1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/IntrinsicsAMDGPU.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/Support/KnownBits.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "AMDGPUtti"
28 
29 static cl::opt<unsigned> UnrollThresholdPrivate(
30   "amdgpu-unroll-threshold-private",
31   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
32   cl::init(2700), cl::Hidden);
33 
34 static cl::opt<unsigned> UnrollThresholdLocal(
35   "amdgpu-unroll-threshold-local",
36   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
37   cl::init(1000), cl::Hidden);
38 
39 static cl::opt<unsigned> UnrollThresholdIf(
40   "amdgpu-unroll-threshold-if",
41   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
42   cl::init(150), cl::Hidden);
43 
44 static cl::opt<bool> UnrollRuntimeLocal(
45   "amdgpu-unroll-runtime-local",
46   cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
47   cl::init(true), cl::Hidden);
48 
49 static cl::opt<bool> UseLegacyDA(
50   "amdgpu-use-legacy-divergence-analysis",
51   cl::desc("Enable legacy divergence analysis for AMDGPU"),
52   cl::init(false), cl::Hidden);
53 
54 static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
55     "amdgpu-unroll-max-block-to-analyze",
56     cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
57     cl::init(32), cl::Hidden);
58 
59 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
60                                        cl::Hidden, cl::init(4000),
61                                        cl::desc("Cost of alloca argument"));
62 
63 // If the amount of scratch memory to eliminate exceeds our ability to allocate
64 // it into registers we gain nothing by aggressively inlining functions for that
65 // heuristic.
66 static cl::opt<unsigned>
67     ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
68                     cl::init(256),
69                     cl::desc("Maximum alloca size to use for inline cost"));
70 
71 // Inliner constraint to achieve reasonable compilation time.
72 static cl::opt<size_t> InlineMaxBB(
73     "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
74     cl::desc("Maximum number of BBs allowed in a function after inlining"
75              " (compile time constraint)"));
76 
77 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
78                               unsigned Depth = 0) {
79   const Instruction *I = dyn_cast<Instruction>(Cond);
80   if (!I)
81     return false;
82 
83   for (const Value *V : I->operand_values()) {
84     if (!L->contains(I))
85       continue;
86     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
87       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
88                   return SubLoop->contains(PHI); }))
89         return true;
90     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
91       return true;
92   }
93   return false;
94 }
95 
96 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
97     : BaseT(TM, F.getParent()->getDataLayout()),
98       TargetTriple(TM->getTargetTriple()),
99       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
100       TLI(ST->getTargetLowering()) {}
101 
102 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
103                                             TTI::UnrollingPreferences &UP) {
104   const Function &F = *L->getHeader()->getParent();
105   UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
106   UP.MaxCount = std::numeric_limits<unsigned>::max();
107   UP.Partial = true;
108 
109   // TODO: Do we want runtime unrolling?
110 
111   // Maximum alloca size than can fit registers. Reserve 16 registers.
112   const unsigned MaxAlloca = (256 - 16) * 4;
113   unsigned ThresholdPrivate = UnrollThresholdPrivate;
114   unsigned ThresholdLocal = UnrollThresholdLocal;
115 
116   // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
117   // provided threshold value as the default for Threshold
118   if (MDNode *LoopUnrollThreshold =
119           findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
120     if (LoopUnrollThreshold->getNumOperands() == 2) {
121       ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
122           LoopUnrollThreshold->getOperand(1));
123       if (MetaThresholdValue) {
124         // We will also use the supplied value for PartialThreshold for now.
125         // We may introduce additional metadata if it becomes necessary in the
126         // future.
127         UP.Threshold = MetaThresholdValue->getSExtValue();
128         UP.PartialThreshold = UP.Threshold;
129         ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
130         ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
131       }
132     }
133   }
134 
135   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
136   for (const BasicBlock *BB : L->getBlocks()) {
137     const DataLayout &DL = BB->getModule()->getDataLayout();
138     unsigned LocalGEPsSeen = 0;
139 
140     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
141                return SubLoop->contains(BB); }))
142         continue; // Block belongs to an inner loop.
143 
144     for (const Instruction &I : *BB) {
145       // Unroll a loop which contains an "if" statement whose condition
146       // defined by a PHI belonging to the loop. This may help to eliminate
147       // if region and potentially even PHI itself, saving on both divergence
148       // and registers used for the PHI.
149       // Add a small bonus for each of such "if" statements.
150       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
151         if (UP.Threshold < MaxBoost && Br->isConditional()) {
152           BasicBlock *Succ0 = Br->getSuccessor(0);
153           BasicBlock *Succ1 = Br->getSuccessor(1);
154           if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
155               (L->contains(Succ1) && L->isLoopExiting(Succ1)))
156             continue;
157           if (dependsOnLocalPhi(L, Br->getCondition())) {
158             UP.Threshold += UnrollThresholdIf;
159             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
160                               << " for loop:\n"
161                               << *L << " due to " << *Br << '\n');
162             if (UP.Threshold >= MaxBoost)
163               return;
164           }
165         }
166         continue;
167       }
168 
169       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
170       if (!GEP)
171         continue;
172 
173       unsigned AS = GEP->getAddressSpace();
174       unsigned Threshold = 0;
175       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
176         Threshold = ThresholdPrivate;
177       else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
178         Threshold = ThresholdLocal;
179       else
180         continue;
181 
182       if (UP.Threshold >= Threshold)
183         continue;
184 
185       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
186         const Value *Ptr = GEP->getPointerOperand();
187         const AllocaInst *Alloca =
188             dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
189         if (!Alloca || !Alloca->isStaticAlloca())
190           continue;
191         Type *Ty = Alloca->getAllocatedType();
192         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
193         if (AllocaSize > MaxAlloca)
194           continue;
195       } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
196                  AS == AMDGPUAS::REGION_ADDRESS) {
197         LocalGEPsSeen++;
198         // Inhibit unroll for local memory if we have seen addressing not to
199         // a variable, most likely we will be unable to combine it.
