1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUSubtarget.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <limits> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "AMDGPUtti" 56 57 static cl::opt<unsigned> UnrollThresholdPrivate( 58 "amdgpu-unroll-threshold-private", 59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 60 cl::init(2700), cl::Hidden); 61 62 static cl::opt<unsigned> UnrollThresholdLocal( 63 "amdgpu-unroll-threshold-local", 64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 65 cl::init(1000), cl::Hidden); 66 67 static cl::opt<unsigned> UnrollThresholdIf( 68 "amdgpu-unroll-threshold-if", 69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 70 cl::init(150), cl::Hidden); 71 72 static cl::opt<bool> UnrollRuntimeLocal( 73 "amdgpu-unroll-runtime-local", 74 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<bool> UseLegacyDA( 78 "amdgpu-use-legacy-divergence-analysis", 79 cl::desc("Enable legacy divergence analysis for AMDGPU"), 80 cl::init(false), cl::Hidden); 81 82 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 83 unsigned Depth = 0) { 84 const Instruction *I = dyn_cast<Instruction>(Cond); 85 if (!I) 86 return false; 87 88 for (const Value *V : I->operand_values()) { 89 if (!L->contains(I)) 90 continue; 91 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 92 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 93 return SubLoop->contains(PHI); })) 94 return true; 95 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 96 return true; 97 } 98 return false; 99 } 100 101 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 102 TTI::UnrollingPreferences &UP) { 103 const Function &F = *L->getHeader()->getParent(); 104 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 105 UP.MaxCount = std::numeric_limits<unsigned>::max(); 106 UP.Partial = true; 107 108 // TODO: Do we want runtime unrolling? 109 110 // Maximum alloca size than can fit registers. Reserve 16 registers. 111 const unsigned MaxAlloca = (256 - 16) * 4; 112 unsigned ThresholdPrivate = UnrollThresholdPrivate; 113 unsigned ThresholdLocal = UnrollThresholdLocal; 114 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 115 for (const BasicBlock *BB : L->getBlocks()) { 116 const DataLayout &DL = BB->getModule()->getDataLayout(); 117 unsigned LocalGEPsSeen = 0; 118 119 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 120 return SubLoop->contains(BB); })) 121 continue; // Block belongs to an inner loop. 122 123 for (const Instruction &I : *BB) { 124 // Unroll a loop which contains an "if" statement whose condition 125 // defined by a PHI belonging to the loop. This may help to eliminate 126 // if region and potentially even PHI itself, saving on both divergence 127 // and registers used for the PHI. 128 // Add a small bonus for each of such "if" statements. 129 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 130 if (UP.Threshold < MaxBoost && Br->isConditional()) { 131 BasicBlock *Succ0 = Br->getSuccessor(0); 132 BasicBlock *Succ1 = Br->getSuccessor(1); 133 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 134 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 135 continue; 136 if (dependsOnLocalPhi(L, Br->getCondition())) { 137 UP.Threshold += UnrollThresholdIf; 138 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 139 << " for loop:\n" 140 << *L << " due to " << *Br << '\n'); 141 if (UP.Threshold >= MaxBoost) 142 return; 143 } 144 } 145 continue; 146 } 147 148 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 149 if (!GEP) 150 continue; 151 152 unsigned AS = GEP->getAddressSpace(); 153 unsigned Threshold = 0; 154 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 155 Threshold = ThresholdPrivate; 156 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 157 Threshold = ThresholdLocal; 158 else 159 continue; 160 161 if (UP.Threshold >= Threshold) 162 continue; 163 164 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 165 const Value *Ptr = GEP->getPointerOperand(); 166 const AllocaInst *Alloca = 167 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 168 if (!Alloca || !Alloca->isStaticAlloca()) 169 continue; 170 Type *Ty = Alloca->getAllocatedType(); 171 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 172 if (AllocaSize > MaxAlloca) 173 continue; 174 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 175 AS == AMDGPUAS::REGION_ADDRESS) { 176 LocalGEPsSeen++; 177 // Inhibit unroll for local memory if we have seen addressing not to 178 // a variable, most likely we will be unable to combine it. 179 // Do not unroll too deep inner loops for local memory to give a chance 180 // to unroll an outer loop for a more important reason. 