1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/IntrinsicsAMDGPU.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/Support/KnownBits.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "AMDGPUtti"
28 
29 static cl::opt<unsigned> UnrollThresholdPrivate(
30   "amdgpu-unroll-threshold-private",
31   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
32   cl::init(2700), cl::Hidden);
33 
34 static cl::opt<unsigned> UnrollThresholdLocal(
35   "amdgpu-unroll-threshold-local",
36   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
37   cl::init(1000), cl::Hidden);
38 
39 static cl::opt<unsigned> UnrollThresholdIf(
40   "amdgpu-unroll-threshold-if",
41   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
42   cl::init(150), cl::Hidden);
43 
44 static cl::opt<bool> UnrollRuntimeLocal(
45   "amdgpu-unroll-runtime-local",
46   cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
47   cl::init(true), cl::Hidden);
48 
49 static cl::opt<bool> UseLegacyDA(
50   "amdgpu-use-legacy-divergence-analysis",
51   cl::desc("Enable legacy divergence analysis for AMDGPU"),
52   cl::init(false), cl::Hidden);
53 
54 static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
55     "amdgpu-unroll-max-block-to-analyze",
56     cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
57     cl::init(32), cl::Hidden);
58 
59 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
60                               unsigned Depth = 0) {
61   const Instruction *I = dyn_cast<Instruction>(Cond);
62   if (!I)
63     return false;
64 
65   for (const Value *V : I->operand_values()) {
66     if (!L->contains(I))
67       continue;
68     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
69       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
70                   return SubLoop->contains(PHI); }))
71         return true;
72     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
73       return true;
74   }
75   return false;
76 }
77 
78 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
79     : BaseT(TM, F.getParent()->getDataLayout()),
80       TargetTriple(TM->getTargetTriple()),
81       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
82       TLI(ST->getTargetLowering()) {}
83 
84 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
85                                             TTI::UnrollingPreferences &UP) {
86   const Function &F = *L->getHeader()->getParent();
87   UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
88   UP.MaxCount = std::numeric_limits<unsigned>::max();
89   UP.Partial = true;
90 
91   // TODO: Do we want runtime unrolling?
92 
93   // Maximum alloca size than can fit registers. Reserve 16 registers.
94   const unsigned MaxAlloca = (256 - 16) * 4;
95   unsigned ThresholdPrivate = UnrollThresholdPrivate;
96   unsigned ThresholdLocal = UnrollThresholdLocal;
97 
98   // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
99   // provided threshold value as the default for Threshold
100   if (MDNode *LoopUnrollThreshold =
101           findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
102     if (LoopUnrollThreshold->getNumOperands() == 2) {
103       ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
104           LoopUnrollThreshold->getOperand(1));
105       if (MetaThresholdValue) {
106         // We will also use the supplied value for PartialThreshold for now.
107         // We may introduce additional metadata if it becomes necessary in the
108         // future.
109         UP.Threshold = MetaThresholdValue->getSExtValue();
110         UP.PartialThreshold = UP.Threshold;
111         ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
112         ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
113       }
114     }
115   }
116 
117   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
118   for (const BasicBlock *BB : L->getBlocks()) {
119     const DataLayout &DL = BB->getModule()->getDataLayout();
120     unsigned LocalGEPsSeen = 0;
121 
122     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
123                return SubLoop->contains(BB); }))
124         continue; // Block belongs to an inner loop.
125 
126     for (const Instruction &I : *BB) {
127       // Unroll a loop which contains an "if" statement whose condition
128       // defined by a PHI belonging to the loop. This may help to eliminate
129       // if region and potentially even PHI itself, saving on both divergence
130       // and registers used for the PHI.
131       // Add a small bonus for each of such "if" statements.
