1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUSubtarget.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <limits> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "AMDGPUtti" 56 57 static cl::opt<unsigned> UnrollThresholdPrivate( 58 "amdgpu-unroll-threshold-private", 59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 60 cl::init(2700), cl::Hidden); 61 62 static cl::opt<unsigned> UnrollThresholdLocal( 63 "amdgpu-unroll-threshold-local", 64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 65 cl::init(1000), cl::Hidden); 66 67 static cl::opt<unsigned> UnrollThresholdIf( 68 "amdgpu-unroll-threshold-if", 69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 70 cl::init(150), cl::Hidden); 71 72 static cl::opt<bool> UnrollRuntimeLocal( 73 "amdgpu-unroll-runtime-local", 74 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<bool> UseLegacyDA( 78 "amdgpu-use-legacy-divergence-analysis", 79 cl::desc("Enable legacy divergence analysis for AMDGPU"), 80 cl::init(false), cl::Hidden); 81 82 static cl::opt<unsigned> UnrollMaxBlockToAnalyze( 83 "amdgpu-unroll-max-block-to-analyze", 84 cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"), 85 cl::init(20), cl::Hidden); 86 87 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 88 unsigned Depth = 0) { 89 const Instruction *I = dyn_cast<Instruction>(Cond); 90 if (!I) 91 return false; 92 93 for (const Value *V : I->operand_values()) { 94 if (!L->contains(I)) 95 continue; 96 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 97 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 98 return SubLoop->contains(PHI); })) 99 return true; 100 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 101 return true; 102 } 103 return false; 104 } 105 106 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 107 TTI::UnrollingPreferences &UP) { 108 const Function &F = *L->getHeader()->getParent(); 109 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 110 UP.MaxCount = std::numeric_limits<unsigned>::max(); 111 UP.Partial = true; 112 113 // TODO: Do we want runtime unrolling? 114 115 // Maximum alloca size than can fit registers. Reserve 16 registers. 116 const unsigned MaxAlloca = (256 - 16) * 4; 117 unsigned ThresholdPrivate = UnrollThresholdPrivate; 118 unsigned ThresholdLocal = UnrollThresholdLocal; 119 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 120 for (const BasicBlock *BB : L->getBlocks()) { 121 const DataLayout &DL = BB->getModule()->getDataLayout(); 122 unsigned LocalGEPsSeen = 0; 123 124 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 125 return SubLoop->contains(BB); })) 126 continue; // Block belongs to an inner loop. 127 128 for (const Instruction &I : *BB) { 129 // Unroll a loop which contains an "if" statement whose condition 130 // defined by a PHI belonging to the loop. This may help to eliminate 131 // if region and potentially even PHI itself, saving on both divergence 132 // and registers used for the PHI. 133 // Add a small bonus for each of such "if" statements. 134 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 135 if (UP.Threshold < MaxBoost && Br->isConditional()) { 136 BasicBlock *Succ0 = Br->getSuccessor(0); 137 BasicBlock *Succ1 = Br->getSuccessor(1); 138 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 139 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 140 continue; 141 if (dependsOnLocalPhi(L, Br->getCondition())) { 142 UP.Threshold += UnrollThresholdIf; 143 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 144 << " for loop:\n" 145 << *L << " due to " << *Br << '\n'); 146 if (UP.Threshold >= MaxBoost) 147 return; 148 } 149 } 150 continue; 151 } 152 153 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 154 if (!GEP) 155 continue; 156 157 unsigned AS = GEP->getAddressSpace(); 158 unsigned Threshold = 0; 159 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 160 Threshold = ThresholdPrivate; 161 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 162 Threshold = ThresholdLocal; 163 else 164 continue; 165 166 if (UP.Threshold >= Threshold) 167 continue; 168 169 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 170 const Value *Ptr = GEP->getPointerOperand(); 171 const AllocaInst *Alloca = 172 dyn_cast<AllocaInst>(getUnderlyingObject(Ptr)); 173 if (!Alloca || !Alloca->isStaticAlloca()) 174 continue; 175 Type *Ty = Alloca->getAllocatedType(); 176 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 177 if (AllocaSize > MaxAlloca) 178 continue; 179 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 180 AS == AMDGPUAS::REGION_ADDRESS) { 181 LocalGEPsSeen++; 182 // Inhibit unroll for local memory if we have seen addressing not to 183 // a variable, most likely we will be unable to combine it. 184 // Do not unroll too deep inner loops for local memory to give a chance 185 // to unroll an outer loop for a more important reason. 