181 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 182 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 183 !isa<Argument>(GEP->getPointerOperand()))) 184 continue; 185 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 186 << *L << " due to LDS use.\n"); 187 UP.Runtime = UnrollRuntimeLocal; 188 } 189 190 // Check if GEP depends on a value defined by this loop itself. 191 bool HasLoopDef = false; 192 for (const Value *Op : GEP->operands()) { 193 const Instruction *Inst = dyn_cast<Instruction>(Op); 194 if (!Inst || L->isLoopInvariant(Op)) 195 continue; 196 197 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 198 return SubLoop->contains(Inst); })) 199 continue; 200 HasLoopDef = true; 201 break; 202 } 203 if (!HasLoopDef) 204 continue; 205 206 // We want to do whatever we can to limit the number of alloca 207 // instructions that make it through to the code generator. allocas 208 // require us to use indirect addressing, which is slow and prone to 209 // compiler bugs. If this loop does an address calculation on an 210 // alloca ptr, then we want to use a higher than normal loop unroll 211 // threshold. This will give SROA a better chance to eliminate these 212 // allocas. 213 // 214 // We also want to have more unrolling for local memory to let ds 215 // instructions with different offsets combine. 216 // 217 // Don't use the maximum allowed value here as it will make some 218 // programs way too big. 219 UP.Threshold = Threshold; 220 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 221 << " for loop:\n" 222 << *L << " due to " << *GEP << '\n'); 223 if (UP.Threshold >= MaxBoost) 224 return; 225 } 226 } 227 } 228 229 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 230 // The concept of vector registers doesn't really exist. Some packed vector 231 // operations operate on the normal 32-bit registers. 232 return 256; 233 } 234 235 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 236 // This is really the number of registers to fill when vectorizing / 237 // interleaving loops, so we lie to avoid trying to use all registers. 238 return getHardwareNumberOfRegisters(Vec) >> 3; 239 } 240 241 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { 242 return 32; 243 } 244 245 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 246 return 32; 247 } 248 249 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 250 unsigned ChainSizeInBytes, 251 VectorType *VecTy) const { 252 unsigned VecRegBitWidth = VF * LoadSize; 253 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 254 // TODO: Support element-size less than 32bit? 255 return 128 / LoadSize; 256 257 return VF; 258 } 259 260 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 261 unsigned ChainSizeInBytes, 262 VectorType *VecTy) const { 263 unsigned VecRegBitWidth = VF * StoreSize; 264 if (VecRegBitWidth > 128) 265 return 128 / StoreSize; 266 267 return VF; 268 } 269 270 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 271 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 272 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 273 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 274 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 275 return 512; 276 } 277 278 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS || 279 AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 280 AddrSpace == AMDGPUAS::REGION_ADDRESS) 281 return 128; 282 283 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 284 return 8 * ST->getMaxPrivateElementSize(); 285 286 llvm_unreachable("unhandled address space"); 287 } 288 289 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 290 unsigned Alignment, 291 unsigned AddrSpace) const { 292 // We allow vectorization of flat stores, even though we may need to decompose 