1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/IntrinsicsAMDGPU.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/Support/KnownBits.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "AMDGPUtti"
28 
29 static cl::opt<unsigned> UnrollThresholdPrivate(
30   "amdgpu-unroll-threshold-private",
31   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
32   cl::init(2700), cl::Hidden);
33 
34 static cl::opt<unsigned> UnrollThresholdLocal(
35   "amdgpu-unroll-threshold-local",
36   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
37   cl::init(1000), cl::Hidden);
38 
39 static cl::opt<unsigned> UnrollThresholdIf(
40   "amdgpu-unroll-threshold-if",
41   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
42   cl::init(150), cl::Hidden);
43 
44 static cl::opt<bool> UnrollRuntimeLocal(
45   "amdgpu-unroll-runtime-local",
46   cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
47   cl::init(true), cl::Hidden);
48 
49 static cl::opt<bool> UseLegacyDA(
50   "amdgpu-use-legacy-divergence-analysis",
51   cl::desc("Enable legacy divergence analysis for AMDGPU"),
52   cl::init(false), cl::Hidden);
53 
54 static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
55     "amdgpu-unroll-max-block-to-analyze",
56     cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
57     cl::init(32), cl::Hidden);
58 
59 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
60                                        cl::Hidden, cl::init(4000),
61                                        cl::desc("Cost of alloca argument"));
62 
63 // If the amount of scratch memory to eliminate exceeds our ability to allocate
64 // it into registers we gain nothing by aggressively inlining functions for that
65 // heuristic.
66 static cl::opt<unsigned>
67     ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
68                     cl::init(256),
69                     cl::desc("Maximum alloca size to use for inline cost"));
70 
71 // Inliner constraint to achieve reasonable compilation time.
72 static cl::opt<size_t> InlineMaxBB(
73     "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
74     cl::desc("Maximum number of BBs allowed in a function after inlining"
75              " (compile time constraint)"));
76 
77 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
78                               unsigned Depth = 0) {
79   const Instruction *I = dyn_cast<Instruction>(Cond);
80   if (!I)
81     return false;
82 
83   for (const Value *V : I->operand_values()) {
84     if (!L->contains(I))
85       continue;
86     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
87       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
88                   return SubLoop->contains(PHI); }))
89         return true;
90     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
91       return true;
92   }
93   return false;
94 }
95 
96 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
97     : BaseT(TM, F.getParent()->getDataLayout()),
98       TargetTriple(TM->getTargetTriple()),
99       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
100       TLI(ST->getTargetLowering()) {}
101 
102 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
103                                             TTI::UnrollingPreferences &UP) {
104   const Function &F = *L->getHeader()->getParent();
105   UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
106   UP.MaxCount = std::numeric_limits<unsigned>::max();
107   UP.Partial = true;
108 
109   // TODO: Do we want runtime unrolling?
110 
111   // Maximum alloca size than can fit registers. Reserve 16 registers.
112   const unsigned MaxAlloca = (256 - 16) * 4;
113   unsigned ThresholdPrivate = UnrollThresholdPrivate;
114   unsigned ThresholdLocal = UnrollThresholdLocal;
115 
116   // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
117   // provided threshold value as the default for Threshold
118   if (MDNode *LoopUnrollThreshold =
119           findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
120     if (LoopUnrollThreshold->getNumOperands() == 2) {
121       ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
122           LoopUnrollThreshold->getOperand(1));
123       if (MetaThresholdValue) {
124         // We will also use the supplied value for PartialThreshold for now.
125         // We may introduce additional metadata if it becomes necessary in the
126         // future.
127         UP.Threshold = MetaThresholdValue->getSExtValue();
128         UP.PartialThreshold = UP.Threshold;
129         ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
130         ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
131       }
132     }
133   }
134 
135   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
136   for (const BasicBlock *BB : L->getBlocks()) {
137     const DataLayout &DL = BB->getModule()->getDataLayout();
138     unsigned LocalGEPsSeen = 0;
139 
140     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
141                return SubLoop->contains(BB); }))
142         continue; // Block belongs to an inner loop.
143 
144     for (const Instruction &I : *BB) {
145       // Unroll a loop which contains an "if" statement whose condition
146       // defined by a PHI belonging to the loop. This may help to eliminate
147       // if region and potentially even PHI itself, saving on both divergence
148       // and registers used for the PHI.
149       // Add a small bonus for each of such "if" statements.
150       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
151         if (UP.Threshold < MaxBoost && Br->isConditional()) {
152           BasicBlock *Succ0 = Br->getSuccessor(0);
153           BasicBlock *Succ1 = Br->getSuccessor(1);
154           if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
155               (L->contains(Succ1) && L->isLoopExiting(Succ1)))
156             continue;
157           if (dependsOnLocalPhi(L, Br->getCondition())) {
158             UP.Threshold += UnrollThresholdIf;
159             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
160                               << " for loop:\n"
161                               << *L << " due to " << *Br << '\n');
162             if (UP.Threshold >= MaxBoost)
163               return;
164           }
165         }
166         continue;
167       }
168 
169       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
170       if (!GEP)
171         continue;
172 
173       unsigned AS = GEP->getAddressSpace();
174       unsigned Threshold = 0;
175       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
176         Threshold = ThresholdPrivate;
177       else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
178         Threshold = ThresholdLocal;
179       else
180         continue;
181 
182       if (UP.Threshold >= Threshold)
183         continue;
184 
185       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
186         const Value *Ptr = GEP->getPointerOperand();
187         const AllocaInst *Alloca =
188             dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
189         if (!Alloca || !Alloca->isStaticAlloca())
190           continue;
191         Type *Ty = Alloca->getAllocatedType();
192         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
193         if (AllocaSize > MaxAlloca)
194           continue;
195       } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
196                  AS == AMDGPUAS::REGION_ADDRESS) {
197         LocalGEPsSeen++;
198         // Inhibit unroll for local memory if we have seen addressing not to
199         // a variable, most likely we will be unable to combine it.