186 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 187 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 188 !isa<Argument>(GEP->getPointerOperand()))) 189 continue; 190 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 191 << *L << " due to LDS use.\n"); 192 UP.Runtime = UnrollRuntimeLocal; 193 } 194 195 // Check if GEP depends on a value defined by this loop itself. 196 bool HasLoopDef = false; 197 for (const Value *Op : GEP->operands()) { 198 const Instruction *Inst = dyn_cast<Instruction>(Op); 199 if (!Inst || L->isLoopInvariant(Op)) 200 continue; 201 202 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 203 return SubLoop->contains(Inst); })) 204 continue; 205 HasLoopDef = true; 206 break; 207 } 208 if (!HasLoopDef) 209 continue; 210 211 // We want to do whatever we can to limit the number of alloca 212 // instructions that make it through to the code generator. allocas 213 // require us to use indirect addressing, which is slow and prone to 214 // compiler bugs. If this loop does an address calculation on an 215 // alloca ptr, then we want to use a higher than normal loop unroll 216 // threshold. This will give SROA a better chance to eliminate these 217 // allocas. 218 // 219 // We also want to have more unrolling for local memory to let ds 220 // instructions with different offsets combine. 221 // 222 // Don't use the maximum allowed value here as it will make some 223 // programs way too big. 224 UP.Threshold = Threshold; 225 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 226 << " for loop:\n" 227 << *L << " due to " << *GEP << '\n'); 228 if (UP.Threshold >= MaxBoost) 229 return; 230 } 231 232 // If we got a GEP in a small BB from inner loop then increase max trip 233 // count to analyze for better estimation cost in unroll 234 if (L->empty() && BB->size() < UnrollMaxBlockToAnalyze) 235 UP.MaxIterationsCountToAnalyze = 32; 236 } 237 } 238 239 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 240 TTI::PeelingPreferences &PP) { 241 BaseT::getPeelingPreferences(L, SE, PP); 242 } 243 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 244 // The concept of vector registers doesn't really exist. Some packed vector 245 // operations operate on the normal 32-bit registers. 246 return MaxVGPRs; 247 } 248 249 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 250 // This is really the number of registers to fill when vectorizing / 251 // interleaving loops, so we lie to avoid trying to use all registers. 252 return getHardwareNumberOfRegisters(Vec) >> 3; 253 } 254 255 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const { 256 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 257 const TargetRegisterClass *RC = TRI->getRegClass(RCID); 258 unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32; 259 return getHardwareNumberOfRegisters(false) / NumVGPRs; 260 } 261 262 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { 263 return 32; 264 } 265 266 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 267 return 32; 268 } 269 270 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 271 unsigned ChainSizeInBytes, 272 VectorType *VecTy) const { 273 unsigned VecRegBitWidth = VF * LoadSize; 274 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 275 // TODO: Support element-size less than 32bit? 276 return 128 / LoadSize; 277 278 return VF; 279 } 280 281 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 282 unsigned ChainSizeInBytes, 283 VectorType *VecTy) const { 284 unsigned VecRegBitWidth = VF * StoreSize; 285 if (VecRegBitWidth > 128) 286 return 128 / StoreSize; 287 288 return VF; 289 } 290 291 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 292 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 293 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 294 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 295 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 296 return 512; 297 } 298 299 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 300 return 8 * ST->getMaxPrivateElementSize(); 301 302 // Common to flat, global, local and region. Assume for unknown addrspace. 