293 // them later if they may access private memory. We don't have enough context 294 // here, and legalization can handle it. 295 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 296 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 297 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 298 } 299 return true; 300 } 301 302 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 303 unsigned Alignment, 304 unsigned AddrSpace) const { 305 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 306 } 307 308 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 309 unsigned Alignment, 310 unsigned AddrSpace) const { 311 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 312 } 313 314 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 315 // Disable unrolling if the loop is not vectorized. 316 // TODO: Enable this again. 317 if (VF == 1) 318 return 1; 319 320 return 8; 321 } 322 323 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 324 MemIntrinsicInfo &Info) const { 325 switch (Inst->getIntrinsicID()) { 326 case Intrinsic::amdgcn_atomic_inc: 327 case Intrinsic::amdgcn_atomic_dec: 328 case Intrinsic::amdgcn_ds_ordered_add: 329 case Intrinsic::amdgcn_ds_ordered_swap: 330 case Intrinsic::amdgcn_ds_fadd: 331 case Intrinsic::amdgcn_ds_fmin: 332 case Intrinsic::amdgcn_ds_fmax: { 333 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 334 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 335 if (!Ordering || !Volatile) 336 return false; // Invalid. 337 338 unsigned OrderingVal = Ordering->getZExtValue(); 339 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 340 return false; 341 342 Info.PtrVal = Inst->getArgOperand(0); 343 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 344 Info.ReadMem = true; 345 Info.WriteMem = true; 346 Info.IsVolatile = !Volatile->isNullValue(); 347 return true; 348 } 349 default: 350 return false; 351 } 352 } 353 354 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 355 TTI::OperandValueKind Opd1Info, 356 TTI::OperandValueKind Opd2Info, 357 TTI::OperandValueProperties Opd1PropInfo, 358 TTI::OperandValueProperties Opd2PropInfo, 359 ArrayRef<const Value *> Args, 360 const Instruction *CxtI) { 361 EVT OrigTy = TLI->getValueType(DL, Ty); 362 if (!OrigTy.isSimple()) { 363 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 364 Opd1PropInfo, Opd2PropInfo); 365 } 366 367 // Legalize the type. 368 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 369 int ISD = TLI->InstructionOpcodeToISD(Opcode); 370 371 // Because we don't have any legal vector operations, but the legal types, we 372 // need to account for split vectors. 373 unsigned NElts = LT.second.isVector() ? 374 LT.second.getVectorNumElements() : 1; 375 376 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 377 378 switch (ISD) { 379 case ISD::SHL: 380 case ISD::SRL: 381 case ISD::SRA: 382 if (SLT == MVT::i64) 383 return get64BitInstrCost() * LT.first * NElts; 384 385 if (ST->has16BitInsts() && SLT == MVT::i16) 386 NElts = (NElts + 1) / 2; 387 388 // i32 389 return getFullRateInstrCost() * LT.first * NElts; 390 case ISD::ADD: 391 case ISD::SUB: 392 case ISD::AND: 393 case ISD::OR: 394 case ISD::XOR: 395 if (SLT == MVT::i64) { 396 // and, or and xor are typically split into 2 VALU instructions. 397 return 2 * getFullRateInstrCost() * LT.first * NElts; 398 } 399 400 if (ST->has16BitInsts() && SLT == MVT::i16) 401 NElts = (NElts + 1) / 2; 402 403 return LT.first * NElts * getFullRateInstrCost(); 404 case ISD::MUL: { 405 const int QuarterRateCost = getQuarterRateInstrCost(); 406 if (SLT == MVT::i64) { 407 const int FullRateCost = getFullRateInstrCost(); 408 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 409 } 410 411 if (ST->has16BitInsts() && SLT == MVT::i16) 412 NElts = (NElts + 1) / 2; 413 414 // i32 415 return QuarterRateCost * NElts * LT.first; 416 } 417 case ISD::FADD: 418 case ISD::FSUB: 419 case ISD::FMUL: 420 if (SLT == MVT::f64) 421 return LT.first * NElts * get64BitInstrCost(); 422 423 if (ST->has16BitInsts() && SLT == MVT::f16) 424 NElts = (NElts + 1) / 2; 425 426 if (SLT == MVT::f32 || SLT == MVT::f16) 427 return LT.first * NElts * getFullRateInstrCost(); 428 break; 429 case ISD::FDIV: 430 case ISD::FREM: 431 // FIXME: frem should be handled separately. The fdiv in it is most of it, 432 // but the current lowering is also not entirely correct. 