132       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
133         if (UP.Threshold < MaxBoost && Br->isConditional()) {
134           BasicBlock *Succ0 = Br->getSuccessor(0);
135           BasicBlock *Succ1 = Br->getSuccessor(1);
136           if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
137               (L->contains(Succ1) && L->isLoopExiting(Succ1)))
138             continue;
139           if (dependsOnLocalPhi(L, Br->getCondition())) {
140             UP.Threshold += UnrollThresholdIf;
141             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
142                               << " for loop:\n"
143                               << *L << " due to " << *Br << '\n');
144             if (UP.Threshold >= MaxBoost)
145               return;
146           }
147         }
148         continue;
149       }
150 
151       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
152       if (!GEP)
153         continue;
154 
155       unsigned AS = GEP->getAddressSpace();
156       unsigned Threshold = 0;
157       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
158         Threshold = ThresholdPrivate;
159       else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
160         Threshold = ThresholdLocal;
161       else
162         continue;
163 
164       if (UP.Threshold >= Threshold)
165         continue;
166 
167       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
168         const Value *Ptr = GEP->getPointerOperand();
169         const AllocaInst *Alloca =
170             dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
171         if (!Alloca || !Alloca->isStaticAlloca())
172           continue;
173         Type *Ty = Alloca->getAllocatedType();
174         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
175         if (AllocaSize > MaxAlloca)
176           continue;
177       } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
178                  AS == AMDGPUAS::REGION_ADDRESS) {
179         LocalGEPsSeen++;
180         // Inhibit unroll for local memory if we have seen addressing not to
181         // a variable, most likely we will be unable to combine it.
182         // Do not unroll too deep inner loops for local memory to give a chance
183         // to unroll an outer loop for a more important reason.
184         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
185             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
186              !isa<Argument>(GEP->getPointerOperand())))
187           continue;
188         LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
189                           << *L << " due to LDS use.\n");
190         UP.Runtime = UnrollRuntimeLocal;
191       }
192 
193       // Check if GEP depends on a value defined by this loop itself.
194       bool HasLoopDef = false;
195       for (const Value *Op : GEP->operands()) {
196         const Instruction *Inst = dyn_cast<Instruction>(Op);
197         if (!Inst || L->isLoopInvariant(Op))
198           continue;
199 
200         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
201              return SubLoop->contains(Inst); }))
202           continue;
203         HasLoopDef = true;
204         break;
205       }
206       if (!HasLoopDef)
207         continue;
208 
209       // We want to do whatever we can to limit the number of alloca
210       // instructions that make it through to the code generator.  allocas
211       // require us to use indirect addressing, which is slow and prone to
212       // compiler bugs.  If this loop does an address calculation on an
213       // alloca ptr, then we want to use a higher than normal loop unroll
214       // threshold. This will give SROA a better chance to eliminate these
215       // allocas.
216       //
217       // We also want to have more unrolling for local memory to let ds
218       // instructions with different offsets combine.
219       //
220       // Don't use the maximum allowed value here as it will make some
221       // programs way too big.
222       UP.Threshold = Threshold;
223       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
224                         << " for loop:\n"
225                         << *L << " due to " << *GEP << '\n');
226       if (UP.Threshold >= MaxBoost)
227         return;
228     }
229 
230     // If we got a GEP in a small BB from inner loop then increase max trip
231     // count to analyze for better estimation cost in unroll
232     if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
233       UP.MaxIterationsCountToAnalyze = 32;
234   }
235 }
236 
237 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
238                                           TTI::PeelingPreferences &PP) {
239   BaseT::getPeelingPreferences(L, SE, PP);
240 }
241 
242 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
243     : BaseT(TM, F.getParent()->getDataLayout()),
244       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
245       TLI(ST->getTargetLowering()), CommonTTI(TM, F),
246       IsGraphics(AMDGPU::isGraphics(F.getCallingConv())),
247       MaxVGPRs(ST->getMaxNumVGPRs(
248           std::max(ST->getWavesPerEU(F).first,
249                    ST->getWavesPerEUForWorkGroup(
250                        ST->getFlatWorkGroupSizes(F).second)))) {
251   AMDGPU::SIModeRegisterDefaults Mode(F);
252   HasFP32Denormals = Mode.allFP32Denormals();
253   HasFP64FP16Denormals = Mode.allFP64FP16Denormals();
254 }
255 
256 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
257   // The concept of vector registers doesn't really exist. Some packed vector
258   // operations operate on the normal 32-bit registers.
259   return MaxVGPRs;
260 }
261 
262 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
263   // This is really the number of registers to fill when vectorizing /
264   // interleaving loops, so we lie to avoid trying to use all registers.