200         // Do not unroll too deep inner loops for local memory to give a chance
201         // to unroll an outer loop for a more important reason.
202         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
203             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
204              !isa<Argument>(GEP->getPointerOperand())))
205           continue;
206         LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
207                           << *L << " due to LDS use.\n");
208         UP.Runtime = UnrollRuntimeLocal;
209       }
210 
211       // Check if GEP depends on a value defined by this loop itself.
212       bool HasLoopDef = false;
213       for (const Value *Op : GEP->operands()) {
214         const Instruction *Inst = dyn_cast<Instruction>(Op);
215         if (!Inst || L->isLoopInvariant(Op))
216           continue;
217 
218         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
219              return SubLoop->contains(Inst); }))
220           continue;
221         HasLoopDef = true;
222         break;
223       }
224       if (!HasLoopDef)
225         continue;
226 
227       // We want to do whatever we can to limit the number of alloca
228       // instructions that make it through to the code generator.  allocas
229       // require us to use indirect addressing, which is slow and prone to
230       // compiler bugs.  If this loop does an address calculation on an
231       // alloca ptr, then we want to use a higher than normal loop unroll
232       // threshold. This will give SROA a better chance to eliminate these
233       // allocas.
234       //
235       // We also want to have more unrolling for local memory to let ds
236       // instructions with different offsets combine.
237       //
238       // Don't use the maximum allowed value here as it will make some
239       // programs way too big.
240       UP.Threshold = Threshold;
241       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
242                         << " for loop:\n"
243                         << *L << " due to " << *GEP << '\n');
244       if (UP.Threshold >= MaxBoost)
245         return;
246     }
247 
248     // If we got a GEP in a small BB from inner loop then increase max trip
249     // count to analyze for better estimation cost in unroll
250     if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
251       UP.MaxIterationsCountToAnalyze = 32;
252   }
253 }
254 
255 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
256                                           TTI::PeelingPreferences &PP) {
257   BaseT::getPeelingPreferences(L, SE, PP);
258 }
259 
260 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
261     // Codegen control options which don't matter.
262     AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
263     AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
264     AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
265     AMDGPU::FeatureUnalignedAccessMode,
266 
267     AMDGPU::FeatureAutoWaitcntBeforeBarrier,
268 
269     // Property of the kernel/environment which can't actually differ.
270     AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
271     AMDGPU::FeatureTrapHandler,
272 
273     // The default assumption needs to be ecc is enabled, but no directly
274     // exposed operations depend on it, so it can be safely inlined.
275     AMDGPU::FeatureSRAMECC,
276 
277     // Perf-tuning features
278     AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
279 
280 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
281     : BaseT(TM, F.getParent()->getDataLayout()),
282       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
283       TLI(ST->getTargetLowering()), CommonTTI(TM, F),
284       IsGraphics(AMDGPU::isGraphics(F.getCallingConv())),
285       MaxVGPRs(ST->getMaxNumVGPRs(
286           std::max(ST->getWavesPerEU(F).first,
287                    ST->getWavesPerEUForWorkGroup(
288                        ST->getFlatWorkGroupSizes(F).second)))) {
289   AMDGPU::SIModeRegisterDefaults Mode(F);
290   HasFP32Denormals = Mode.allFP32Denormals();
291   HasFP64FP16Denormals = Mode.allFP64FP16Denormals();
292 }
293 
294 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
295   // The concept of vector registers doesn't really exist. Some packed vector
296   // operations operate on the normal 32-bit registers.
297   return MaxVGPRs;
298 }
299 
300 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
301   // This is really the number of registers to fill when vectorizing /
302   // interleaving loops, so we lie to avoid trying to use all registers.
303   return getHardwareNumberOfRegisters(Vec) >> 3;
304 }
305 
306 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
307   const SIRegisterInfo *TRI = ST->getRegisterInfo();
308   const TargetRegisterClass *RC = TRI->getRegClass(RCID);
309   unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32;
310   return getHardwareNumberOfRegisters(false) / NumVGPRs;
311 }
312 
313 TypeSize
314 GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
315   switch (K) {
316   case TargetTransformInfo::RGK_Scalar:
317     return TypeSize::getFixed(32);
318   case TargetTransformInfo::RGK_FixedWidthVector:
319     return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
320   case TargetTransformInfo::RGK_ScalableVector:
321     return TypeSize::getScalable(0);
322   }
323   llvm_unreachable("Unsupported register kind");
324 }
325 
326 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
327   return 32;
328 }
329 
330 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
331   if (Opcode == Instruction::Load || Opcode == Instruction::Store)
332     return 32 * 4 / ElemWidth;
333   return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
334        : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
335        : 1;
336 }
337 
338 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
339                                          unsigned ChainSizeInBytes,
340                                          VectorType *VecTy) const {
341   unsigned VecRegBitWidth = VF * LoadSize;
342   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
343     // TODO: Support element-size less than 32bit?