433 if (SLT == MVT::f64) { 434 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 435 // Add cost of workaround. 436 if (!ST->hasUsableDivScaleConditionOutput()) 437 Cost += 3 * getFullRateInstrCost(); 438 439 return LT.first * Cost * NElts; 440 } 441 442 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 443 // TODO: This is more complicated, unsafe flags etc. 444 if ((SLT == MVT::f32 && !HasFP32Denormals) || 445 (SLT == MVT::f16 && ST->has16BitInsts())) { 446 return LT.first * getQuarterRateInstrCost() * NElts; 447 } 448 } 449 450 if (SLT == MVT::f16 && ST->has16BitInsts()) { 451 // 2 x v_cvt_f32_f16 452 // f32 rcp 453 // f32 fmul 454 // v_cvt_f16_f32 455 // f16 div_fixup 456 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 457 return LT.first * Cost * NElts; 458 } 459 460 if (SLT == MVT::f32 || SLT == MVT::f16) { 461 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 462 463 if (!HasFP32Denormals) { 464 // FP mode switches. 465 Cost += 2 * getFullRateInstrCost(); 466 } 467 468 return LT.first * NElts * Cost; 469 } 470 break; 471 default: 472 break; 473 } 474 475 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 476 Opd1PropInfo, Opd2PropInfo); 477 } 478 479 template <typename T> 480 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 481 ArrayRef<T *> Args, FastMathFlags FMF, 482 unsigned VF, const Instruction *I) { 483 if (ID != Intrinsic::fma) 484 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, I); 485 486 EVT OrigTy = TLI->getValueType(DL, RetTy); 487 if (!OrigTy.isSimple()) { 488 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, I); 489 } 490 491 // Legalize the type. 492 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 493 494 unsigned NElts = LT.second.isVector() ? 495 LT.second.getVectorNumElements() : 1; 496 497 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 498 499 if (SLT == MVT::f64) 500 return LT.first * NElts * get64BitInstrCost(); 501 502 if (ST->has16BitInsts() && SLT == MVT::f16) 503 NElts = (NElts + 1) / 2; 504 505 return LT.first * NElts * (ST->hasFastFMAF32() ? getHalfRateInstrCost() 506 : getQuarterRateInstrCost()); 507 } 508 509 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 510 ArrayRef<Value *> Args, FastMathFlags FMF, 511 unsigned VF, const Instruction *I) { 512 return getIntrinsicInstrCost<Value>(ID, RetTy, Args, FMF, VF, I); 513 } 514 515 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 516 ArrayRef<Type *> Tys, FastMathFlags FMF, 517 unsigned ScalarizationCostPassed, 518 const Instruction *I) { 519 return getIntrinsicInstrCost<Type>(ID, RetTy, Tys, FMF, 520 ScalarizationCostPassed, I); 521 } 522 523 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) { 524 // XXX - For some reason this isn't called for switch. 525 switch (Opcode) { 526 case Instruction::Br: 527 case Instruction::Ret: 528 return 10; 529 default: 530 return BaseT::getCFInstrCost(Opcode); 531 } 532 } 533 534 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 535 bool IsPairwise) { 536 EVT OrigTy = TLI->getValueType(DL, Ty); 537 538 // Computes cost on targets that have packed math instructions(which support 539 // 16-bit types only). 540 if (IsPairwise || 541 !ST->hasVOP3PInsts() || 542 OrigTy.getScalarSizeInBits() != 16) 543 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise); 544 545 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 546 return LT.first * getFullRateInstrCost(); 547 } 548 549 int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy, 550 bool IsPairwise, 551 bool IsUnsigned) { 552 EVT OrigTy = TLI->getValueType(DL, Ty); 553 554 // Computes cost on targets that have packed math instructions(which support 555 // 16-bit types only). 