200         // Do not unroll too deep inner loops for local memory to give a chance
201         // to unroll an outer loop for a more important reason.
202         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
203             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
204              !isa<Argument>(GEP->getPointerOperand())))
205           continue;
206         LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
207                           << *L << " due to LDS use.\n");
208         UP.Runtime = UnrollRuntimeLocal;
209       }
210 
211       // Check if GEP depends on a value defined by this loop itself.
212       bool HasLoopDef = false;
213       for (const Value *Op : GEP->operands()) {
214         const Instruction *Inst = dyn_cast<Instruction>(Op);
215         if (!Inst || L->isLoopInvariant(Op))
216           continue;
217 
218         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
219              return SubLoop->contains(Inst); }))
220           continue;
221         HasLoopDef = true;
222         break;
223       }
224       if (!HasLoopDef)
225         continue;
226 
227       // We want to do whatever we can to limit the number of alloca
228       // instructions that make it through to the code generator.  allocas
229       // require us to use indirect addressing, which is slow and prone to
230       // compiler bugs.  If this loop does an address calculation on an
231       // alloca ptr, then we want to use a higher than normal loop unroll
232       // threshold. This will give SROA a better chance to eliminate these
233       // allocas.
234       //
235       // We also want to have more unrolling for local memory to let ds
236       // instructions with different offsets combine.
237       //
238       // Don't use the maximum allowed value here as it will make some
239       // programs way too big.
240       UP.Threshold = Threshold;
241       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
242                         << " for loop:\n"
243                         << *L << " due to " << *GEP << '\n');
244       if (UP.Threshold >= MaxBoost)
245         return;
246     }
247 
248     // If we got a GEP in a small BB from inner loop then increase max trip
249     // count to analyze for better estimation cost in unroll
250     if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
251       UP.MaxIterationsCountToAnalyze = 32;
252   }
253 }
254 
255 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
256                                           TTI::PeelingPreferences &PP) {
257   BaseT::getPeelingPreferences(L, SE, PP);
258 }
259 
260 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
261     // Codegen control options which don't matter.
262     AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
263     AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
264     AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
265     AMDGPU::FeatureUnalignedAccessMode,
266 
267     AMDGPU::FeatureAutoWaitcntBeforeBarrier,
268 
269     // Property of the kernel/environment which can't actually differ.
270     AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
271     AMDGPU::FeatureTrapHandler,
272 
273     // The default assumption needs to be ecc is enabled, but no directly
274     // exposed operations depend on it, so it can be safely inlined.
275     AMDGPU::FeatureSRAMECC,
276 
277     // Perf-tuning features
278     AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
279 
280 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
281     : BaseT(TM, F.getParent()->getDataLayout()),
282       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
283       TLI(ST->getTargetLowering()), CommonTTI(TM, F),
284       IsGraphics(AMDGPU::isGraphics(F.getCallingConv())),
285       MaxVGPRs(ST->getMaxNumVGPRs(
286           std::max(ST->getWavesPerEU(F).first,
287                    ST->getWavesPerEUForWorkGroup(
288                        ST->getFlatWorkGroupSizes(F).second)))) {
289   AMDGPU::SIModeRegisterDefaults Mode(F);
290   HasFP32Denormals = Mode.allFP32Denormals();
291   HasFP64FP16Denormals = Mode.allFP64FP16Denormals();
292 }
293 
294 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
295   // The concept of vector registers doesn't really exist. Some packed vector
296   // operations operate on the normal 32-bit registers.
297   return MaxVGPRs;
298 }
299 
300 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
301   // This is really the number of registers to fill when vectorizing /
302   // interleaving loops, so we lie to avoid trying to use all registers.
303   return getHardwareNumberOfRegisters(Vec) >> 3;
304 }
305 
306 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
307   const SIRegisterInfo *TRI = ST->getRegisterInfo();
308   const TargetRegisterClass *RC = TRI->getRegClass(RCID);
309   unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32;
310   return getHardwareNumberOfRegisters(false) / NumVGPRs;
311 }
312 
313 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
314   return (Vector && ST->hasPackedFP32Ops()) ? 64 : 32;
315 }
316 
317 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
318   return 32;
319 }
320 
321 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
322   if (Opcode == Instruction::Load || Opcode == Instruction::Store)
323     return 32 * 4 / ElemWidth;
324   return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
325        : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
326        : 1;
327 }
328 
329 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
330                                          unsigned ChainSizeInBytes,
331                                          VectorType *VecTy) const {
332   unsigned VecRegBitWidth = VF * LoadSize;
333   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
334     // TODO: Support element-size less than 32bit?
