 // programs way too big. 202 UP.Threshold = Threshold; 203 DEBUG(dbgs() << "Set unroll threshold " << Threshold << " for loop:\n" 204 << *L << " due to " << *GEP << '\n'); 205 if (UP.Threshold >= MaxBoost) 206 return; 207 } 208 } 209 } 210 211 unsigned AMDGPUTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 212 // The concept of vector registers doesn't really exist. Some packed vector 213 // operations operate on the normal 32-bit registers. 214 215 // Number of VGPRs on SI. 216 if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) 217 return 256; 218 219 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 220 } 221 222 unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) const { 223 // This is really the number of registers to fill when vectorizing / 224 // interleaving loops, so we lie to avoid trying to use all registers. 225 return getHardwareNumberOfRegisters(Vec) >> 3; 226 } 227 228 unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) const { 229 return 32; 230 } 231 232 unsigned AMDGPUTTIImpl::getMinVectorRegisterBitWidth() const { 233 return 32; 234 } 235 236 unsigned AMDGPUTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 237 AMDGPUAS AS = ST->getAMDGPUAS(); 238 if (AddrSpace == AS.GLOBAL_ADDRESS || 239 AddrSpace == AS.CONSTANT_ADDRESS || 240 AddrSpace == AS.FLAT_ADDRESS) 241 return 128; 242 if (AddrSpace == AS.LOCAL_ADDRESS || 243 AddrSpace == AS.REGION_ADDRESS) 244 return 64; 245 if (AddrSpace == AS.PRIVATE_ADDRESS) 246 return 8 * ST->getMaxPrivateElementSize(); 247 248 if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS && 249 (AddrSpace == AS.PARAM_D_ADDRESS || 250 AddrSpace == AS.PARAM_I_ADDRESS || 251 (AddrSpace >= AS.CONSTANT_BUFFER_0 && 252 AddrSpace <= AS.CONSTANT_BUFFER_15))) 253 return 128; 254 llvm_unreachable("unhandled address space"); 255 } 256 257 bool AMDGPUTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 258 unsigned Alignment, 259 unsigned AddrSpace) const { 260 // We allow vectorization of flat stores, even though we may need to decompose 261 // them later if they may access private memory. We don't have enough context 262 // here, and legalization can handle it. 263 if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS) { 264 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 265 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 266 } 267 return true; 268 } 269 270 bool AMDGPUTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 271 unsigned Alignment, 272 unsigned AddrSpace) const { 273 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 274 } 275 276 bool AMDGPUTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 277 unsigned Alignment, 278 unsigned AddrSpace) const { 279 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 280 } 281 282 unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) { 283 // Disable unrolling if the loop is not vectorized. 284 // TODO: Enable this again. 285 if (VF == 1) 286 return 1; 287 288 return 8; 289 } 290 291 bool AMDGPUTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 292 MemIntrinsicInfo &Info) const { 293 switch (Inst->getIntrinsicID()) { 294 case Intrinsic::amdgcn_atomic_inc: 295 case Intrinsic::amdgcn_atomic_dec: 296 case Intrinsic::amdgcn_ds_fadd: 297 case Intrinsic::amdgcn_ds_fmin: 298 case Intrinsic::amdgcn_ds_fmax: { 299 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 300 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 301 if (!Ordering || !Volatile) 302 return false; // Invalid. 303 304 unsigned OrderingVal = Ordering->getZExtValue(); 305 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 306 return false; 307 308 Info.PtrVal = Inst->getArgOperand(0); 309 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 310 Info.ReadMem = true; 311 Info.WriteMem = true; 312 Info.IsVolatile = !Volatile->isNullValue(); 313 return true; 314 } 315 default: 316 return false; 317 } 318 } 319 320 int AMDGPUTTIImpl::getArithmeticInstrCost( 321 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, 322 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 323 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) { 324 EVT OrigTy = TLI->getValueType(DL, Ty); 325 if (!OrigTy.isSimple()) { 326 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 327 Opd1PropInfo, Opd2PropInfo); 328 } 329 330 // Legalize the type. 331 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 332 int ISD = TLI->InstructionOpcodeToISD(Opcode); 333 334 // Because we don't have any legal vector operations, but the legal types, we 335 // need to account for split vectors. 336 unsigned NElts = LT.second.isVector() ? 