265   return getHardwareNumberOfRegisters(Vec) >> 3;
266 }
267 
268 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
269   const SIRegisterInfo *TRI = ST->getRegisterInfo();
270   const TargetRegisterClass *RC = TRI->getRegClass(RCID);
271   unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32;
272   return getHardwareNumberOfRegisters(false) / NumVGPRs;
273 }
274 
275 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
276   return 32;
277 }
278 
279 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
280   return 32;
281 }
282 
283 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
284   if (Opcode == Instruction::Load || Opcode == Instruction::Store)
285     return 32 * 4 / ElemWidth;
286   return (ElemWidth == 16 && ST->has16BitInsts()) ? 2 : 1;
287 }
288 
289 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
290                                          unsigned ChainSizeInBytes,
291                                          VectorType *VecTy) const {
292   unsigned VecRegBitWidth = VF * LoadSize;
293   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
294     // TODO: Support element-size less than 32bit?
295     return 128 / LoadSize;
296 
297   return VF;
298 }
299 
300 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
301                                              unsigned ChainSizeInBytes,
302                                              VectorType *VecTy) const {
303   unsigned VecRegBitWidth = VF * StoreSize;
304   if (VecRegBitWidth > 128)
305     return 128 / StoreSize;
306 
307   return VF;
308 }
309 
310 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
311   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
312       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
313       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
314       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
315     return 512;
316   }
317 
318   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
319     return 8 * ST->getMaxPrivateElementSize();
320 
321   // Common to flat, global, local and region. Assume for unknown addrspace.
322   return 128;
323 }
324 
325 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
326                                             Align Alignment,
327                                             unsigned AddrSpace) const {
328   // We allow vectorization of flat stores, even though we may need to decompose
329   // them later if they may access private memory. We don't have enough context
330   // here, and legalization can handle it.
331   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
332     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
333       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
334   }
335   return true;
336 }
337 
338 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
339                                              Align Alignment,
340                                              unsigned AddrSpace) const {
341   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
342 }
343 
344 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
345                                               Align Alignment,
346                                               unsigned AddrSpace) const {
347   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
348 }
349 
350 // FIXME: Really we would like to issue multiple 128-bit loads and stores per
351 // iteration. Should we report a larger size and let it legalize?
352 //
353 // FIXME: Should we use narrower types for local/region, or account for when
354 // unaligned access is legal?
355 //
356 // FIXME: This could use fine tuning and microbenchmarks.
357 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
358                                             unsigned SrcAddrSpace,
359                                             unsigned DestAddrSpace,
360                                             unsigned SrcAlign,
361                                             unsigned DestAlign) const {
362   unsigned MinAlign = std::min(SrcAlign, DestAlign);
363 
364   // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
365   // hardware into byte accesses. If you assume all alignments are equally
366   // probable, it's more efficient on average to use short accesses for this
367   // case.
368   if (MinAlign == 2)
369     return Type::getInt16Ty(Context);
370 
371   // Not all subtargets have 128-bit DS instructions, and we currently don't
372   // form them by default.
373   if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
374       SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
375       DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
376       DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
377     return FixedVectorType::get(Type::getInt32Ty(Context), 2);
378   }
379 
380   // Global memory works best with 16-byte accesses. Private memory will also
381   // hit this, although they'll be decomposed.
382   return FixedVectorType::get(Type::getInt32Ty(Context), 4);
383 }
384 
385 void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
386   SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
387   unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
388   unsigned SrcAlign, unsigned DestAlign) const {
389   assert(RemainingBytes < 16);
390 
391   unsigned MinAlign = std::min(SrcAlign, DestAlign);
392 
393   if (MinAlign != 2) {
394     Type *I64Ty = Type::getInt64Ty(Context);
395     while (RemainingBytes >= 8) {
396       OpsOut.push_back(I64Ty);
397       RemainingBytes -= 8;
398     }
399 
400     Type *I32Ty = Type::getInt32Ty(Context);
401     while (RemainingBytes >= 4) {
402       OpsOut.push_back(I32Ty);
403       RemainingBytes -= 4;
404     }
405   }
406 
407   Type *I16Ty = Type::getInt16Ty(Context);
408   while (RemainingBytes >= 2) {
409     OpsOut.push_back(I16Ty);
410     RemainingBytes -= 2;
411   }
412 
413   Type *I8Ty = Type::getInt8Ty(Context);
414   while (RemainingBytes) {
415     OpsOut.push_back(I8Ty);
416     --RemainingBytes;
417   }
418 }
419 
420 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
421   // Disable unrolling if the loop is not vectorized.