335     return 128 / LoadSize;
336 
337   return VF;
338 }
339 
340 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
341                                              unsigned ChainSizeInBytes,
342                                              VectorType *VecTy) const {
343   unsigned VecRegBitWidth = VF * StoreSize;
344   if (VecRegBitWidth > 128)
345     return 128 / StoreSize;
346 
347   return VF;
348 }
349 
350 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
351   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
352       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
353       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
354       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
355     return 512;
356   }
357 
358   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
359     return 8 * ST->getMaxPrivateElementSize();
360 
361   // Common to flat, global, local and region. Assume for unknown addrspace.
362   return 128;
363 }
364 
365 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
366                                             Align Alignment,
367                                             unsigned AddrSpace) const {
368   // We allow vectorization of flat stores, even though we may need to decompose
369   // them later if they may access private memory. We don't have enough context
370   // here, and legalization can handle it.
371   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
372     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
373       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
374   }
375   return true;
376 }
377 
378 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
379                                              Align Alignment,
380                                              unsigned AddrSpace) const {
381   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
382 }
383 
384 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
385                                               Align Alignment,
386                                               unsigned AddrSpace) const {
387   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
388 }
389 
390 // FIXME: Really we would like to issue multiple 128-bit loads and stores per
391 // iteration. Should we report a larger size and let it legalize?
392 //
393 // FIXME: Should we use narrower types for local/region, or account for when
394 // unaligned access is legal?
395 //
396 // FIXME: This could use fine tuning and microbenchmarks.
397 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
398                                             unsigned SrcAddrSpace,
399                                             unsigned DestAddrSpace,
400                                             unsigned SrcAlign,
401                                             unsigned DestAlign) const {
402   unsigned MinAlign = std::min(SrcAlign, DestAlign);
403 
404   // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
405   // hardware into byte accesses. If you assume all alignments are equally
406   // probable, it's more efficient on average to use short accesses for this
407   // case.
408   if (MinAlign == 2)
409     return Type::getInt16Ty(Context);
410 
411   // Not all subtargets have 128-bit DS instructions, and we currently don't
412   // form them by default.
413   if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
414       SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
415       DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
416       DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
417     return FixedVectorType::get(Type::getInt32Ty(Context), 2);
418   }
419 
420   // Global memory works best with 16-byte accesses. Private memory will also
421   // hit this, although they'll be decomposed.
422   return FixedVectorType::get(Type::getInt32Ty(Context), 4);
423 }
424 
425 void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
426   SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
427   unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
428   unsigned SrcAlign, unsigned DestAlign) const {
429   assert(RemainingBytes < 16);
430 
431   unsigned MinAlign = std::min(SrcAlign, DestAlign);
432 
433   if (MinAlign != 2) {
434     Type *I64Ty = Type::getInt64Ty(Context);
435     while (RemainingBytes >= 8) {
436       OpsOut.push_back(I64Ty);
437       RemainingBytes -= 8;
438     }
439 
440     Type *I32Ty = Type::getInt32Ty(Context);
441     while (RemainingBytes >= 4) {
442       OpsOut.push_back(I32Ty);
443       RemainingBytes -= 4;
444     }
445   }
446 
447   Type *I16Ty = Type::getInt16Ty(Context);
448   while (RemainingBytes >= 2) {
449     OpsOut.push_back(I16Ty);
450     RemainingBytes -= 2;
451   }
452 
453   Type *I8Ty = Type::getInt8Ty(Context);
454   while (RemainingBytes) {
455     OpsOut.push_back(I8Ty);
456     --RemainingBytes;
457   }
458 }
459 
460 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
461   // Disable unrolling if the loop is not vectorized.
462   // TODO: Enable this again.
463   if (VF == 1)
464     return 1;
465 
466   return 8;
467 }
468 
469 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
470                                        MemIntrinsicInfo &Info) const {
471   switch (Inst->getIntrinsicID()) {
472   case Intrinsic::amdgcn_atomic_inc:
473   case Intrinsic::amdgcn_atomic_dec:
474   case Intrinsic::amdgcn_ds_ordered_add:
475   case Intrinsic::amdgcn_ds_ordered_swap:
476   case Intrinsic::amdgcn_ds_fadd:
477   case Intrinsic::amdgcn_ds_fmin:
478   case Intrinsic::amdgcn_ds_fmax: {
479     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
480     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
481     if (!Ordering || !Volatile)
482       return false; // Invalid.
483 
484     unsigned OrderingVal = Ordering->getZExtValue();
485     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
486       return false;
487 
488     Info.PtrVal = Inst->getArgOperand(0);
489     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
490     Info.ReadMem = true;
491     Info.WriteMem = true;
492     Info.IsVolatile = !Volatile->isNullValue();
493     return true;
494   }
495   default:
496     return false;
497   }
498 }
499 
500 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
501                                        TTI::TargetCostKind CostKind,
502                                        TTI::OperandValueKind Opd1Info,
503                                        TTI::OperandValueKind Opd2Info,
504                                        TTI::OperandValueProperties Opd1PropInfo,
505                                        TTI::OperandValueProperties Opd2PropInfo,
506                                        ArrayRef<const Value *> Args,
507                                        const Instruction *CxtI) {
508   EVT OrigTy = TLI->getValueType(DL, Ty);
509   if (!OrigTy.isSimple()) {
510     // FIXME: We're having to query the throughput cost so that the basic
511     // implementation tries to generate legalize and scalarization costs. Maybe
512     // we could hoist the scalarization code here?