556 if (IsPairwise || 557 !ST->hasVOP3PInsts() || 558 OrigTy.getScalarSizeInBits() != 16) 559 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned); 560 561 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 562 return LT.first * getHalfRateInstrCost(); 563 } 564 565 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 566 unsigned Index) { 567 switch (Opcode) { 568 case Instruction::ExtractElement: 569 case Instruction::InsertElement: { 570 unsigned EltSize 571 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 572 if (EltSize < 32) { 573 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 574 return 0; 575 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 576 } 577 578 // Extracts are just reads of a subregister, so are free. Inserts are 579 // considered free because we don't want to have any cost for scalarizing 580 // operations, and we don't have to copy into a different register class. 581 582 // Dynamic indexing isn't free and is best avoided. 583 return Index == ~0u ? 2 : 0; 584 } 585 default: 586 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 587 } 588 } 589 590 static bool isArgPassedInSGPR(const Argument *A) { 591 const Function *F = A->getParent(); 592 593 // Arguments to compute shaders are never a source of divergence. 594 CallingConv::ID CC = F->getCallingConv(); 595 switch (CC) { 596 case CallingConv::AMDGPU_KERNEL: 597 case CallingConv::SPIR_KERNEL: 598 return true; 599 case CallingConv::AMDGPU_VS: 600 case CallingConv::AMDGPU_LS: 601 case CallingConv::AMDGPU_HS: 602 case CallingConv::AMDGPU_ES: 603 case CallingConv::AMDGPU_GS: 604 case CallingConv::AMDGPU_PS: 605 case CallingConv::AMDGPU_CS: 606 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 607 // Everything else is in VGPRs. 608 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 609 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 610 default: 611 // TODO: Should calls support inreg for SGPR inputs? 612 return false; 613 } 614 } 615 616 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 617 /// this is analyzing the collective result of all output registers. Otherwise, 618 /// this is only querying a specific result index if this returns multiple 619 /// registers in a struct. 620 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 621 const CallInst *CI, ArrayRef<unsigned> Indices) const { 622 // TODO: Handle complex extract indices 623 if (Indices.size() > 1) 624 return true; 625 626 const DataLayout &DL = CI->getModule()->getDataLayout(); 627 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 628 ImmutableCallSite CS(CI); 629 TargetLowering::AsmOperandInfoVector TargetConstraints 630 = TLI->ParseConstraints(DL, ST->getRegisterInfo(), CS); 631 632 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 633 634 int OutputIdx = 0; 635 for (auto &TC : TargetConstraints) { 636 if (TC.Type != InlineAsm::isOutput) 637 continue; 638 639 // Skip outputs we don't care about. 640 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 641 continue; 642 643 TLI->ComputeConstraintToUse(TC, SDValue()); 644 645 Register AssignedReg; 646 const TargetRegisterClass *RC; 647 std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( 648 TRI, TC.ConstraintCode, TC.ConstraintVT); 649 if (AssignedReg) { 650 // FIXME: This is a workaround for getRegForInlineAsmConstraint 651 // returning VS_32 652 RC = TRI->getPhysRegClass(AssignedReg); 653 } 654 655 // For AGPR constraints null is returned on subtargets without AGPRs, so 656 // assume divergent for null. 657 if (!RC || !TRI->isSGPRClass(RC)) 658 return true; 659 } 660 661 return false; 662 } 663 664 /// \returns true if the new GPU divergence analysis is enabled. 665 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 666 return !UseLegacyDA; 667 } 668 669 /// \returns true if the result of the value could potentially be 670 /// different across workitems in a wavefront. 671 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 672 if (const Argument *A = dyn_cast<Argument>(V)) 673 return !isArgPassedInSGPR(A); 674 675 // Loads from the private and flat address spaces are divergent, because 676 // threads can execute the load instruction with the same inputs and get 677 // different results. 678 // 679 // All other loads are not divergent, because if threads issue loads with the 680 // same arguments, they will always get the same result. 681 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 682 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 683 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 684 685 // Atomics are divergent because they are executed sequentially: when an 686 // atomic operation refers to the same address in each thread, then each 687 // thread after the first sees the value written by the previous thread as 688 // original value. 