422   // TODO: Enable this again.
423   if (VF == 1)
424     return 1;
425 
426   return 8;
427 }
428 
429 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
430                                        MemIntrinsicInfo &Info) const {
431   switch (Inst->getIntrinsicID()) {
432   case Intrinsic::amdgcn_atomic_inc:
433   case Intrinsic::amdgcn_atomic_dec:
434   case Intrinsic::amdgcn_ds_ordered_add:
435   case Intrinsic::amdgcn_ds_ordered_swap:
436   case Intrinsic::amdgcn_ds_fadd:
437   case Intrinsic::amdgcn_ds_fmin:
438   case Intrinsic::amdgcn_ds_fmax: {
439     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
440     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
441     if (!Ordering || !Volatile)
442       return false; // Invalid.
443 
444     unsigned OrderingVal = Ordering->getZExtValue();
445     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
446       return false;
447 
448     Info.PtrVal = Inst->getArgOperand(0);
449     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
450     Info.ReadMem = true;
451     Info.WriteMem = true;
452     Info.IsVolatile = !Volatile->isNullValue();
453     return true;
454   }
455   default:
456     return false;
457   }
458 }
459 
460 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
461                                        TTI::TargetCostKind CostKind,
462                                        TTI::OperandValueKind Opd1Info,
463                                        TTI::OperandValueKind Opd2Info,
464                                        TTI::OperandValueProperties Opd1PropInfo,
465                                        TTI::OperandValueProperties Opd2PropInfo,
466                                        ArrayRef<const Value *> Args,
467                                        const Instruction *CxtI) {
468   EVT OrigTy = TLI->getValueType(DL, Ty);
469   if (!OrigTy.isSimple()) {
470     // FIXME: We're having to query the throughput cost so that the basic
471     // implementation tries to generate legalize and scalarization costs. Maybe
472     // we could hoist the scalarization code here?
473     if (CostKind != TTI::TCK_CodeSize)
474       return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput,
475                                            Opd1Info, Opd2Info, Opd1PropInfo,
476                                            Opd2PropInfo, Args, CxtI);
477     // Scalarization
478 
479     // Check if any of the operands are vector operands.
480     int ISD = TLI->InstructionOpcodeToISD(Opcode);
481     assert(ISD && "Invalid opcode");
482 
483     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
484 
485     bool IsFloat = Ty->isFPOrFPVectorTy();
486     // Assume that floating point arithmetic operations cost twice as much as
487     // integer operations.
488     unsigned OpCost = (IsFloat ? 2 : 1);
489 
490     if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
491       // The operation is legal. Assume it costs 1.
492       // TODO: Once we have extract/insert subvector cost we need to use them.
493       return LT.first * OpCost;
494     }
495 
496     if (!TLI->isOperationExpand(ISD, LT.second)) {
497       // If the operation is custom lowered, then assume that the code is twice
498       // as expensive.
499       return LT.first * 2 * OpCost;
500     }
501 
502     // Else, assume that we need to scalarize this op.
503     // TODO: If one of the types get legalized by splitting, handle this
504     // similarly to what getCastInstrCost() does.
505     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
506       unsigned Num = cast<FixedVectorType>(VTy)->getNumElements();
507       unsigned Cost = getArithmeticInstrCost(
508           Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
509           Opd1PropInfo, Opd2PropInfo, Args, CxtI);
510       // Return the cost of multiple scalar invocation plus the cost of
511       // inserting and extracting the values.
512       return getScalarizationOverhead(VTy, Args) + Num * Cost;
513     }
514 
515     // We don't know anything about this scalar instruction.
516     return OpCost;
517   }
518 
519   // Legalize the type.
520   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
521   int ISD = TLI->InstructionOpcodeToISD(Opcode);
522 
523   // Because we don't have any legal vector operations, but the legal types, we
524   // need to account for split vectors.
525   unsigned NElts = LT.second.isVector() ?
526     LT.second.getVectorNumElements() : 1;
527 
528   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
529 
530   switch (ISD) {
531   case ISD::SHL:
532   case ISD::SRL:
533   case ISD::SRA:
534     if (SLT == MVT::i64)
535       return get64BitInstrCost(CostKind) * LT.first * NElts;
536 
537     if (ST->has16BitInsts() && SLT == MVT::i16)
538       NElts = (NElts + 1) / 2;
539 
540     // i32
541     return getFullRateInstrCost() * LT.first * NElts;
542   case ISD::ADD:
543   case ISD::SUB:
544   case ISD::AND:
545   case ISD::OR:
546   case ISD::XOR:
547     if (SLT == MVT::i64) {
548       // and, or and xor are typically split into 2 VALU instructions.