344     return 128 / LoadSize;
345 
346   return VF;
347 }
348 
349 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
350                                              unsigned ChainSizeInBytes,
351                                              VectorType *VecTy) const {
352   unsigned VecRegBitWidth = VF * StoreSize;
353   if (VecRegBitWidth > 128)
354     return 128 / StoreSize;
355 
356   return VF;
357 }
358 
359 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
360   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
361       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
362       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
363       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
364     return 512;
365   }
366 
367   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
368     return 8 * ST->getMaxPrivateElementSize();
369 
370   // Common to flat, global, local and region. Assume for unknown addrspace.
371   return 128;
372 }
373 
374 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
375                                             Align Alignment,
376                                             unsigned AddrSpace) const {
377   // We allow vectorization of flat stores, even though we may need to decompose
378   // them later if they may access private memory. We don't have enough context
379   // here, and legalization can handle it.
380   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
381     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
382       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
383   }
384   return true;
385 }
386 
387 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
388                                              Align Alignment,
389                                              unsigned AddrSpace) const {
390   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
391 }
392 
393 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
394                                               Align Alignment,
395                                               unsigned AddrSpace) const {
396   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
397 }
398 
399 // FIXME: Really we would like to issue multiple 128-bit loads and stores per
400 // iteration. Should we report a larger size and let it legalize?
401 //
402 // FIXME: Should we use narrower types for local/region, or account for when
403 // unaligned access is legal?
404 //
405 // FIXME: This could use fine tuning and microbenchmarks.
406 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
407                                             unsigned SrcAddrSpace,
408                                             unsigned DestAddrSpace,
409                                             unsigned SrcAlign,
410                                             unsigned DestAlign) const {
411   unsigned MinAlign = std::min(SrcAlign, DestAlign);
412 
413   // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
414   // hardware into byte accesses. If you assume all alignments are equally
415   // probable, it's more efficient on average to use short accesses for this
416   // case.
417   if (MinAlign == 2)
418     return Type::getInt16Ty(Context);
419 
420   // Not all subtargets have 128-bit DS instructions, and we currently don't
421   // form them by default.
422   if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
423       SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
424       DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
425       DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
426     return FixedVectorType::get(Type::getInt32Ty(Context), 2);
427   }
428 
429   // Global memory works best with 16-byte accesses. Private memory will also
430   // hit this, although they'll be decomposed.
431   return FixedVectorType::get(Type::getInt32Ty(Context), 4);
432 }
433 
434 void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
435   SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
436   unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
437   unsigned SrcAlign, unsigned DestAlign) const {
438   assert(RemainingBytes < 16);
439 
440   unsigned MinAlign = std::min(SrcAlign, DestAlign);
441 
442   if (MinAlign != 2) {
443     Type *I64Ty = Type::getInt64Ty(Context);
444     while (RemainingBytes >= 8) {
445       OpsOut.push_back(I64Ty);
446       RemainingBytes -= 8;
447     }
448 
449     Type *I32Ty = Type::getInt32Ty(Context);
450     while (RemainingBytes >= 4) {
451       OpsOut.push_back(I32Ty);
452       RemainingBytes -= 4;
453     }
454   }
455 
456   Type *I16Ty = Type::getInt16Ty(Context);
457   while (RemainingBytes >= 2) {
458     OpsOut.push_back(I16Ty);
459     RemainingBytes -= 2;
460   }
461 
462   Type *I8Ty = Type::getInt8Ty(Context);
463   while (RemainingBytes) {
464     OpsOut.push_back(I8Ty);
465     --RemainingBytes;
466   }
467 }
468 
469 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
470   // Disable unrolling if the loop is not vectorized.
471   // TODO: Enable this again.
472   if (VF == 1)
473     return 1;
474 
475   return 8;
476 }
477 
478 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
479                                        MemIntrinsicInfo &Info) const {
480   switch (Inst->getIntrinsicID()) {
481   case Intrinsic::amdgcn_atomic_inc:
482   case Intrinsic::amdgcn_atomic_dec:
483   case Intrinsic::amdgcn_ds_ordered_add:
484   case Intrinsic::amdgcn_ds_ordered_swap:
485   case Intrinsic::amdgcn_ds_fadd:
486   case Intrinsic::amdgcn_ds_fmin:
487   case Intrinsic::amdgcn_ds_fmax: {
488     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
489     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
490     if (!Ordering || !Volatile)
491       return false; // Invalid.
492 
493     unsigned OrderingVal = Ordering->getZExtValue();
494     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
495       return false;
496 
497     Info.PtrVal = Inst->getArgOperand(0);
498     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
499     Info.ReadMem = true;
500     Info.WriteMem = true;
501     Info.IsVolatile = !Volatile->isNullValue();
502     return true;
503   }
504   default:
505     return false;
506   }
507 }
508 
509 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
510                                        TTI::TargetCostKind CostKind,
511                                        TTI::OperandValueKind Opd1Info,
512                                        TTI::OperandValueKind Opd2Info,
513                                        TTI::OperandValueProperties Opd1PropInfo,
514                                        TTI::OperandValueProperties Opd2PropInfo,
515                                        ArrayRef<const Value *> Args,
516                                        const Instruction *CxtI) {
517   EVT OrigTy = TLI->getValueType(DL, Ty);
518   if (!OrigTy.isSimple()) {
519     // FIXME: We're having to query the throughput cost so that the basic
520     // implementation tries to generate legalize and scalarization costs. Maybe
521     // we could hoist the scalarization code here?