513     if (CostKind != TTI::TCK_CodeSize)
514       return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput,
515                                            Opd1Info, Opd2Info, Opd1PropInfo,
516                                            Opd2PropInfo, Args, CxtI);
517     // Scalarization
518 
519     // Check if any of the operands are vector operands.
520     int ISD = TLI->InstructionOpcodeToISD(Opcode);
521     assert(ISD && "Invalid opcode");
522 
523     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
524 
525     bool IsFloat = Ty->isFPOrFPVectorTy();
526     // Assume that floating point arithmetic operations cost twice as much as
527     // integer operations.
528     unsigned OpCost = (IsFloat ? 2 : 1);
529 
530     if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
531       // The operation is legal. Assume it costs 1.
532       // TODO: Once we have extract/insert subvector cost we need to use them.
533       return LT.first * OpCost;
534     }
535 
536     if (!TLI->isOperationExpand(ISD, LT.second)) {
537       // If the operation is custom lowered, then assume that the code is twice
538       // as expensive.
539       return LT.first * 2 * OpCost;
540     }
541 
542     // Else, assume that we need to scalarize this op.
543     // TODO: If one of the types get legalized by splitting, handle this
544     // similarly to what getCastInstrCost() does.
545     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
546       unsigned Num = cast<FixedVectorType>(VTy)->getNumElements();
547       unsigned Cost = getArithmeticInstrCost(
548           Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
549           Opd1PropInfo, Opd2PropInfo, Args, CxtI);
550       // Return the cost of multiple scalar invocation plus the cost of
551       // inserting and extracting the values.
552       return getScalarizationOverhead(VTy, Args) + Num * Cost;
553     }
554 
555     // We don't know anything about this scalar instruction.
556     return OpCost;
557   }
558 
559   // Legalize the type.
560   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
561   int ISD = TLI->InstructionOpcodeToISD(Opcode);
562 
563   // Because we don't have any legal vector operations, but the legal types, we
564   // need to account for split vectors.
565   unsigned NElts = LT.second.isVector() ?
566     LT.second.getVectorNumElements() : 1;
567 
568   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
569 
570   switch (ISD) {
571   case ISD::SHL:
572   case ISD::SRL:
573   case ISD::SRA:
574     if (SLT == MVT::i64)
575       return get64BitInstrCost(CostKind) * LT.first * NElts;
576 
577     if (ST->has16BitInsts() && SLT == MVT::i16)
578       NElts = (NElts + 1) / 2;
579 
580     // i32
581     return getFullRateInstrCost() * LT.first * NElts;
582   case ISD::ADD:
583   case ISD::SUB:
584   case ISD::AND:
585   case ISD::OR:
586   case ISD::XOR:
587     if (SLT == MVT::i64) {
588       // and, or and xor are typically split into 2 VALU instructions.
589       return 2 * getFullRateInstrCost() * LT.first * NElts;
590     }
591 
592     if (ST->has16BitInsts() && SLT == MVT::i16)
593       NElts = (NElts + 1) / 2;
594 
595     return LT.first * NElts * getFullRateInstrCost();
596   case ISD::MUL: {
597     const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
598     if (SLT == MVT::i64) {
599       const int FullRateCost = getFullRateInstrCost();
600       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
601     }
602 
603     if (ST->has16BitInsts() && SLT == MVT::i16)
604       NElts = (NElts + 1) / 2;
605 
606     // i32
607     return QuarterRateCost * NElts * LT.first;
608   }
609   case ISD::FMUL:
610     // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
611     // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
612     // fused operation.
613     if (CxtI && CxtI->hasOneUse())
614       if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
615         const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
616         if (OPC == ISD::FADD || OPC == ISD::FSUB) {
617           if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
618             return TargetTransformInfo::TCC_Free;
619           if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
620             return TargetTransformInfo::TCC_Free;
621 
622           // Estimate all types may be fused with contract/unsafe flags
623           const TargetOptions &Options = TLI->getTargetMachine().Options;
624           if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
625               Options.UnsafeFPMath ||
626               (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
627             return TargetTransformInfo::TCC_Free;
628         }
629       }
630     LLVM_FALLTHROUGH;
631   case ISD::FADD:
632   case ISD::FSUB:
633     if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
634       NElts = (NElts + 1) / 2;
635     if (SLT == MVT::f64)
636       return LT.first * NElts * get64BitInstrCost(CostKind);
637 
638     if (ST->has16BitInsts() && SLT == MVT::f16)
639       NElts = (NElts + 1) / 2;
640 
641     if (SLT == MVT::f32 || SLT == MVT::f16)
642       return LT.first * NElts * getFullRateInstrCost();
643     break;
644   case ISD::FDIV:
645   case ISD::FREM:
646     // FIXME: frem should be handled separately. The fdiv in it is most of it,
647     // but the current lowering is also not entirely correct.
648     if (SLT == MVT::f64) {
649       int Cost = 7 * get64BitInstrCost(CostKind) +
650                  getQuarterRateInstrCost(CostKind) +
651                  3 * getHalfRateInstrCost(CostKind);
652       // Add cost of workaround.