337 LT.second.getVectorNumElements() : 1; 338 339 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 340 341 switch (ISD) { 342 case ISD::SHL: 343 case ISD::SRL: 344 case ISD::SRA: 345 if (SLT == MVT::i64) 346 return get64BitInstrCost() * LT.first * NElts; 347 348 // i32 349 return getFullRateInstrCost() * LT.first * NElts; 350 case ISD::ADD: 351 case ISD::SUB: 352 case ISD::AND: 353 case ISD::OR: 354 case ISD::XOR: 355 if (SLT == MVT::i64){ 356 // and, or and xor are typically split into 2 VALU instructions. 357 return 2 * getFullRateInstrCost() * LT.first * NElts; 358 } 359 360 return LT.first * NElts * getFullRateInstrCost(); 361 case ISD::MUL: { 362 const int QuarterRateCost = getQuarterRateInstrCost(); 363 if (SLT == MVT::i64) { 364 const int FullRateCost = getFullRateInstrCost(); 365 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 366 } 367 368 // i32 369 return QuarterRateCost * NElts * LT.first; 370 } 371 case ISD::FADD: 372 case ISD::FSUB: 373 case ISD::FMUL: 374 if (SLT == MVT::f64) 375 return LT.first * NElts * get64BitInstrCost(); 376 377 if (SLT == MVT::f32 || SLT == MVT::f16) 378 return LT.first * NElts * getFullRateInstrCost(); 379 break; 380 case ISD::FDIV: 381 case ISD::FREM: 382 // FIXME: frem should be handled separately. The fdiv in it is most of it, 383 // but the current lowering is also not entirely correct. 384 if (SLT == MVT::f64) { 385 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 386 // Add cost of workaround. 387 if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) 388 Cost += 3 * getFullRateInstrCost(); 389 390 return LT.first * Cost * NElts; 391 } 392 393 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 394 // TODO: This is more complicated, unsafe flags etc. 395 if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) || 396 (SLT == MVT::f16 && ST->has16BitInsts())) { 397 return LT.first * getQuarterRateInstrCost() * NElts; 398 } 399 } 400 401 if (SLT == MVT::f16 && ST->has16BitInsts()) { 402 // 2 x v_cvt_f32_f16 403 // f32 rcp 404 // f32 fmul 405 // v_cvt_f16_f32 406 // f16 div_fixup 407 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 408 return LT.first * Cost * NElts; 409 } 410 411 if (SLT == MVT::f32 || SLT == MVT::f16) { 412 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 413 414 if (!ST->hasFP32Denormals()) { 415 // FP mode switches. 416 Cost += 2 * getFullRateInstrCost(); 417 } 418 419 return LT.first * NElts * Cost; 420 } 421 break; 422 default: 423 break; 424 } 425 426 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 427 Opd1PropInfo, Opd2PropInfo); 428 } 429 430 unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) { 431 // XXX - For some reason this isn't called for switch. 432 switch (Opcode) { 433 case Instruction::Br: 434 case Instruction::Ret: 435 return 10; 436 default: 437 return BaseT::getCFInstrCost(Opcode); 438 } 439 } 440 441 int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 442 unsigned Index) { 443 switch (Opcode) { 444 case Instruction::ExtractElement: 445 case Instruction::InsertElement: { 446 unsigned EltSize 447 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 448 if (EltSize < 32) { 449 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 450 return 0; 451 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 452 } 453 454 // Extracts are just reads of a subregister, so are free. Inserts are 455 // considered free because we don't want to have any cost for scalarizing 456 // operations, and we don't have to copy into a different register class. 457 458 // Dynamic indexing isn't free and is best avoided. 459 return Index == ~0u ? 2 : 0; 460 } 461 default: 462 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 463 } 464 } 465 466 static bool isIntrinsicSourceOfDivergence(const IntrinsicInst *I) { 467 switch (I->getIntrinsicID()) { 468 case Intrinsic::amdgcn_workitem_id_x: 469 case Intrinsic::amdgcn_workitem_id_y: 470 case Intrinsic::amdgcn_workitem_id_z: 471 case Intrinsic::amdgcn_interp_mov: 472 case Intrinsic::amdgcn_interp_p1: 473 case Intrinsic::amdgcn_interp_p2: 474 case Intrinsic::amdgcn_mbcnt_hi: 475 case Intrinsic::amdgcn_mbcnt_lo: 476 case Intrinsic::r600_read_tidig_x: 477 case Intrinsic::r600_read_tidig_y: 478 case Intrinsic::r600_read_tidig_z: 479 case Intrinsic::amdgcn_atomic_inc: 480 case Intrinsic::amdgcn_atomic_dec: 481 case Intrinsic::amdgcn_ds_fadd: 482 case Intrinsic::amdgcn_ds_fmin: 483 case Intrinsic::amdgcn_ds_fmax: 484 case Intrinsic::amdgcn_image_atomic_swap: 485 case Intrinsic::amdgcn_image_atomic_add: 486 case Intrinsic::amdgcn_image_atomic_sub: 487 case Intrinsic::amdgcn_image_atomic_smin: 488 case Intrinsic::amdgcn_image_atomic_umin: 489 case Intrinsic::amdgcn_image_atomic_smax: 490 case Intrinsic::amdgcn_image_atomic_umax: 