549       return 2 * getFullRateInstrCost() * LT.first * NElts;
550     }
551 
552     if (ST->has16BitInsts() && SLT == MVT::i16)
553       NElts = (NElts + 1) / 2;
554 
555     return LT.first * NElts * getFullRateInstrCost();
556   case ISD::MUL: {
557     const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
558     if (SLT == MVT::i64) {
559       const int FullRateCost = getFullRateInstrCost();
560       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
561     }
562 
563     if (ST->has16BitInsts() && SLT == MVT::i16)
564       NElts = (NElts + 1) / 2;
565 
566     // i32
567     return QuarterRateCost * NElts * LT.first;
568   }
569   case ISD::FMUL:
570     // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
571     // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
572     // fused operation.
573     if (CxtI && CxtI->hasOneUse())
574       if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
575         const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
576         if (OPC == ISD::FADD || OPC == ISD::FSUB) {
577           if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
578             return TargetTransformInfo::TCC_Free;
579           if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
580             return TargetTransformInfo::TCC_Free;
581 
582           // Estimate all types may be fused with contract/unsafe flags
583           const TargetOptions &Options = TLI->getTargetMachine().Options;
584           if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
585               Options.UnsafeFPMath ||
586               (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
587             return TargetTransformInfo::TCC_Free;
588         }
589       }
590     LLVM_FALLTHROUGH;
591   case ISD::FADD:
592   case ISD::FSUB:
593     if (SLT == MVT::f64)
594       return LT.first * NElts * get64BitInstrCost(CostKind);
595 
596     if (ST->has16BitInsts() && SLT == MVT::f16)
597       NElts = (NElts + 1) / 2;
598 
599     if (SLT == MVT::f32 || SLT == MVT::f16)
600       return LT.first * NElts * getFullRateInstrCost();
601     break;
602   case ISD::FDIV:
603   case ISD::FREM:
604     // FIXME: frem should be handled separately. The fdiv in it is most of it,
605     // but the current lowering is also not entirely correct.
606     if (SLT == MVT::f64) {
607       int Cost = 7 * get64BitInstrCost(CostKind) +
608                  getQuarterRateInstrCost(CostKind) +
609                  3 * getHalfRateInstrCost(CostKind);
610       // Add cost of workaround.
611       if (!ST->hasUsableDivScaleConditionOutput())
612         Cost += 3 * getFullRateInstrCost();
613 
614       return LT.first * Cost * NElts;
615     }
616 
617     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
618       // TODO: This is more complicated, unsafe flags etc.
619       if ((SLT == MVT::f32 && !HasFP32Denormals) ||
620           (SLT == MVT::f16 && ST->has16BitInsts())) {
621         return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
622       }
623     }
624 
625     if (SLT == MVT::f16 && ST->has16BitInsts()) {
626       // 2 x v_cvt_f32_f16
627       // f32 rcp
628       // f32 fmul
629       // v_cvt_f16_f32
630       // f16 div_fixup
631       int Cost =
632           4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
633       return LT.first * Cost * NElts;
634     }
635 
636     if (SLT == MVT::f32 || SLT == MVT::f16) {
637       // 4 more v_cvt_* insts without f16 insts support
638       int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
639                  1 * getQuarterRateInstrCost(CostKind);
640 
641       if (!HasFP32Denormals) {
642         // FP mode switches.
643         Cost += 2 * getFullRateInstrCost();
644       }
645 
646       return LT.first * NElts * Cost;
647     }
648     break;
649   case ISD::FNEG:
650     // Use the backend' estimation. If fneg is not free each element will cost
651     // one additional instruction.
652     return TLI->isFNegFree(SLT) ? 0 : NElts;
653   default:
654     break;
655   }
656 
657   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
658                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
659 }
660 
661 // Return true if there's a potential benefit from using v2f16/v2i16
662 // instructions for an intrinsic, even if it requires nontrivial legalization.