522     if (CostKind != TTI::TCK_CodeSize)
523       return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput,
524                                            Opd1Info, Opd2Info, Opd1PropInfo,
525                                            Opd2PropInfo, Args, CxtI);
526     // Scalarization
527 
528     // Check if any of the operands are vector operands.
529     int ISD = TLI->InstructionOpcodeToISD(Opcode);
530     assert(ISD && "Invalid opcode");
531 
532     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
533 
534     bool IsFloat = Ty->isFPOrFPVectorTy();
535     // Assume that floating point arithmetic operations cost twice as much as
536     // integer operations.
537     unsigned OpCost = (IsFloat ? 2 : 1);
538 
539     if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
540       // The operation is legal. Assume it costs 1.
541       // TODO: Once we have extract/insert subvector cost we need to use them.
542       return LT.first * OpCost;
543     }
544 
545     if (!TLI->isOperationExpand(ISD, LT.second)) {
546       // If the operation is custom lowered, then assume that the code is twice
547       // as expensive.
548       return LT.first * 2 * OpCost;
549     }
550 
551     // Else, assume that we need to scalarize this op.
552     // TODO: If one of the types get legalized by splitting, handle this
553     // similarly to what getCastInstrCost() does.
554     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
555       unsigned Num = cast<FixedVectorType>(VTy)->getNumElements();
556       unsigned Cost = getArithmeticInstrCost(
557           Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
558           Opd1PropInfo, Opd2PropInfo, Args, CxtI);
559       // Return the cost of multiple scalar invocation plus the cost of
560       // inserting and extracting the values.
561       SmallVector<Type *> Tys(Args.size(), Ty);
562       return getScalarizationOverhead(VTy, Args, Tys) + Num * Cost;
563     }
564 
565     // We don't know anything about this scalar instruction.
566     return OpCost;
567   }
568 
569   // Legalize the type.
570   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
571   int ISD = TLI->InstructionOpcodeToISD(Opcode);
572 
573   // Because we don't have any legal vector operations, but the legal types, we
574   // need to account for split vectors.
575   unsigned NElts = LT.second.isVector() ?
576     LT.second.getVectorNumElements() : 1;
577 
578   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
579 
580   switch (ISD) {
581   case ISD::SHL:
582   case ISD::SRL:
583   case ISD::SRA:
584     if (SLT == MVT::i64)
585       return get64BitInstrCost(CostKind) * LT.first * NElts;
586 
587     if (ST->has16BitInsts() && SLT == MVT::i16)
588       NElts = (NElts + 1) / 2;
589 
590     // i32
591     return getFullRateInstrCost() * LT.first * NElts;
592   case ISD::ADD:
593   case ISD::SUB:
594   case ISD::AND:
595   case ISD::OR:
596   case ISD::XOR:
597     if (SLT == MVT::i64) {
598       // and, or and xor are typically split into 2 VALU instructions.
599       return 2 * getFullRateInstrCost() * LT.first * NElts;
600     }
601 
602     if (ST->has16BitInsts() && SLT == MVT::i16)
603       NElts = (NElts + 1) / 2;
604 
605     return LT.first * NElts * getFullRateInstrCost();
606   case ISD::MUL: {
607     const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
608     if (SLT == MVT::i64) {
609       const int FullRateCost = getFullRateInstrCost();
610       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
611     }
612 
613     if (ST->has16BitInsts() && SLT == MVT::i16)
614       NElts = (NElts + 1) / 2;
615 
616     // i32
617     return QuarterRateCost * NElts * LT.first;
618   }
619   case ISD::FMUL:
620     // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
621     // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
622     // fused operation.
623     if (CxtI && CxtI->hasOneUse())
624       if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
625         const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
626         if (OPC == ISD::FADD || OPC == ISD::FSUB) {
627           if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
628             return TargetTransformInfo::TCC_Free;
629           if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
630             return TargetTransformInfo::TCC_Free;
631 
632           // Estimate all types may be fused with contract/unsafe flags
633           const TargetOptions &Options = TLI->getTargetMachine().Options;
634           if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
635               Options.UnsafeFPMath ||
636               (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
637             return TargetTransformInfo::TCC_Free;
638         }
639       }
640     LLVM_FALLTHROUGH;
641   case ISD::FADD:
642   case ISD::FSUB:
643     if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
644       NElts = (NElts + 1) / 2;
645     if (SLT == MVT::f64)
646       return LT.first * NElts * get64BitInstrCost(CostKind);
647 
648     if (ST->has16BitInsts() && SLT == MVT::f16)
649       NElts = (NElts + 1) / 2;
650 
651     if (SLT == MVT::f32 || SLT == MVT::f16)
652       return LT.first * NElts * getFullRateInstrCost();
653     break;
654   case ISD::FDIV:
655   case ISD::FREM:
656     // FIXME: frem should be handled separately. The fdiv in it is most of it,
657     // but the current lowering is also not entirely correct.