303 return 128; 304 } 305 306 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 307 Align Alignment, 308 unsigned AddrSpace) const { 309 // We allow vectorization of flat stores, even though we may need to decompose 310 // them later if they may access private memory. We don't have enough context 311 // here, and legalization can handle it. 312 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 313 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 314 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 315 } 316 return true; 317 } 318 319 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 320 Align Alignment, 321 unsigned AddrSpace) const { 322 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 323 } 324 325 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 326 Align Alignment, 327 unsigned AddrSpace) const { 328 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 329 } 330 331 // FIXME: Really we would like to issue multiple 128-bit loads and stores per 332 // iteration. Should we report a larger size and let it legalize? 333 // 334 // FIXME: Should we use narrower types for local/region, or account for when 335 // unaligned access is legal? 336 // 337 // FIXME: This could use fine tuning and microbenchmarks. 338 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, 339 unsigned SrcAddrSpace, 340 unsigned DestAddrSpace, 341 unsigned SrcAlign, 342 unsigned DestAlign) const { 343 unsigned MinAlign = std::min(SrcAlign, DestAlign); 344 345 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 346 // hardware into byte accesses. If you assume all alignments are equally 347 // probable, it's more efficient on average to use short accesses for this 348 // case. 349 if (MinAlign == 2) 350 return Type::getInt16Ty(Context); 351 352 // Not all subtargets have 128-bit DS instructions, and we currently don't 353 // form them by default. 354 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 355 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 356 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 357 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 358 return FixedVectorType::get(Type::getInt32Ty(Context), 2); 359 } 360 361 // Global memory works best with 16-byte accesses. Private memory will also 362 // hit this, although they'll be decomposed. 363 return FixedVectorType::get(Type::getInt32Ty(Context), 4); 364 } 365 366 void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 367 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 368 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 369 unsigned SrcAlign, unsigned DestAlign) const { 370 assert(RemainingBytes < 16); 371 372 unsigned MinAlign = std::min(SrcAlign, DestAlign); 373 374 if (MinAlign != 2) { 375 Type *I64Ty = Type::getInt64Ty(Context); 376 while (RemainingBytes >= 8) { 377 OpsOut.push_back(I64Ty); 378 RemainingBytes -= 8; 379 } 380 381 Type *I32Ty = Type::getInt32Ty(Context); 382 while (RemainingBytes >= 4) { 383 OpsOut.push_back(I32Ty); 384 RemainingBytes -= 4; 385 } 386 } 387 388 Type *I16Ty = Type::getInt16Ty(Context); 389 while (RemainingBytes >= 2) { 390 OpsOut.push_back(I16Ty); 391 RemainingBytes -= 2; 392 } 393 394 Type *I8Ty = Type::getInt8Ty(Context); 395 while (RemainingBytes) { 396 OpsOut.push_back(I8Ty); 397 --RemainingBytes; 398 } 399 } 400 401 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 402 // Disable unrolling if the loop is not vectorized. 403 // TODO: Enable this again. 404 if (VF == 1) 405 return 1; 406 407 return 8; 408 } 409 410 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 411 MemIntrinsicInfo &Info) const { 412 switch (Inst->getIntrinsicID()) { 413 case Intrinsic::amdgcn_atomic_inc: 414 case Intrinsic::amdgcn_atomic_dec: 415 case Intrinsic::amdgcn_ds_ordered_add: 416 case Intrinsic::amdgcn_ds_ordered_swap: 417 case Intrinsic::amdgcn_ds_fadd: 418 case Intrinsic::amdgcn_ds_fmin: 419 case Intrinsic::amdgcn_ds_fmax: { 420 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 421 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 422 if (!Ordering || !Volatile) 423 return false; // Invalid. 424 425 unsigned OrderingVal = Ordering->getZExtValue(); 426 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 427 return false; 428 429 Info.PtrVal = Inst->getArgOperand(0); 430 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 431 Info.ReadMem = true; 432 Info.WriteMem = true; 433 Info.IsVolatile = !Volatile->isNullValue(); 434 return true; 435 } 436 default: 437 return false; 438 } 439 } 440 441 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 442 TTI::TargetCostKind CostKind, 443 TTI::OperandValueKind Opd1Info, 444 TTI::OperandValueKind Opd2Info, 445 TTI::OperandValueProperties Opd1PropInfo, 446 TTI::OperandValueProperties Opd2PropInfo, 447 ArrayRef<const Value *> Args, 448 