689 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 690 return true; 691 692 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 693 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 694 695 // Assume all function calls are a source of divergence. 696 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 697 if (isa<InlineAsm>(CI->getCalledValue())) 698 return isInlineAsmSourceOfDivergence(CI); 699 return true; 700 } 701 702 // Assume all function calls are a source of divergence. 703 if (isa<InvokeInst>(V)) 704 return true; 705 706 return false; 707 } 708 709 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 710 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 711 switch (Intrinsic->getIntrinsicID()) { 712 default: 713 return false; 714 case Intrinsic::amdgcn_readfirstlane: 715 case Intrinsic::amdgcn_readlane: 716 case Intrinsic::amdgcn_icmp: 717 case Intrinsic::amdgcn_fcmp: 718 case Intrinsic::amdgcn_if_break: 719 return true; 720 } 721 } 722 723 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 724 if (isa<InlineAsm>(CI->getCalledValue())) 725 return !isInlineAsmSourceOfDivergence(CI); 726 return false; 727 } 728 729 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 730 if (!ExtValue) 731 return false; 732 733 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 734 if (!CI) 735 return false; 736 737 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 738 switch (Intrinsic->getIntrinsicID()) { 739 default: 740 return false; 741 case Intrinsic::amdgcn_if: 742 case Intrinsic::amdgcn_else: { 743 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 744 return Indices.size() == 1 && Indices[0] == 1; 745 } 746 } 747 } 748 749 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 750 // divergent for the overall struct return. We need to override it in the 751 // case we're extracting an SGPR component here. 752 if (isa<InlineAsm>(CI->getCalledValue())) 753 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 754 755 return false; 756 } 757 758 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 759 Intrinsic::ID IID) const { 760 switch (IID) { 761 case Intrinsic::amdgcn_atomic_inc: 762 case Intrinsic::amdgcn_atomic_dec: 763 case Intrinsic::amdgcn_ds_fadd: 764 case Intrinsic::amdgcn_ds_fmin: 765 case Intrinsic::amdgcn_ds_fmax: 766 case Intrinsic::amdgcn_is_shared: 767 case Intrinsic::amdgcn_is_private: 768 OpIndexes.push_back(0); 769 return true; 770 default: 771 return false; 772 } 773 } 774 775 bool GCNTTIImpl::rewriteIntrinsicWithAddressSpace( 776 IntrinsicInst *II, Value *OldV, Value *NewV) const { 777 auto IntrID = II->getIntrinsicID(); 778 switch (IntrID) { 779 case Intrinsic::amdgcn_atomic_inc: 780 case Intrinsic::amdgcn_atomic_dec: 781 case Intrinsic::amdgcn_ds_fadd: 782 case Intrinsic::amdgcn_ds_fmin: 783 case Intrinsic::amdgcn_ds_fmax: { 784 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 785 if (!IsVolatile->isZero()) 786 return false; 787 Module *M = II->getParent()->getParent()->getParent(); 788 Type *DestTy = II->getType(); 789 Type *SrcTy = NewV->getType(); 790 Function *NewDecl = 791 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 792 II->setArgOperand(0, NewV); 793 II->setCalledFunction(NewDecl); 794 return true; 795 } 796 case Intrinsic::amdgcn_is_shared: 797 case Intrinsic::amdgcn_is_private: { 798 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 799 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 800 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 801 LLVMContext &Ctx = NewV->getType()->getContext(); 802 ConstantInt *NewVal = (TrueAS == NewAS) ? 