663 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
664   switch (ID) {
665   case Intrinsic::fma: // TODO: fmuladd
666   // There's a small benefit to using vector ops in the legalized code.
667   case Intrinsic::round:
668   case Intrinsic::uadd_sat:
669   case Intrinsic::usub_sat:
670   case Intrinsic::sadd_sat:
671   case Intrinsic::ssub_sat:
672     return true;
673   default:
674     return false;
675   }
676 }
677 
678 int GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
679                                       TTI::TargetCostKind CostKind) {
680   if (ICA.getID() == Intrinsic::fabs)
681     return 0;
682 
683   if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
684     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
685 
686   Type *RetTy = ICA.getReturnType();
687   EVT OrigTy = TLI->getValueType(DL, RetTy);
688   if (!OrigTy.isSimple()) {
689     if (CostKind != TTI::TCK_CodeSize)
690       return BaseT::getIntrinsicInstrCost(ICA, CostKind);
691 
692     // TODO: Combine these two logic paths.
693     if (ICA.isTypeBasedOnly())
694       return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
695 
696     Type *RetTy = ICA.getReturnType();
697     unsigned VF = ICA.getVectorFactor().getFixedValue();
698     unsigned RetVF =
699         (RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements()
700                              : 1);
701     assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type");
702     const IntrinsicInst *I = ICA.getInst();
703     const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
704     FastMathFlags FMF = ICA.getFlags();
705     // Assume that we need to scalarize this intrinsic.
706     SmallVector<Type *, 4> Types;
707     for (const Value *Op : Args) {
708       Type *OpTy = Op->getType();
709       assert(VF == 1 || !OpTy->isVectorTy());
710       Types.push_back(VF == 1 ? OpTy : FixedVectorType::get(OpTy, VF));
711     }
712 
713     if (VF > 1 && !RetTy->isVoidTy())
714       RetTy = FixedVectorType::get(RetTy, VF);
715 
716     // Compute the scalarization overhead based on Args for a vector
717     // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
718     // CostModel will pass a vector RetTy and VF is 1.
719     unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
720     if (RetVF > 1 || VF > 1) {
721       ScalarizationCost = 0;
722       if (!RetTy->isVoidTy())
723         ScalarizationCost +=
724             getScalarizationOverhead(cast<VectorType>(RetTy), true, false);
725       ScalarizationCost += getOperandsScalarizationOverhead(Args, VF);
726     }
727 
728     IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, Types, FMF,
729                                   ScalarizationCost, I);
730     return getIntrinsicInstrCost(Attrs, CostKind);
731   }
732 
733   // Legalize the type.
734   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
735 
736   unsigned NElts = LT.second.isVector() ?
737     LT.second.getVectorNumElements() : 1;
738 
739   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
740 
741   if (SLT == MVT::f64)
742     return LT.first * NElts * get64BitInstrCost(CostKind);
743 
744   if (ST->has16BitInsts() && SLT == MVT::f16)
745     NElts = (NElts + 1) / 2;
746 
747   // TODO: Get more refined intrinsic costs?
748   unsigned InstRate = getQuarterRateInstrCost(CostKind);
749   if (ICA.getID() == Intrinsic::fma) {
750     InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
751                                    : getQuarterRateInstrCost(CostKind);
752   }
753 
754   return LT.first * NElts * InstRate;
755 }
756 
757 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode,
758                                     TTI::TargetCostKind CostKind) {
759   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
760     return Opcode == Instruction::PHI ? 0 : 1;
761 
762   // XXX - For some reason this isn't called for switch.
763   switch (Opcode) {
764   case Instruction::Br:
765   case Instruction::Ret:
766     return 10;
767   default:
768     return BaseT::getCFInstrCost(Opcode, CostKind);
769   }
770 }
771 
772 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
773                                            bool IsPairwise,
774                                            TTI::TargetCostKind CostKind) {
775   EVT OrigTy = TLI->getValueType(DL, Ty);
776 
777   // Computes cost on targets that have packed math instructions(which support
778   // 16-bit types only).
779   if (IsPairwise ||
780       !ST->hasVOP3PInsts() ||
781       OrigTy.getScalarSizeInBits() != 16)
782     return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind);
783 
784   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
785   return LT.first * getFullRateInstrCost();
786 }
787 
788 int GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
789                                        bool IsPairwise, bool IsUnsigned,
790                                        TTI::TargetCostKind CostKind) {
791   EVT OrigTy = TLI->getValueType(DL, Ty);
792 
793   // Computes cost on targets that have packed math instructions(which support
794   // 16-bit types only).