const Instruction *CxtI) { 449 EVT OrigTy = TLI->getValueType(DL, Ty); 450 if (!OrigTy.isSimple()) { 451 // FIXME: We're having to query the throughput cost so that the basic 452 // implementation tries to generate legalize and scalarization costs. Maybe 453 // we could hoist the scalarization code here? 454 return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput, 455 Opd1Info, Opd2Info, Opd1PropInfo, 456 Opd2PropInfo, Args, CxtI); 457 } 458 459 // Legalize the type. 460 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 461 int ISD = TLI->InstructionOpcodeToISD(Opcode); 462 463 // Because we don't have any legal vector operations, but the legal types, we 464 // need to account for split vectors. 465 unsigned NElts = LT.second.isVector() ? 466 LT.second.getVectorNumElements() : 1; 467 468 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 469 470 switch (ISD) { 471 case ISD::SHL: 472 case ISD::SRL: 473 case ISD::SRA: 474 if (SLT == MVT::i64) 475 return get64BitInstrCost() * LT.first * NElts; 476 477 if (ST->has16BitInsts() && SLT == MVT::i16) 478 NElts = (NElts + 1) / 2; 479 480 // i32 481 return getFullRateInstrCost() * LT.first * NElts; 482 case ISD::ADD: 483 case ISD::SUB: 484 case ISD::AND: 485 case ISD::OR: 486 case ISD::XOR: 487 if (SLT == MVT::i64) { 488 // and, or and xor are typically split into 2 VALU instructions. 489 return 2 * getFullRateInstrCost() * LT.first * NElts; 490 } 491 492 if (ST->has16BitInsts() && SLT == MVT::i16) 493 NElts = (NElts + 1) / 2; 494 495 return LT.first * NElts * getFullRateInstrCost(); 496 case ISD::MUL: { 497 const int QuarterRateCost = getQuarterRateInstrCost(); 498 if (SLT == MVT::i64) { 499 const int FullRateCost = getFullRateInstrCost(); 500 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 501 } 502 503 if (ST->has16BitInsts() && SLT == MVT::i16) 504 NElts = (NElts + 1) / 2; 505 506 // i32 507 return QuarterRateCost * NElts * LT.first; 508 } 509 case ISD::FMUL: 510 // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for 511 // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole 512 // fused operation. 513 if (CxtI && CxtI->hasOneUse()) 514 if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) { 515 const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode()); 516 if (OPC == ISD::FADD || OPC == ISD::FSUB) { 517 if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals) 518 return TargetTransformInfo::TCC_Free; 519 if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals) 520 return TargetTransformInfo::TCC_Free; 521 522 // Estimate all types may be fused with contract/unsafe flags 523 const TargetOptions &Options = TLI->getTargetMachine().Options; 524 if (Options.AllowFPOpFusion == FPOpFusion::Fast || 525 Options.UnsafeFPMath || 526 (FAdd->hasAllowContract() && CxtI->hasAllowContract())) 527 return TargetTransformInfo::TCC_Free; 528 } 529 } 530 LLVM_FALLTHROUGH; 531 case ISD::FADD: 532 case ISD::FSUB: 533 if (SLT == MVT::f64) 534 return LT.first * NElts * get64BitInstrCost(); 535 536 if (ST->has16BitInsts() && SLT == MVT::f16) 537 NElts = (NElts + 1) / 2; 538 539 if (SLT == MVT::f32 || SLT == MVT::f16) 540 return LT.first * NElts * getFullRateInstrCost(); 541 break; 542 case ISD::FDIV: 543 case ISD::FREM: 544 // FIXME: frem should be handled separately. The fdiv in it is most of it, 545 // but the current lowering is also not entirely correct. 546 if (SLT == MVT::f64) { 547 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 548 // Add cost of workaround. 549 if (!ST->hasUsableDivScaleConditionOutput()) 550 Cost += 3 * getFullRateInstrCost(); 551 552 return LT.first * Cost * NElts; 553 } 554 555 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 556 // TODO: This is more complicated, unsafe flags etc. 557 if ((SLT == MVT::f32 && !HasFP32Denormals) || 558 (SLT == MVT::f16 && ST->has16BitInsts())) { 559 return LT.first * getQuarterRateInstrCost() * NElts; 560 } 561 } 562 563 if (SLT == MVT::f16 && ST->has16BitInsts()) { 564 // 2 x v_cvt_f32_f16 565 // f32 rcp 566 // f32 fmul 567 // v_cvt_f16_f32 568 // f16 div_fixup 569 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 570 return LT.first * Cost * NElts; 571 } 572 573 if (SLT == MVT::f32 || SLT == MVT::f16) { 574 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 575 576 if (!HasFP32Denormals) { 577 // FP mode switches. 578 Cost += 2 * getFullRateInstrCost(); 579 } 580 581 return LT.first * NElts * Cost; 582 } 583 break; 584 case ISD::FNEG: 585 // Use the backend' estimation. If fneg is not free each element will cost 586 // one additional instruction. 587 return TLI->isFNegFree(SLT) ? 