803 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 804 II->replaceAllUsesWith(NewVal); 805 II->eraseFromParent(); 806 return true; 807 } 808 default: 809 return false; 810 } 811 } 812 813 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 814 Type *SubTp) { 815 if (ST->hasVOP3PInsts()) { 816 VectorType *VT = cast<VectorType>(Tp); 817 if (VT->getNumElements() == 2 && 818 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 819 // With op_sel VOP3P instructions freely can access the low half or high 820 // half of a register, so any swizzle is free. 821 822 switch (Kind) { 823 case TTI::SK_Broadcast: 824 case TTI::SK_Reverse: 825 case TTI::SK_PermuteSingleSrc: 826 return 0; 827 default: 828 break; 829 } 830 } 831 } 832 833 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 834 } 835 836 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 837 const Function *Callee) const { 838 const TargetMachine &TM = getTLI()->getTargetMachine(); 839 const GCNSubtarget *CallerST 840 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 841 const GCNSubtarget *CalleeST 842 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 843 844 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 845 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 846 847 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 848 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 849 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 850 return false; 851 852 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 853 // no way to support merge for backend defined attributes. 854 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller, *CallerST); 855 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee, *CalleeST); 856 return CallerMode.isInlineCompatible(CalleeMode); 857 } 858 859 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 860 TTI::UnrollingPreferences &UP) { 861 CommonTTI.getUnrollingPreferences(L, SE, UP); 862 } 863 864 unsigned GCNTTIImpl::getUserCost(const User *U, 865 ArrayRef<const Value *> Operands) { 866 const Instruction *I = dyn_cast<Instruction>(U); 867 if (!I) 868 return BaseT::getUserCost(U, Operands); 869 870 // Estimate different operations to be optimized out 871 switch (I->getOpcode()) { 872 case Instruction::ExtractElement: { 873 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 874 unsigned Idx = -1; 875 if (CI) 876 Idx = CI->getZExtValue(); 877 return getVectorInstrCost(I->getOpcode(), I->getOperand(0)->getType(), Idx); 878 } 879 case Instruction::InsertElement: { 880 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 881 unsigned Idx = -1; 882 if (CI) 883 Idx = CI->getZExtValue(); 884 return getVectorInstrCost(I->getOpcode(), I->getType(), Idx); 885 } 886 case Instruction::Call: { 887 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 888 SmallVector<Value *, 4> Args(II->arg_operands()); 889 FastMathFlags FMF; 890 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 891 FMF = FPMO->getFastMathFlags(); 892 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args, 893 FMF, 1, II); 894 } else { 895 return BaseT::getUserCost(U, Operands); 896 } 897 } 898 case Instruction::ShuffleVector: { 899 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 900 Type *Ty = Shuffle->getType(); 901 Type *SrcTy = Shuffle->getOperand(0)->getType(); 902 903 // TODO: Identify and add costs for insert subvector, etc. 904 int SubIndex; 905 if (Shuffle->isExtractSubvectorMask(SubIndex)) 906 return getShuffleCost(TTI::SK_ExtractSubvector, SrcTy, SubIndex, Ty); 907 908 if (Shuffle->changesLength()) 909 return BaseT::getUserCost(U, Operands); 910 911 if (Shuffle->isIdentity()) 912 return 0; 913 914 if (Shuffle->isReverse()) 915 return getShuffleCost(TTI::SK_Reverse, Ty, 0, nullptr); 916 917 if (Shuffle->isSelect()) 918 return getShuffleCost(TTI::SK_Select, Ty, 0, nullptr); 919 920 if (Shuffle->isTranspose()) 921 return getShuffleCost(TTI::SK_Transpose, Ty, 0, nullptr); 922 923 if (Shuffle->isZeroEltSplat()) 924 return getShuffleCost(TTI::SK_Broadcast, Ty, 0, nullptr); 925 926 if (Shuffle->isSingleSource()) 927 return getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, nullptr); 928 929 return getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, 0, nullptr); 930 } 931 case Instruction::ZExt: 932 case Instruction::SExt: 933 case Instruction::FPToUI: 934 case Instruction::FPToSI: 935 case Instruction::FPExt: 936 case Instruction::PtrToInt: 937 case Instruction::IntToPtr: 938 case Instruction::SIToFP: 939 case Instruction::UIToFP: 940 case Instruction::Trunc: 941 case Instruction::FPTrunc: 942 case Instruction::BitCast: 943 case Instruction::AddrSpaceCast: { 944 return getCastInstrCost(I->getOpcode(), I->getType(), 945 I->getOperand(0)->getType(), I); 946 } 947 case Instruction::Add: 948 case Instruction::FAdd: 949 case Instruction::Sub: 950 case Instruction::FSub: 951 case Instruction::Mul: 952 case Instruction::FMul: 953 case Instruction::UDiv: 954 case Instruction::SDiv: 955 case Instruction::FDiv: 956 case Instruction::URem: 957 case Instruction::SRem: 958 case Instruction::FRem: 959 case Instruction::Shl: 960 case Instruction::LShr: 961 case Instruction::AShr: 962 case Instruction::And: 963 case Instruction::Or: 964 case Instruction::Xor: 965 case Instruction::FNeg: { 966 return getArithmeticInstrCost(I->getOpcode(), I->getType(), 967 TTI::OK_AnyValue, TTI::OK_AnyValue, 968 TTI::OP_None, TTI::OP_None, Operands, I); 969 } 970 default: 971 break; 972 } 973 974 return BaseT::getUserCost(U, Operands); 975 } 976 977 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 978 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 979 } 980 981 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 982 return getHardwareNumberOfRegisters(Vec); 983 } 984 985 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { 986 return 32; 987 } 988 989 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 990 return 32; 991 } 992 993 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 994 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 995 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 996 return 128; 997 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 998 AddrSpace == AMDGPUAS::REGION_ADDRESS) 999 return 64; 1000 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 1001 return 32; 1002 1003 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 1004 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 1005 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 1006 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 1007 return 128; 1008 llvm_unreachable("unhandled address space"); 1009 } 1010 1011 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 1012 unsigned Alignment, 1013 unsigned AddrSpace) const { 1014 // We allow vectorization of flat stores, even though we may need to decompose 1015 // them later if they may access private memory. We don't have enough context 1016 // here, and legalization can handle it. 1017 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 1018 } 1019 1020 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 1021 unsigned Alignment, 1022 unsigned AddrSpace) const { 1023 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1024 } 1025 1026 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 1027 unsigned Alignment, 1028 unsigned AddrSpace) const { 1029 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1030 } 1031 1032 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1033 // Disable unrolling if the loop is not vectorized. 1034 // TODO: Enable this again. 1035 if (VF == 1) 1036 return 1; 1037 1038 return 8; 1039 } 1040 1041 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) { 1042 // XXX - For some reason this isn't called for switch. 1043 switch (Opcode) { 1044 case Instruction::Br: 1045 case Instruction::Ret: 1046 return 10; 1047 default: 1048 return BaseT::getCFInstrCost(Opcode); 1049 } 1050 } 1051 1052 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 1053 unsigned Index) { 1054 switch (Opcode) { 1055 case Instruction::ExtractElement: 1056 case Instruction::InsertElement: { 1057 unsigned EltSize 1058 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 1059 if (EltSize < 32) { 1060 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1061 } 1062 1063 // Extracts are just reads of a subregister, so are free. Inserts are 1064 // considered free because we don't want to have any cost for scalarizing 1065 // operations, and we don't have to copy into a different register class. 1066 1067 // Dynamic indexing isn't free and is best avoided. 1068 return Index == ~0u ? 2 : 0; 1069 } 1070 default: 1071 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1072 } 1073 } 1074 1075 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1076 TTI::UnrollingPreferences &UP) { 1077 CommonTTI.getUnrollingPreferences(L, SE, UP); 1078 } 1079