658     if (SLT == MVT::f64) {
659       int Cost = 7 * get64BitInstrCost(CostKind) +
660                  getQuarterRateInstrCost(CostKind) +
661                  3 * getHalfRateInstrCost(CostKind);
662       // Add cost of workaround.
663       if (!ST->hasUsableDivScaleConditionOutput())
664         Cost += 3 * getFullRateInstrCost();
665 
666       return LT.first * Cost * NElts;
667     }
668 
669     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
670       // TODO: This is more complicated, unsafe flags etc.
671       if ((SLT == MVT::f32 && !HasFP32Denormals) ||
672           (SLT == MVT::f16 && ST->has16BitInsts())) {
673         return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
674       }
675     }
676 
677     if (SLT == MVT::f16 && ST->has16BitInsts()) {
678       // 2 x v_cvt_f32_f16
679       // f32 rcp
680       // f32 fmul
681       // v_cvt_f16_f32
682       // f16 div_fixup
683       int Cost =
684           4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
685       return LT.first * Cost * NElts;
686     }
687 
688     if (SLT == MVT::f32 || SLT == MVT::f16) {
689       // 4 more v_cvt_* insts without f16 insts support
690       int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
691                  1 * getQuarterRateInstrCost(CostKind);
692 
693       if (!HasFP32Denormals) {
694         // FP mode switches.
695         Cost += 2 * getFullRateInstrCost();
696       }
697 
698       return LT.first * NElts * Cost;
699     }
700     break;
701   case ISD::FNEG:
702     // Use the backend' estimation. If fneg is not free each element will cost
703     // one additional instruction.
704     return TLI->isFNegFree(SLT) ? 0 : NElts;
705   default:
706     break;
707   }
708 
709   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
710                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
711 }
712 
713 // Return true if there's a potential benefit from using v2f16/v2i16
714 // instructions for an intrinsic, even if it requires nontrivial legalization.
715 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
716   switch (ID) {
717   case Intrinsic::fma: // TODO: fmuladd
718   // There's a small benefit to using vector ops in the legalized code.
719   case Intrinsic::round:
720   case Intrinsic::uadd_sat:
721   case Intrinsic::usub_sat:
722   case Intrinsic::sadd_sat:
723   case Intrinsic::ssub_sat:
724     return true;
725   default:
726     return false;
727   }
728 }
729 
730 InstructionCost
731 GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
732                                   TTI::TargetCostKind CostKind) {
733   if (ICA.getID() == Intrinsic::fabs)
734     return 0;
735 
736   if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
737     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
738 
739   Type *RetTy = ICA.getReturnType();
740   EVT OrigTy = TLI->getValueType(DL, RetTy);
741   if (!OrigTy.isSimple()) {
742     if (CostKind != TTI::TCK_CodeSize)
743       return BaseT::getIntrinsicInstrCost(ICA, CostKind);
744 
745     // TODO: Combine these two logic paths.
746     if (ICA.isTypeBasedOnly())
747       return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
748 
749     unsigned RetVF =
750         (RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements()
751                              : 1);
752     const IntrinsicInst *I = ICA.getInst();
753     const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
754     FastMathFlags FMF = ICA.getFlags();
755     // Assume that we need to scalarize this intrinsic.
756 
757     // Compute the scalarization overhead based on Args for a vector
758     // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
759     // CostModel will pass a vector RetTy and VF is 1.
760     unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
761     if (RetVF > 1) {
762       ScalarizationCost = 0;
763       if (!RetTy->isVoidTy())
764         ScalarizationCost +=
765             getScalarizationOverhead(cast<VectorType>(RetTy), true, false);
766       ScalarizationCost +=
767           getOperandsScalarizationOverhead(Args, ICA.getArgTypes());
768     }
769 
770     IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, ICA.getArgTypes(), FMF, I,
771                                   ScalarizationCost);
772     return getIntrinsicInstrCost(Attrs, CostKind);
773   }
774 
775   // Legalize the type.
776   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
777 
778   unsigned NElts = LT.second.isVector() ?
779     LT.second.getVectorNumElements() : 1;
780 
781   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
782 
783   if (SLT == MVT::f64)
784     return LT.first * NElts * get64BitInstrCost(CostKind);
785 
786   if ((ST->has16BitInsts() && SLT == MVT::f16) ||
787       (ST->hasPackedFP32Ops() && SLT == MVT::f32))
788     NElts = (NElts + 1) / 2;
789 
790   // TODO: Get more refined intrinsic costs?
791   unsigned InstRate = getQuarterRateInstrCost(CostKind);
792 
793   switch (ICA.getID()) {
794   case Intrinsic::fma:
795     InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
796                                    : getQuarterRateInstrCost(CostKind);
797     break;
798   case Intrinsic::uadd_sat:
799   case Intrinsic::usub_sat:
800   case Intrinsic::sadd_sat:
801   case Intrinsic::ssub_sat:
802     static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
803     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
804       NElts = 1;
805     break;
806   }
807 
808   return LT.first * NElts * InstRate;
809 }
810 
811 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode,
812                                     TTI::TargetCostKind CostKind) {
813   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
814     return Opcode == Instruction::PHI ? 0 : 1;
815 
816   // XXX - For some reason this isn't called for switch.