0 : NElts; 588 default: 589 break; 590 } 591 592 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info, 593 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 594 } 595 596 // Return true if there's a potential benefit from using v2f16/v2i16 597 // instructions for an intrinsic, even if it requires nontrivial legalization. 598 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 599 switch (ID) { 600 case Intrinsic::fma: // TODO: fmuladd 601 // There's a small benefit to using vector ops in the legalized code. 602 case Intrinsic::round: 603 case Intrinsic::uadd_sat: 604 case Intrinsic::usub_sat: 605 case Intrinsic::sadd_sat: 606 case Intrinsic::ssub_sat: 607 return true; 608 default: 609 return false; 610 } 611 } 612 613 int GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 614 TTI::TargetCostKind CostKind) { 615 if (ICA.getID() == Intrinsic::fabs) 616 return 0; 617 618 if (!intrinsicHasPackedVectorBenefit(ICA.getID())) 619 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 620 621 Type *RetTy = ICA.getReturnType(); 622 EVT OrigTy = TLI->getValueType(DL, RetTy); 623 if (!OrigTy.isSimple()) { 624 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 625 } 626 627 // Legalize the type. 628 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 629 630 unsigned NElts = LT.second.isVector() ? 631 LT.second.getVectorNumElements() : 1; 632 633 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 634 635 if (SLT == MVT::f64) 636 return LT.first * NElts * get64BitInstrCost(); 637 638 if (ST->has16BitInsts() && SLT == MVT::f16) 639 NElts = (NElts + 1) / 2; 640 641 // TODO: Get more refined intrinsic costs? 642 unsigned InstRate = getQuarterRateInstrCost(); 643 if (ICA.getID() == Intrinsic::fma) { 644 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost() 645 : getQuarterRateInstrCost(); 646 } 647 648 return LT.first * NElts * InstRate; 649 } 650 651 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode, 652 TTI::TargetCostKind CostKind) { 653 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 654 return Opcode == Instruction::PHI ? 0 : 1; 655 656 // XXX - For some reason this isn't called for switch. 657 switch (Opcode) { 658 case Instruction::Br: 659 case Instruction::Ret: 660 return 10; 661 default: 662 return BaseT::getCFInstrCost(Opcode, CostKind); 663 } 664 } 665 666 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 667 bool IsPairwise, 668 TTI::TargetCostKind CostKind) { 669 EVT OrigTy = TLI->getValueType(DL, Ty); 670 671 // Computes cost on targets that have packed math instructions(which support 672 // 16-bit types only). 673 if (IsPairwise || 674 !ST->hasVOP3PInsts() || 675 OrigTy.getScalarSizeInBits() != 16) 676 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind); 677 678 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 679 return LT.first * getFullRateInstrCost(); 680 } 681 682 int GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 683 bool IsPairwise, bool IsUnsigned, 684 TTI::TargetCostKind CostKind) { 685 EVT OrigTy = TLI->getValueType(DL, Ty); 686 687 // Computes cost on targets that have packed math instructions(which support 688 // 16-bit types only). 689 if (IsPairwise || 690 !ST->hasVOP3PInsts() || 691 OrigTy.getScalarSizeInBits() != 16) 692 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned, 693 CostKind); 694 695 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 696 return LT.first * getHalfRateInstrCost(); 697 } 698 699 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 700 unsigned Index) { 701 switch (Opcode) { 702 case Instruction::ExtractElement: 703 case Instruction::InsertElement: { 704 unsigned EltSize 705 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 706 if (EltSize < 32) { 707 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 708 return 0; 709 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 710 } 711 712 // Extracts are just reads of a subregister, so are free. Inserts are 713 // considered free because we don't want to have any cost for scalarizing 714 // operations, and we don't have to copy into a different register class. 715 716 // Dynamic indexing isn't free and is best avoided. 717 return Index == ~0u ? 2 : 0; 718 } 719 default: 720 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 721 } 722 } 723 724 static bool isArgPassedInSGPR(const Argument *A) { 725 const Function *F = A->getParent(); 726 727 // Arguments to compute shaders are never a source of divergence. 