491 case Intrinsic::amdgcn_image_atomic_and: 492 case Intrinsic::amdgcn_image_atomic_or: 493 case Intrinsic::amdgcn_image_atomic_xor: 494 case Intrinsic::amdgcn_image_atomic_inc: 495 case Intrinsic::amdgcn_image_atomic_dec: 496 case Intrinsic::amdgcn_image_atomic_cmpswap: 497 case Intrinsic::amdgcn_buffer_atomic_swap: 498 case Intrinsic::amdgcn_buffer_atomic_add: 499 case Intrinsic::amdgcn_buffer_atomic_sub: 500 case Intrinsic::amdgcn_buffer_atomic_smin: 501 case Intrinsic::amdgcn_buffer_atomic_umin: 502 case Intrinsic::amdgcn_buffer_atomic_smax: 503 case Intrinsic::amdgcn_buffer_atomic_umax: 504 case Intrinsic::amdgcn_buffer_atomic_and: 505 case Intrinsic::amdgcn_buffer_atomic_or: 506 case Intrinsic::amdgcn_buffer_atomic_xor: 507 case Intrinsic::amdgcn_buffer_atomic_cmpswap: 508 case Intrinsic::amdgcn_ps_live: 509 case Intrinsic::amdgcn_ds_swizzle: 510 return true; 511 default: 512 return false; 513 } 514 } 515 516 static bool isArgPassedInSGPR(const Argument *A) { 517 const Function *F = A->getParent(); 518 519 // Arguments to compute shaders are never a source of divergence. 520 CallingConv::ID CC = F->getCallingConv(); 521 switch (CC) { 522 case CallingConv::AMDGPU_KERNEL: 523 case CallingConv::SPIR_KERNEL: 524 return true; 525 case CallingConv::AMDGPU_VS: 526 case CallingConv::AMDGPU_LS: 527 case CallingConv::AMDGPU_HS: 528 case CallingConv::AMDGPU_ES: 529 case CallingConv::AMDGPU_GS: 530 case CallingConv::AMDGPU_PS: 531 case CallingConv::AMDGPU_CS: 532 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 533 // Everything else is in VGPRs. 534 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 535 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 536 default: 537 // TODO: Should calls support inreg for SGPR inputs? 538 return false; 539 } 540 } 541 542 /// \returns true if the result of the value could potentially be 543 /// different across workitems in a wavefront. 544 bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const { 545 if (const Argument *A = dyn_cast<Argument>(V)) 546 return !isArgPassedInSGPR(A); 547 548 // Loads from the private address space are divergent, because threads 549 // can execute the load instruction with the same inputs and get different 550 // results. 551 // 552 // All other loads are not divergent, because if threads issue loads with the 553 // same arguments, they will always get the same result. 554 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 555 return Load->getPointerAddressSpace() == ST->getAMDGPUAS().PRIVATE_ADDRESS; 556 557 // Atomics are divergent because they are executed sequentially: when an 558 // atomic operation refers to the same address in each thread, then each 559 // thread after the first sees the value written by the previous thread as 560 // original value. 561 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 562 return true; 563 564 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 565 return isIntrinsicSourceOfDivergence(Intrinsic); 566 567 // Assume all function calls are a source of divergence. 568 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 569 return true; 570 571 return false; 572 } 573 574 bool AMDGPUTTIImpl::isAlwaysUniform(const Value *V) const { 575 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 576 switch (Intrinsic->getIntrinsicID()) { 577 default: 578 return false; 579 case Intrinsic::amdgcn_readfirstlane: 580 case Intrinsic::amdgcn_readlane: 581 return true; 582 } 583 } 584 return false; 585 } 586 587 unsigned AMDGPUTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 588 Type *SubTp) { 589 if (ST->hasVOP3PInsts()) { 590 VectorType *VT = cast<VectorType>(Tp); 591 if (VT->getNumElements() == 2 && 592 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 593 // With op_sel VOP3P instructions freely can access the low half or high 594 // half of a register, so any swizzle is free. 595 596 switch (Kind) { 597 case TTI::SK_Broadcast: 598 case TTI::SK_Reverse: 599 case TTI::SK_PermuteSingleSrc: 600 return 0; 601 default: 602 break; 603 } 604 } 605 } 606 607 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 608 } 609 610 bool AMDGPUTTIImpl::areInlineCompatible(const Function *Caller, 611 const Function *Callee) const { 612 const TargetMachine &TM = getTLI()->getTargetMachine(); 613 const FeatureBitset &CallerBits = 614 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 615 const FeatureBitset &CalleeBits = 616 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 617 618 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 619 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 620 return ((RealCallerBits & RealCalleeBits) == RealCalleeBits); 621 } 622