653       if (!ST->hasUsableDivScaleConditionOutput())
654         Cost += 3 * getFullRateInstrCost();
655 
656       return LT.first * Cost * NElts;
657     }
658 
659     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
660       // TODO: This is more complicated, unsafe flags etc.
661       if ((SLT == MVT::f32 && !HasFP32Denormals) ||
662           (SLT == MVT::f16 && ST->has16BitInsts())) {
663         return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
664       }
665     }
666 
667     if (SLT == MVT::f16 && ST->has16BitInsts()) {
668       // 2 x v_cvt_f32_f16
669       // f32 rcp
670       // f32 fmul
671       // v_cvt_f16_f32
672       // f16 div_fixup
673       int Cost =
674           4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
675       return LT.first * Cost * NElts;
676     }
677 
678     if (SLT == MVT::f32 || SLT == MVT::f16) {
679       // 4 more v_cvt_* insts without f16 insts support
680       int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
681                  1 * getQuarterRateInstrCost(CostKind);
682 
683       if (!HasFP32Denormals) {
684         // FP mode switches.
685         Cost += 2 * getFullRateInstrCost();
686       }
687 
688       return LT.first * NElts * Cost;
689     }
690     break;
691   case ISD::FNEG:
692     // Use the backend' estimation. If fneg is not free each element will cost
693     // one additional instruction.
694     return TLI->isFNegFree(SLT) ? 0 : NElts;
695   default:
696     break;
697   }
698 
699   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
700                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
701 }
702 
703 // Return true if there's a potential benefit from using v2f16/v2i16
704 // instructions for an intrinsic, even if it requires nontrivial legalization.
705 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
706   switch (ID) {
707   case Intrinsic::fma: // TODO: fmuladd
708   // There's a small benefit to using vector ops in the legalized code.
709   case Intrinsic::round:
710   case Intrinsic::uadd_sat:
711   case Intrinsic::usub_sat:
712   case Intrinsic::sadd_sat:
713   case Intrinsic::ssub_sat:
714     return true;
715   default:
716     return false;
717   }
718 }
719 
720 int GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
721                                       TTI::TargetCostKind CostKind) {
722   if (ICA.getID() == Intrinsic::fabs)
723     return 0;
724 
725   if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
726     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
727 
728   Type *RetTy = ICA.getReturnType();
729   EVT OrigTy = TLI->getValueType(DL, RetTy);
730   if (!OrigTy.isSimple()) {
731     if (CostKind != TTI::TCK_CodeSize)
732       return BaseT::getIntrinsicInstrCost(ICA, CostKind);
733 
734     // TODO: Combine these two logic paths.
735     if (ICA.isTypeBasedOnly())
736       return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
737 
738     Type *RetTy = ICA.getReturnType();
739     unsigned VF = ICA.getVectorFactor().getFixedValue();
740     unsigned RetVF =
741         (RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements()
742                              : 1);
743     assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type");
744     const IntrinsicInst *I = ICA.getInst();
745     const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
746     FastMathFlags FMF = ICA.getFlags();
747     // Assume that we need to scalarize this intrinsic.
748     SmallVector<Type *, 4> Types;
749     for (const Value *Op : Args) {
750       Type *OpTy = Op->getType();
751       assert(VF == 1 || !OpTy->isVectorTy());
752       Types.push_back(VF == 1 ? OpTy : FixedVectorType::get(OpTy, VF));
753     }
754 
755     if (VF > 1 && !RetTy->isVoidTy())
756       RetTy = FixedVectorType::get(RetTy, VF);
757 
758     // Compute the scalarization overhead based on Args for a vector
759     // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
760     // CostModel will pass a vector RetTy and VF is 1.
761     unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
762     if (RetVF > 1 || VF > 1) {
763       ScalarizationCost = 0;
764       if (!RetTy->isVoidTy())
765         ScalarizationCost +=
766             getScalarizationOverhead(cast<VectorType>(RetTy), true, false);
767       ScalarizationCost += getOperandsScalarizationOverhead(Args, VF);
768     }
769 
770     IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, Types, FMF,
771                                   ScalarizationCost, I);
772     return getIntrinsicInstrCost(Attrs, CostKind);
773   }
774 
775   // Legalize the type.
776   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
777 
778   unsigned NElts = LT.second.isVector() ?
779     LT.second.getVectorNumElements() : 1;
780 
781   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
782 
783   if (SLT == MVT::f64)
784     return LT.first * NElts * get64BitInstrCost(CostKind);
785 
786   if ((ST->has16BitInsts() && SLT == MVT::f16) ||
787       (ST->hasPackedFP32Ops() && SLT == MVT::f32))
788     NElts = (NElts + 1) / 2;
789 
790   // TODO: Get more refined intrinsic costs?
791   unsigned InstRate = getQuarterRateInstrCost(CostKind);
792   if (ICA.getID() == Intrinsic::fma) {
793     InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
794                                    : getQuarterRateInstrCost(CostKind);
795   }
796 
797   return LT.first * NElts * InstRate;
798 }
799 
800 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode,
801                                     TTI::TargetCostKind CostKind) {
802   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
803     return Opcode == Instruction::PHI ? 0 : 1;
804 
805   // XXX - For some reason this isn't called for switch.