728 CallingConv::ID CC = F->getCallingConv(); 729 switch (CC) { 730 case CallingConv::AMDGPU_KERNEL: 731 case CallingConv::SPIR_KERNEL: 732 return true; 733 case CallingConv::AMDGPU_VS: 734 case CallingConv::AMDGPU_LS: 735 case CallingConv::AMDGPU_HS: 736 case CallingConv::AMDGPU_ES: 737 case CallingConv::AMDGPU_GS: 738 case CallingConv::AMDGPU_PS: 739 case CallingConv::AMDGPU_CS: 740 // For non-compute shaders, SGPR inputs are marked with either inreg. 741 // Everything else is in VGPRs. 742 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg); 743 default: 744 // TODO: Should calls support inreg for SGPR inputs? 745 return false; 746 } 747 } 748 749 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 750 /// this is analyzing the collective result of all output registers. Otherwise, 751 /// this is only querying a specific result index if this returns multiple 752 /// registers in a struct. 753 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 754 const CallInst *CI, ArrayRef<unsigned> Indices) const { 755 // TODO: Handle complex extract indices 756 if (Indices.size() > 1) 757 return true; 758 759 const DataLayout &DL = CI->getModule()->getDataLayout(); 760 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 761 TargetLowering::AsmOperandInfoVector TargetConstraints = 762 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 763 764 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 765 766 int OutputIdx = 0; 767 for (auto &TC : TargetConstraints) { 768 if (TC.Type != InlineAsm::isOutput) 769 continue; 770 771 // Skip outputs we don't care about. 772 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 773 continue; 774 775 TLI->ComputeConstraintToUse(TC, SDValue()); 776 777 Register AssignedReg; 778 const TargetRegisterClass *RC; 779 std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( 780 TRI, TC.ConstraintCode, TC.ConstraintVT); 781 if (AssignedReg) { 782 // FIXME: This is a workaround for getRegForInlineAsmConstraint 783 // returning VS_32 784 RC = TRI->getPhysRegClass(AssignedReg); 785 } 786 787 // For AGPR constraints null is returned on subtargets without AGPRs, so 788 // assume divergent for null. 789 if (!RC || !TRI->isSGPRClass(RC)) 790 return true; 791 } 792 793 return false; 794 } 795 796 /// \returns true if the new GPU divergence analysis is enabled. 797 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 798 return !UseLegacyDA; 799 } 800 801 /// \returns true if the result of the value could potentially be 802 /// different across workitems in a wavefront. 803 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 804 if (const Argument *A = dyn_cast<Argument>(V)) 805 return !isArgPassedInSGPR(A); 806 807 // Loads from the private and flat address spaces are divergent, because 808 // threads can execute the load instruction with the same inputs and get 809 // different results. 810 // 811 // All other loads are not divergent, because if threads issue loads with the 812 // same arguments, they will always get the same result. 813 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 814 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 815 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 816 817 // Atomics are divergent because they are executed sequentially: when an 818 // atomic operation refers to the same address in each thread, then each 819 // thread after the first sees the value written by the previous thread as 820 // original value. 821 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 822 return true; 823 824 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 825 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 826 827 // Assume all function calls are a source of divergence. 828 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 829 if (CI->isInlineAsm()) 830 return isInlineAsmSourceOfDivergence(CI); 831 return true; 832 } 833 834 // Assume all function calls are a source of divergence. 835 if (isa<InvokeInst>(V)) 836 return true; 837 838 return false; 839 } 840 841 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 842 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 843 switch (Intrinsic->getIntrinsicID()) { 844 default: 845 return false; 846 case Intrinsic::amdgcn_readfirstlane: 847 case Intrinsic::amdgcn_readlane: 848 case Intrinsic::amdgcn_icmp: 849 case Intrinsic::amdgcn_fcmp: 850 case Intrinsic::amdgcn_ballot: 851 case Intrinsic::amdgcn_if_break: 852 return true; 853 } 854 } 855 856 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 857 if (CI->isInlineAsm()) 858 return !isInlineAsmSourceOfDivergence(CI); 859 return false; 860 } 861 862 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 863 if (!ExtValue) 864 return false; 865 866 