817   switch (Opcode) {
818   case Instruction::Br:
819   case Instruction::Ret:
820     return 10;
821   default:
822     return BaseT::getCFInstrCost(Opcode, CostKind);
823   }
824 }
825 
826 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
827                                            bool IsPairwise,
828                                            TTI::TargetCostKind CostKind) {
829   EVT OrigTy = TLI->getValueType(DL, Ty);
830 
831   // Computes cost on targets that have packed math instructions(which support
832   // 16-bit types only).
833   if (IsPairwise ||
834       !ST->hasVOP3PInsts() ||
835       OrigTy.getScalarSizeInBits() != 16)
836     return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind);
837 
838   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
839   return LT.first * getFullRateInstrCost();
840 }
841 
842 int GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
843                                        bool IsPairwise, bool IsUnsigned,
844                                        TTI::TargetCostKind CostKind) {
845   EVT OrigTy = TLI->getValueType(DL, Ty);
846 
847   // Computes cost on targets that have packed math instructions(which support
848   // 16-bit types only).
849   if (IsPairwise ||
850       !ST->hasVOP3PInsts() ||
851       OrigTy.getScalarSizeInBits() != 16)
852     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned,
853                                          CostKind);
854 
855   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
856   return LT.first * getHalfRateInstrCost(CostKind);
857 }
858 
859 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
860                                       unsigned Index) {
861   switch (Opcode) {
862   case Instruction::ExtractElement:
863   case Instruction::InsertElement: {
864     unsigned EltSize
865       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
866     if (EltSize < 32) {
867       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
868         return 0;
869       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
870     }
871 
872     // Extracts are just reads of a subregister, so are free. Inserts are
873     // considered free because we don't want to have any cost for scalarizing
874     // operations, and we don't have to copy into a different register class.
875 
876     // Dynamic indexing isn't free and is best avoided.
877     return Index == ~0u ? 2 : 0;
878   }
879   default:
880     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
881   }
882 }
883 
884 /// Analyze if the results of inline asm are divergent. If \p Indices is empty,
885 /// this is analyzing the collective result of all output registers. Otherwise,
886 /// this is only querying a specific result index if this returns multiple
887 /// registers in a struct.
888 bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
889   const CallInst *CI, ArrayRef<unsigned> Indices) const {
890   // TODO: Handle complex extract indices
891   if (Indices.size() > 1)
892     return true;
893 
894   const DataLayout &DL = CI->getModule()->getDataLayout();
895   const SIRegisterInfo *TRI = ST->getRegisterInfo();
896   TargetLowering::AsmOperandInfoVector TargetConstraints =
897       TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
898 
899   const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
900 
901   int OutputIdx = 0;
902   for (auto &TC : TargetConstraints) {
903     if (TC.Type != InlineAsm::isOutput)
904       continue;
905 
906     // Skip outputs we don't care about.
907     if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
908       continue;
909 
910     TLI->ComputeConstraintToUse(TC, SDValue());
911 
912     Register AssignedReg;
913     const TargetRegisterClass *RC;
914     std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint(
915       TRI, TC.ConstraintCode, TC.ConstraintVT);
916     if (AssignedReg) {
917       // FIXME: This is a workaround for getRegForInlineAsmConstraint
918       // returning VS_32
919       RC = TRI->getPhysRegClass(AssignedReg);
920     }
921 
922     // For AGPR constraints null is returned on subtargets without AGPRs, so
923     // assume divergent for null.
924     if (!RC || !TRI->isSGPRClass(RC))
925       return true;
926   }
927 
928   return false;
929 }
930 
931 /// \returns true if the new GPU divergence analysis is enabled.
932 bool GCNTTIImpl::useGPUDivergenceAnalysis() const {
933   return !UseLegacyDA;
934 }
935 
936 /// \returns true if the result of the value could potentially be
937 /// different across workitems in a wavefront.
938 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
939   if (const Argument *A = dyn_cast<Argument>(V))
940     return !AMDGPU::isArgPassedInSGPR(A);
941 
942   // Loads from the private and flat address spaces are divergent, because
943   // threads can execute the load instruction with the same inputs and get
944   // different results.
945   //
946   // All other loads are not divergent, because if threads issue loads with the
947   // same arguments, they will always get the same result.
948   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
949     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
950            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
951 
952   // Atomics are divergent because they are executed sequentially: when an
953   // atomic operation refers to the same address in each thread, then each
954   // thread after the first sees the value written by the previous thread as
955   // original value.
956   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
957     return true;
958 
959   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
960     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
961 
962   // Assume all function calls are a source of divergence.
963   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
964     if (CI->isInlineAsm())
965       return isInlineAsmSourceOfDivergence(CI);
966     return true;
967   }
968 
969   // Assume all function calls are a source of divergence.