806   switch (Opcode) {
807   case Instruction::Br:
808   case Instruction::Ret:
809     return 10;
810   default:
811     return BaseT::getCFInstrCost(Opcode, CostKind);
812   }
813 }
814 
815 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
816                                            bool IsPairwise,
817                                            TTI::TargetCostKind CostKind) {
818   EVT OrigTy = TLI->getValueType(DL, Ty);
819 
820   // Computes cost on targets that have packed math instructions(which support
821   // 16-bit types only).
822   if (IsPairwise ||
823       !ST->hasVOP3PInsts() ||
824       OrigTy.getScalarSizeInBits() != 16)
825     return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind);
826 
827   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
828   return LT.first * getFullRateInstrCost();
829 }
830 
831 int GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
832                                        bool IsPairwise, bool IsUnsigned,
833                                        TTI::TargetCostKind CostKind) {
834   EVT OrigTy = TLI->getValueType(DL, Ty);
835 
836   // Computes cost on targets that have packed math instructions(which support
837   // 16-bit types only).
838   if (IsPairwise ||
839       !ST->hasVOP3PInsts() ||
840       OrigTy.getScalarSizeInBits() != 16)
841     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned,
842                                          CostKind);
843 
844   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
845   return LT.first * getHalfRateInstrCost(CostKind);
846 }
847 
848 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
849                                       unsigned Index) {
850   switch (Opcode) {
851   case Instruction::ExtractElement:
852   case Instruction::InsertElement: {
853     unsigned EltSize
854       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
855     if (EltSize < 32) {
856       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
857         return 0;
858       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
859     }
860 
861     // Extracts are just reads of a subregister, so are free. Inserts are
862     // considered free because we don't want to have any cost for scalarizing
863     // operations, and we don't have to copy into a different register class.
864 
865     // Dynamic indexing isn't free and is best avoided.
866     return Index == ~0u ? 2 : 0;
867   }
868   default:
869     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
870   }
871 }
872 
873 /// Analyze if the results of inline asm are divergent. If \p Indices is empty,
874 /// this is analyzing the collective result of all output registers. Otherwise,
875 /// this is only querying a specific result index if this returns multiple
876 /// registers in a struct.
877 bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
878   const CallInst *CI, ArrayRef<unsigned> Indices) const {
879   // TODO: Handle complex extract indices
880   if (Indices.size() > 1)
881     return true;
882 
883   const DataLayout &DL = CI->getModule()->getDataLayout();
884   const SIRegisterInfo *TRI = ST->getRegisterInfo();
885   TargetLowering::AsmOperandInfoVector TargetConstraints =
886       TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
887 
888   const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
889 
890   int OutputIdx = 0;
891   for (auto &TC : TargetConstraints) {
892     if (TC.Type != InlineAsm::isOutput)
893       continue;
894 
895     // Skip outputs we don't care about.
896     if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
897       continue;
898 
899     TLI->ComputeConstraintToUse(TC, SDValue());
900 
901     Register AssignedReg;
902     const TargetRegisterClass *RC;
903     std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint(
904       TRI, TC.ConstraintCode, TC.ConstraintVT);
905     if (AssignedReg) {
906       // FIXME: This is a workaround for getRegForInlineAsmConstraint
907       // returning VS_32
908       RC = TRI->getPhysRegClass(AssignedReg);
909     }
910 
911     // For AGPR constraints null is returned on subtargets without AGPRs, so
912     // assume divergent for null.
913     if (!RC || !TRI->isSGPRClass(RC))
914       return true;
915   }
916 
917   return false;
918 }
919 
920 /// \returns true if the new GPU divergence analysis is enabled.
921 bool GCNTTIImpl::useGPUDivergenceAnalysis() const {
922   return !UseLegacyDA;
923 }
924 
925 /// \returns true if the result of the value could potentially be
926 /// different across workitems in a wavefront.
927 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
928   if (const Argument *A = dyn_cast<Argument>(V))
929     return !AMDGPU::isArgPassedInSGPR(A);
930 
931   // Loads from the private and flat address spaces are divergent, because
932   // threads can execute the load instruction with the same inputs and get
933   // different results.
934   //
935   // All other loads are not divergent, because if threads issue loads with the
936   // same arguments, they will always get the same result.
937   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
938     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
939            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
940 
941   // Atomics are divergent because they are executed sequentially: when an
942   // atomic operation refers to the same address in each thread, then each
943   // thread after the first sees the value written by the previous thread as
944   // original value.
945   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
946     return true;
947 
948   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
949     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
950 
951   // Assume all function calls are a source of divergence.
952   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
953     if (CI->isInlineAsm())
954       return isInlineAsmSourceOfDivergence(CI);
955     return true;
956   }
957 
958   // Assume all function calls are a source of divergence.