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 867 if (!CI) 868 return false; 869 870 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 871 switch (Intrinsic->getIntrinsicID()) { 872 default: 873 return false; 874 case Intrinsic::amdgcn_if: 875 case Intrinsic::amdgcn_else: { 876 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 877 return Indices.size() == 1 && Indices[0] == 1; 878 } 879 } 880 } 881 882 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 883 // divergent for the overall struct return. We need to override it in the 884 // case we're extracting an SGPR component here. 885 if (CI->isInlineAsm()) 886 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 887 888 return false; 889 } 890 891 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 892 Intrinsic::ID IID) const { 893 switch (IID) { 894 case Intrinsic::amdgcn_atomic_inc: 895 case Intrinsic::amdgcn_atomic_dec: 896 case Intrinsic::amdgcn_ds_fadd: 897 case Intrinsic::amdgcn_ds_fmin: 898 case Intrinsic::amdgcn_ds_fmax: 899 case Intrinsic::amdgcn_is_shared: 900 case Intrinsic::amdgcn_is_private: 901 OpIndexes.push_back(0); 902 return true; 903 default: 904 return false; 905 } 906 } 907 908 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 909 Value *OldV, 910 Value *NewV) const { 911 auto IntrID = II->getIntrinsicID(); 912 switch (IntrID) { 913 case Intrinsic::amdgcn_atomic_inc: 914 case Intrinsic::amdgcn_atomic_dec: 915 case Intrinsic::amdgcn_ds_fadd: 916 case Intrinsic::amdgcn_ds_fmin: 917 case Intrinsic::amdgcn_ds_fmax: { 918 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 919 if (!IsVolatile->isZero()) 920 return nullptr; 921 Module *M = II->getParent()->getParent()->getParent(); 922 Type *DestTy = II->getType(); 923 Type *SrcTy = NewV->getType(); 924 Function *NewDecl = 925 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 926 II->setArgOperand(0, NewV); 927 II->setCalledFunction(NewDecl); 928 return II; 929 } 930 case Intrinsic::amdgcn_is_shared: 931 case Intrinsic::amdgcn_is_private: { 932 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 933 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 934 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 935 LLVMContext &Ctx = NewV->getType()->getContext(); 936 ConstantInt *NewVal = (TrueAS == NewAS) ? 937 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 938 return NewVal; 939 } 940 case Intrinsic::ptrmask: { 941 unsigned OldAS = OldV->getType()->getPointerAddressSpace(); 942 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 943 Value *MaskOp = II->getArgOperand(1); 944 Type *MaskTy = MaskOp->getType(); 945 946 bool DoTruncate = false; 947 948 const GCNTargetMachine &TM = 949 static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine()); 950 if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) { 951 // All valid 64-bit to 32-bit casts work by chopping off the high 952 // bits. Any masking only clearing the low bits will also apply in the new 953 // address space. 954 if (DL.getPointerSizeInBits(OldAS) != 64 || 955 DL.getPointerSizeInBits(NewAS) != 32) 956 return nullptr; 957 958 // TODO: Do we need to thread more context in here? 959 KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II); 960 if (Known.countMinLeadingOnes() < 32) 961 return nullptr; 962 963 DoTruncate = true; 964 } 965 966 IRBuilder<> B(II); 967 if (DoTruncate) { 968 MaskTy = B.getInt32Ty(); 969 MaskOp = B.CreateTrunc(MaskOp, MaskTy); 970 } 971 972 return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy}, 973 {NewV, MaskOp}); 974 } 975 default: 976 return nullptr; 977 } 978 } 979 980 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT, 981 int Index, VectorType *SubTp) { 982 if (ST->hasVOP3PInsts()) { 983 if (cast<FixedVectorType>(VT)->getNumElements() == 2 && 984 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 985 // With op_sel VOP3P instructions freely can access the low half or high 986 // half of a register, so any swizzle is free. 987 988 switch (Kind) { 989 case TTI::SK_Broadcast: 990 case TTI::SK_Reverse: 991 case TTI::SK_PermuteSingleSrc: 992 return 0; 993 default: 994 break; 995 } 996 } 997 } 998 999 return BaseT::getShuffleCost(Kind, VT, Index, SubTp); 1000 } 1001 1002 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 1003 const Function *Callee) const { 1004 const TargetMachine &TM = getTLI()->getTargetMachine(); 1005 const GCNSubtarget *CallerST 1006 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 1007 const GCNSubtarget *CalleeST 1008 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 1009 1010 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 1011 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 1012 1013 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 1014 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 1015 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 1016 return false; 1017 1018 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 1019 // no way to support merge for backend defined attributes. 