970   if (isa<InvokeInst>(V))
971     return true;
972 
973   return false;
974 }
975 
976 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
977   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
978     switch (Intrinsic->getIntrinsicID()) {
979     default:
980       return false;
981     case Intrinsic::amdgcn_readfirstlane:
982     case Intrinsic::amdgcn_readlane:
983     case Intrinsic::amdgcn_icmp:
984     case Intrinsic::amdgcn_fcmp:
985     case Intrinsic::amdgcn_ballot:
986     case Intrinsic::amdgcn_if_break:
987       return true;
988     }
989   }
990 
991   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
992     if (CI->isInlineAsm())
993       return !isInlineAsmSourceOfDivergence(CI);
994     return false;
995   }
996 
997   const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
998   if (!ExtValue)
999     return false;
1000 
1001   const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
1002   if (!CI)
1003     return false;
1004 
1005   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
1006     switch (Intrinsic->getIntrinsicID()) {
1007     default:
1008       return false;
1009     case Intrinsic::amdgcn_if:
1010     case Intrinsic::amdgcn_else: {
1011       ArrayRef<unsigned> Indices = ExtValue->getIndices();
1012       return Indices.size() == 1 && Indices[0] == 1;
1013     }
1014     }
1015   }
1016 
1017   // If we have inline asm returning mixed SGPR and VGPR results, we inferred
1018   // divergent for the overall struct return. We need to override it in the
1019   // case we're extracting an SGPR component here.
1020   if (CI->isInlineAsm())
1021     return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
1022 
1023   return false;
1024 }
1025 
1026 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1027                                             Intrinsic::ID IID) const {
1028   switch (IID) {
1029   case Intrinsic::amdgcn_atomic_inc:
1030   case Intrinsic::amdgcn_atomic_dec:
1031   case Intrinsic::amdgcn_ds_fadd:
1032   case Intrinsic::amdgcn_ds_fmin:
1033   case Intrinsic::amdgcn_ds_fmax:
1034   case Intrinsic::amdgcn_is_shared:
1035   case Intrinsic::amdgcn_is_private:
1036     OpIndexes.push_back(0);
1037     return true;
1038   default:
1039     return false;
1040   }
1041 }
1042 
1043 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1044                                                     Value *OldV,
1045                                                     Value *NewV) const {
1046   auto IntrID = II->getIntrinsicID();
1047   switch (IntrID) {
1048   case Intrinsic::amdgcn_atomic_inc:
1049   case Intrinsic::amdgcn_atomic_dec:
1050   case Intrinsic::amdgcn_ds_fadd:
1051   case Intrinsic::amdgcn_ds_fmin:
1052   case Intrinsic::amdgcn_ds_fmax: {
1053     const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
1054     if (!IsVolatile->isZero())
1055       return nullptr;
1056     Module *M = II->getParent()->getParent()->getParent();
1057     Type *DestTy = II->getType();
1058     Type *SrcTy = NewV->getType();
1059     Function *NewDecl =
1060         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
1061     II->setArgOperand(0, NewV);
1062     II->setCalledFunction(NewDecl);
1063     return II;
1064   }
1065   case Intrinsic::amdgcn_is_shared:
1066   case Intrinsic::amdgcn_is_private: {
1067     unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
1068       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
1069     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1070     LLVMContext &Ctx = NewV->getType()->getContext();
1071     ConstantInt *NewVal = (TrueAS == NewAS) ?
1072       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
1073     return NewVal;
1074   }
1075   case Intrinsic::ptrmask: {
1076     unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1077     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1078     Value *MaskOp = II->getArgOperand(1);
1079     Type *MaskTy = MaskOp->getType();
1080 
1081     bool DoTruncate = false;
1082 
1083     const GCNTargetMachine &TM =
1084         static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
1085     if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
1086       // All valid 64-bit to 32-bit casts work by chopping off the high
1087       // bits. Any masking only clearing the low bits will also apply in the new
1088       // address space.
1089       if (DL.getPointerSizeInBits(OldAS) != 64 ||
1090           DL.getPointerSizeInBits(NewAS) != 32)
1091         return nullptr;
1092 
1093       // TODO: Do we need to thread more context in here?
1094       KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
1095       if (Known.countMinLeadingOnes() < 32)
1096         return nullptr;
1097 
1098       DoTruncate = true;
1099     }
1100 
1101     IRBuilder<> B(II);
1102     if (DoTruncate) {
1103       MaskTy = B.getInt32Ty();
1104       MaskOp = B.CreateTrunc(MaskOp, MaskTy);
1105     }
1106 
1107     return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
1108                              {NewV, MaskOp});
1109   }
1110   default:
1111     return nullptr;
1112   }
1113 }
1114 
1115 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT,
1116                                     ArrayRef<int> Mask, int Index,
1117                                     VectorType *SubTp) {
1118   if (ST->hasVOP3PInsts()) {
1119     if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
1120         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
1121       // With op_sel VOP3P instructions freely can access the low half or high
1122       // half of a register, so any swizzle is free.
1123 
1124       switch (Kind) {
1125       case TTI::SK_Broadcast:
1126       case TTI::SK_Reverse:
1127       case TTI::SK_PermuteSingleSrc:
1128         return 0;
1129       default:
1130         break;
1131       }
1132     }
1133   }
1134 
1135   return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp);
1136 }
1137 
1138 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
1139                                      const Function *Callee) const {
1140   const TargetMachine &TM = getTLI()->getTargetMachine();
1141   const GCNSubtarget *CallerST
1142     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1143   const GCNSubtarget *CalleeST
1144     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1145 
1146   const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1147   const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1148 
1149   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1150   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1151   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1152     return false;
1153 
1154   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1155   // no way to support merge for backend defined attributes.