959   if (isa<InvokeInst>(V))
960     return true;
961 
962   return false;
963 }
964 
965 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
966   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
967     switch (Intrinsic->getIntrinsicID()) {
968     default:
969       return false;
970     case Intrinsic::amdgcn_readfirstlane:
971     case Intrinsic::amdgcn_readlane:
972     case Intrinsic::amdgcn_icmp:
973     case Intrinsic::amdgcn_fcmp:
974     case Intrinsic::amdgcn_ballot:
975     case Intrinsic::amdgcn_if_break:
976       return true;
977     }
978   }
979 
980   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
981     if (CI->isInlineAsm())
982       return !isInlineAsmSourceOfDivergence(CI);
983     return false;
984   }
985 
986   const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
987   if (!ExtValue)
988     return false;
989 
990   const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
991   if (!CI)
992     return false;
993 
994   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
995     switch (Intrinsic->getIntrinsicID()) {
996     default:
997       return false;
998     case Intrinsic::amdgcn_if:
999     case Intrinsic::amdgcn_else: {
1000       ArrayRef<unsigned> Indices = ExtValue->getIndices();
1001       return Indices.size() == 1 && Indices[0] == 1;
1002     }
1003     }
1004   }
1005 
1006   // If we have inline asm returning mixed SGPR and VGPR results, we inferred
1007   // divergent for the overall struct return. We need to override it in the
1008   // case we're extracting an SGPR component here.
1009   if (CI->isInlineAsm())
1010     return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
1011 
1012   return false;
1013 }
1014 
1015 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1016                                             Intrinsic::ID IID) const {
1017   switch (IID) {
1018   case Intrinsic::amdgcn_atomic_inc:
1019   case Intrinsic::amdgcn_atomic_dec:
1020   case Intrinsic::amdgcn_ds_fadd:
1021   case Intrinsic::amdgcn_ds_fmin:
1022   case Intrinsic::amdgcn_ds_fmax:
1023   case Intrinsic::amdgcn_is_shared:
1024   case Intrinsic::amdgcn_is_private:
1025     OpIndexes.push_back(0);
1026     return true;
1027   default:
1028     return false;
1029   }
1030 }
1031 
1032 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1033                                                     Value *OldV,
1034                                                     Value *NewV) const {
1035   auto IntrID = II->getIntrinsicID();
1036   switch (IntrID) {
1037   case Intrinsic::amdgcn_atomic_inc:
1038   case Intrinsic::amdgcn_atomic_dec:
1039   case Intrinsic::amdgcn_ds_fadd:
1040   case Intrinsic::amdgcn_ds_fmin:
1041   case Intrinsic::amdgcn_ds_fmax: {
1042     const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
1043     if (!IsVolatile->isZero())
1044       return nullptr;
1045     Module *M = II->getParent()->getParent()->getParent();
1046     Type *DestTy = II->getType();
1047     Type *SrcTy = NewV->getType();
1048     Function *NewDecl =
1049         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
1050     II->setArgOperand(0, NewV);
1051     II->setCalledFunction(NewDecl);
1052     return II;
1053   }
1054   case Intrinsic::amdgcn_is_shared:
1055   case Intrinsic::amdgcn_is_private: {
1056     unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
1057       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
1058     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1059     LLVMContext &Ctx = NewV->getType()->getContext();
1060     ConstantInt *NewVal = (TrueAS == NewAS) ?
1061       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
1062     return NewVal;
1063   }
1064   case Intrinsic::ptrmask: {
1065     unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1066     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1067     Value *MaskOp = II->getArgOperand(1);
1068     Type *MaskTy = MaskOp->getType();
1069 
1070     bool DoTruncate = false;
1071 
1072     const GCNTargetMachine &TM =
1073         static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
1074     if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
1075       // All valid 64-bit to 32-bit casts work by chopping off the high
1076       // bits. Any masking only clearing the low bits will also apply in the new
1077       // address space.
1078       if (DL.getPointerSizeInBits(OldAS) != 64 ||
1079           DL.getPointerSizeInBits(NewAS) != 32)
1080         return nullptr;
1081 
1082       // TODO: Do we need to thread more context in here?
1083       KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
1084       if (Known.countMinLeadingOnes() < 32)
1085         return nullptr;
1086 
1087       DoTruncate = true;
1088     }
1089 
1090     IRBuilder<> B(II);
1091     if (DoTruncate) {
1092       MaskTy = B.getInt32Ty();
1093       MaskOp = B.CreateTrunc(MaskOp, MaskTy);
1094     }
1095 
1096     return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
1097                              {NewV, MaskOp});
1098   }
1099   default:
1100     return nullptr;
1101   }
1102 }
1103 
1104 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT,
1105                                     int Index, VectorType *SubTp) {
1106   if (ST->hasVOP3PInsts()) {
1107     if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
1108         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
1109       // With op_sel VOP3P instructions freely can access the low half or high
1110       // half of a register, so any swizzle is free.
1111 
1112       switch (Kind) {
1113       case TTI::SK_Broadcast:
1114       case TTI::SK_Reverse:
1115       case TTI::SK_PermuteSingleSrc:
1116         return 0;
1117       default:
1118         break;
1119       }
1120     }
1121   }
1122 
1123   return BaseT::getShuffleCost(Kind, VT, Index, SubTp);
1124 }
1125 
1126 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
1127                                      const Function *Callee) const {
1128   const TargetMachine &TM = getTLI()->getTargetMachine();
1129   const GCNSubtarget *CallerST
1130     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1131   const GCNSubtarget *CalleeST
1132     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1133 
1134   const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1135   const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1136 
1137   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1138   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1139   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1140     return false;
1141 
1142   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1143   // no way to support merge for backend defined attributes.