1020 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); 1021 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); 1022 return CallerMode.isInlineCompatible(CalleeMode); 1023 } 1024 1025 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1026 TTI::UnrollingPreferences &UP) { 1027 CommonTTI.getUnrollingPreferences(L, SE, UP); 1028 } 1029 1030 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1031 TTI::PeelingPreferences &PP) { 1032 CommonTTI.getPeelingPreferences(L, SE, PP); 1033 } 1034 1035 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 1036 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 1037 } 1038 1039 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 1040 return getHardwareNumberOfRegisters(Vec); 1041 } 1042 1043 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { 1044 return 32; 1045 } 1046 1047 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 1048 return 32; 1049 } 1050 1051 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 1052 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 1053 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 1054 return 128; 1055 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1056 AddrSpace == AMDGPUAS::REGION_ADDRESS) 1057 return 64; 1058 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 1059 return 32; 1060 1061 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 1062 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 1063 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 1064 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 1065 return 128; 1066 llvm_unreachable("unhandled address space"); 1067 } 1068 1069 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 1070 Align Alignment, 1071 unsigned AddrSpace) const { 1072 // We allow vectorization of flat stores, even though we may need to decompose 1073 // them later if they may access private memory. We don't have enough context 1074 // here, and legalization can handle it. 1075 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 1076 } 1077 1078 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 1079 Align Alignment, 1080 unsigned AddrSpace) const { 1081 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1082 } 1083 1084 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 1085 Align Alignment, 1086 unsigned AddrSpace) const { 1087 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1088 } 1089 1090 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1091 // Disable unrolling if the loop is not vectorized. 1092 // TODO: Enable this again. 1093 if (VF == 1) 1094 return 1; 1095 1096 return 8; 1097 } 1098 1099 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode, 1100 TTI::TargetCostKind CostKind) { 1101 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 1102 return Opcode == Instruction::PHI ? 0 : 1; 1103 1104 // XXX - For some reason this isn't called for switch. 1105 switch (Opcode) { 1106 case Instruction::Br: 1107 case Instruction::Ret: 1108 return 10; 1109 default: 1110 return BaseT::getCFInstrCost(Opcode, CostKind); 1111 } 1112 } 1113 1114 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 1115 unsigned Index) { 1116 switch (Opcode) { 1117 case Instruction::ExtractElement: 1118 case Instruction::InsertElement: { 1119 unsigned EltSize 1120 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 1121 if (EltSize < 32) { 1122 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1123 } 1124 1125 // Extracts are just reads of a subregister, so are free. Inserts are 1126 // considered free because we don't want to have any cost for scalarizing 1127 // operations, and we don't have to copy into a different register class. 1128 1129 // Dynamic indexing isn't free and is best avoided. 1130 return Index == ~0u ? 2 : 0; 1131 } 1132 default: 1133 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1134 } 1135 } 1136 1137 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1138 TTI::UnrollingPreferences &UP) { 1139 CommonTTI.getUnrollingPreferences(L, SE, UP); 1140 } 1141 1142 void R600TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1143 TTI::PeelingPreferences &PP) { 1144 CommonTTI.getPeelingPreferences(L, SE, PP); 1145 } 1146