1156   AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
1157   AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
1158   if (!CallerMode.isInlineCompatible(CalleeMode))
1159     return false;
1160 
1161   if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
1162       Callee->hasFnAttribute(Attribute::InlineHint))
1163     return true;
1164 
1165   // Hack to make compile times reasonable.
1166   if (InlineMaxBB) {
1167     // Single BB does not increase total BB amount.
1168     if (Callee->size() == 1)
1169       return true;
1170     size_t BBSize = Caller->size() + Callee->size() - 1;
1171     return BBSize <= InlineMaxBB;
1172   }
1173 
1174   return true;
1175 }
1176 
1177 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
1178   // If we have a pointer to private array passed into a function
1179   // it will not be optimized out, leaving scratch usage.
1180   // Increase the inline threshold to allow inlining in this case.
1181   uint64_t AllocaSize = 0;
1182   SmallPtrSet<const AllocaInst *, 8> AIVisited;
1183   for (Value *PtrArg : CB->args()) {
1184     PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
1185     if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS &&
1186                 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS))
1187       continue;
1188 
1189     PtrArg = getUnderlyingObject(PtrArg);
1190     if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) {
1191       if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second)
1192         continue;
1193       AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
1194       // If the amount of stack memory is excessive we will not be able
1195       // to get rid of the scratch anyway, bail out.
1196       if (AllocaSize > ArgAllocaCutoff) {
1197         AllocaSize = 0;
1198         break;
1199       }
1200     }
1201   }
1202   if (AllocaSize)
1203     return ArgAllocaCost;
1204   return 0;
1205 }
1206 
1207 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1208                                          TTI::UnrollingPreferences &UP) {
1209   CommonTTI.getUnrollingPreferences(L, SE, UP);
1210 }
1211 
1212 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1213                                        TTI::PeelingPreferences &PP) {
1214   CommonTTI.getPeelingPreferences(L, SE, PP);
1215 }
1216 
1217 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
1218   return ST->hasFullRate64Ops()
1219              ? getFullRateInstrCost()
1220              : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
1221                                       : getQuarterRateInstrCost(CostKind);
1222 }
1223 
1224 R600TTIImpl::R600TTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
1225     : BaseT(TM, F.getParent()->getDataLayout()),
1226       ST(static_cast<const R600Subtarget *>(TM->getSubtargetImpl(F))),
1227       TLI(ST->getTargetLowering()), CommonTTI(TM, F) {}
1228 
1229 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
1230   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
1231 }
1232 
1233 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
1234   return getHardwareNumberOfRegisters(Vec);
1235 }
1236 
1237 TypeSize
1238 R600TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
1239   return TypeSize::getFixed(32);
1240 }
1241 
1242 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
1243   return 32;
1244 }
1245 
1246 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
1247   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
1248       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
1249     return 128;
1250   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1251       AddrSpace == AMDGPUAS::REGION_ADDRESS)
1252     return 64;
1253   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
1254     return 32;
1255 
1256   if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
1257       AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
1258       (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
1259       AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
1260     return 128;
1261   llvm_unreachable("unhandled address space");
1262 }
1263 
1264 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
1265                                              Align Alignment,
1266                                              unsigned AddrSpace) const {
1267   // We allow vectorization of flat stores, even though we may need to decompose
1268   // them later if they may access private memory. We don't have enough context
1269   // here, and legalization can handle it.
1270   return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
1271 }
1272 
1273 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1274                                               Align Alignment,
1275                                               unsigned AddrSpace) const {
1276   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
1277 }
1278 
1279 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1280                                                Align Alignment,
1281                                                unsigned AddrSpace) const {
1282   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
1283 }
1284 
1285 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
1286   // Disable unrolling if the loop is not vectorized.
1287   // TODO: Enable this again.
1288   if (VF == 1)
1289     return 1;
1290 
1291   return 8;
1292 }
1293 
1294 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode,
1295                                      TTI::TargetCostKind CostKind) {
1296   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
1297     return Opcode == Instruction::PHI ? 0 : 1;
1298 
1299   // XXX - For some reason this isn't called for switch.
1300   switch (Opcode) {
1301   case Instruction::Br:
1302   case Instruction::Ret:
1303     return 10;
1304   default:
1305     return BaseT::getCFInstrCost(Opcode, CostKind);
1306   }
1307 }
1308 
1309 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
1310                                     unsigned Index) {
1311   switch (Opcode) {
1312   case Instruction::ExtractElement:
1313   case Instruction::InsertElement: {
1314     unsigned EltSize
1315       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
1316     if (EltSize < 32) {
1317       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
1318     }
1319 
1320     // Extracts are just reads of a subregister, so are free. Inserts are
1321     // considered free because we don't want to have any cost for scalarizing
1322     // operations, and we don't have to copy into a different register class.
1323 
1324     // Dynamic indexing isn't free and is best avoided.
1325     return Index == ~0u ? 2 : 0;
1326   }
1327   default:
1328     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
1329   }
1330 }
1331 
1332 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1333                                           TTI::UnrollingPreferences &UP) {
1334   CommonTTI.getUnrollingPreferences(L, SE, UP);
1335 }
1336 
1337 void R600TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1338                                         TTI::PeelingPreferences &PP) {
1339   CommonTTI.getPeelingPreferences(L, SE, PP);
1340 }
1341