1144   AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
1145   AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
1146   if (!CallerMode.isInlineCompatible(CalleeMode))
1147     return false;
1148 
1149   // Hack to make compile times reasonable.
1150   if (InlineMaxBB && !Callee->hasFnAttribute(Attribute::InlineHint)) {
1151     // Single BB does not increase total BB amount, thus subtract 1.
1152     size_t BBSize = Caller->size() + Callee->size() - 1;
1153     return BBSize <= InlineMaxBB;
1154   }
1155 
1156   return true;
1157 }
1158 
1159 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
1160   // If we have a pointer to private array passed into a function
1161   // it will not be optimized out, leaving scratch usage.
1162   // Increase the inline threshold to allow inlining in this case.
1163   uint64_t AllocaSize = 0;
1164   SmallPtrSet<const AllocaInst *, 8> AIVisited;
1165   for (Value *PtrArg : CB->args()) {
1166     PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
1167     if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS &&
1168                 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS))
1169       continue;
1170 
1171     PtrArg = getUnderlyingObject(PtrArg);
1172     if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) {
1173       if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second)
1174         continue;
1175       AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
1176       // If the amount of stack memory is excessive we will not be able
1177       // to get rid of the scratch anyway, bail out.
1178       if (AllocaSize > ArgAllocaCutoff) {
1179         AllocaSize = 0;
1180         break;
1181       }
1182     }
1183   }
1184   if (AllocaSize)
1185     return ArgAllocaCost;
1186   return 0;
1187 }
1188 
1189 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1190                                          TTI::UnrollingPreferences &UP) {
1191   CommonTTI.getUnrollingPreferences(L, SE, UP);
1192 }
1193 
1194 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1195                                        TTI::PeelingPreferences &PP) {
1196   CommonTTI.getPeelingPreferences(L, SE, PP);
1197 }
1198 
1199 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
1200   return ST->hasFullRate64Ops()
1201              ? getFullRateInstrCost()
1202              : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
1203                                       : getQuarterRateInstrCost(CostKind);
1204 }
1205 
1206 R600TTIImpl::R600TTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
1207     : BaseT(TM, F.getParent()->getDataLayout()),
1208       ST(static_cast<const R600Subtarget *>(TM->getSubtargetImpl(F))),
1209       TLI(ST->getTargetLowering()), CommonTTI(TM, F) {}
1210 
1211 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
1212   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
1213 }
1214 
1215 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
1216   return getHardwareNumberOfRegisters(Vec);
1217 }
1218 
1219 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
1220   return 32;
1221 }
1222 
1223 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
1224   return 32;
1225 }
1226 
1227 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
1228   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
1229       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
1230     return 128;
1231   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1232       AddrSpace == AMDGPUAS::REGION_ADDRESS)
1233     return 64;
1234   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
1235     return 32;
1236 
1237   if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
1238       AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
1239       (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
1240       AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
1241     return 128;
1242   llvm_unreachable("unhandled address space");
1243 }
1244 
1245 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
1246                                              Align Alignment,
1247                                              unsigned AddrSpace) const {
1248   // We allow vectorization of flat stores, even though we may need to decompose
1249   // them later if they may access private memory. We don't have enough context
1250   // here, and legalization can handle it.
1251   return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
1252 }
1253 
1254 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1255                                               Align Alignment,
1256                                               unsigned AddrSpace) const {
1257   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
1258 }
1259 
1260 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1261                                                Align Alignment,
1262                                                unsigned AddrSpace) const {
1263   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
1264 }
1265 
1266 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
1267   // Disable unrolling if the loop is not vectorized.
1268   // TODO: Enable this again.
1269   if (VF == 1)
1270     return 1;
1271 
1272   return 8;
1273 }
1274 
1275 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode,
1276                                      TTI::TargetCostKind CostKind) {
1277   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
1278     return Opcode == Instruction::PHI ? 0 : 1;
1279 
1280   // XXX - For some reason this isn't called for switch.
1281   switch (Opcode) {
1282   case Instruction::Br:
1283   case Instruction::Ret:
1284     return 10;
1285   default:
1286     return BaseT::getCFInstrCost(Opcode, CostKind);
1287   }
1288 }
1289 
1290 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
1291                                     unsigned Index) {
1292   switch (Opcode) {
1293   case Instruction::ExtractElement:
1294   case Instruction::InsertElement: {
1295     unsigned EltSize
1296       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
1297     if (EltSize < 32) {
1298       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
1299     }
1300 
1301     // Extracts are just reads of a subregister, so are free. Inserts are
1302     // considered free because we don't want to have any cost for scalarizing
1303     // operations, and we don't have to copy into a different register class.
1304 
1305     // Dynamic indexing isn't free and is best avoided.
1306     return Index == ~0u ? 2 : 0;
1307   }
1308   default:
1309     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
1310   }
1311 }
1312 
1313 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1314                                           TTI::UnrollingPreferences &UP) {
1315   CommonTTI.getUnrollingPreferences(L, SE, UP);
1316 }
1317 
1318 void R600TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1319                                         TTI::PeelingPreferences &PP) {
1320   CommonTTI.getPeelingPreferences(L, SE, PP);
1321 }
1322