795   if (IsPairwise ||
796       !ST->hasVOP3PInsts() ||
797       OrigTy.getScalarSizeInBits() != 16)
798     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned,
799                                          CostKind);
800 
801   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
802   return LT.first * getHalfRateInstrCost(CostKind);
803 }
804 
805 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
806                                       unsigned Index) {
807   switch (Opcode) {
808   case Instruction::ExtractElement:
809   case Instruction::InsertElement: {
810     unsigned EltSize
811       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
812     if (EltSize < 32) {
813       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
814         return 0;
815       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
816     }
817 
818     // Extracts are just reads of a subregister, so are free. Inserts are
819     // considered free because we don't want to have any cost for scalarizing
820     // operations, and we don't have to copy into a different register class.
821 
822     // Dynamic indexing isn't free and is best avoided.
823     return Index == ~0u ? 2 : 0;
824   }
825   default:
826     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
827   }
828 }
829 
830 /// Analyze if the results of inline asm are divergent. If \p Indices is empty,
831 /// this is analyzing the collective result of all output registers. Otherwise,
832 /// this is only querying a specific result index if this returns multiple
833 /// registers in a struct.
834 bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
835   const CallInst *CI, ArrayRef<unsigned> Indices) const {
836   // TODO: Handle complex extract indices
837   if (Indices.size() > 1)
838     return true;
839 
840   const DataLayout &DL = CI->getModule()->getDataLayout();
841   const SIRegisterInfo *TRI = ST->getRegisterInfo();
842   TargetLowering::AsmOperandInfoVector TargetConstraints =
843       TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
844 
845   const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
846 
847   int OutputIdx = 0;
848   for (auto &TC : TargetConstraints) {
849     if (TC.Type != InlineAsm::isOutput)
850       continue;
851 
852     // Skip outputs we don't care about.
853     if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
854       continue;
855 
856     TLI->ComputeConstraintToUse(TC, SDValue());
857 
858     Register AssignedReg;
859     const TargetRegisterClass *RC;
860     std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint(
861       TRI, TC.ConstraintCode, TC.ConstraintVT);
862     if (AssignedReg) {
863       // FIXME: This is a workaround for getRegForInlineAsmConstraint
864       // returning VS_32
865       RC = TRI->getPhysRegClass(AssignedReg);
866     }
867 
868     // For AGPR constraints null is returned on subtargets without AGPRs, so
869     // assume divergent for null.
870     if (!RC || !TRI->isSGPRClass(RC))
871       return true;
872   }
873 
874   return false;
875 }
876 
877 /// \returns true if the new GPU divergence analysis is enabled.
878 bool GCNTTIImpl::useGPUDivergenceAnalysis() const {
879   return !UseLegacyDA;
880 }
881 
882 /// \returns true if the result of the value could potentially be
883 /// different across workitems in a wavefront.
884 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
885   if (const Argument *A = dyn_cast<Argument>(V))
886     return !AMDGPU::isArgPassedInSGPR(A);
887 
888   // Loads from the private and flat address spaces are divergent, because
889   // threads can execute the load instruction with the same inputs and get
890   // different results.
891   //
892   // All other loads are not divergent, because if threads issue loads with the
893   // same arguments, they will always get the same result.
894   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
895     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
896            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
897 
898   // Atomics are divergent because they are executed sequentially: when an
899   // atomic operation refers to the same address in each thread, then each
900   // thread after the first sees the value written by the previous thread as
901   // original value.
902   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
903     return true;
904 
905   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
906     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
907 
908   // Assume all function calls are a source of divergence.
909   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
910     if (CI->isInlineAsm())
911       return isInlineAsmSourceOfDivergence(CI);
912     return true;
913   }
914 
915   // Assume all function calls are a source of divergence.
916   if (isa<InvokeInst>(V))
917     return true;
918 
919   return false;
920 }
921 
922 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
923   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
924     switch (Intrinsic->getIntrinsicID()) {
925     default:
926       return false;
927     case Intrinsic::amdgcn_readfirstlane:
928     case Intrinsic::amdgcn_readlane:
929     case Intrinsic::amdgcn_icmp:
930     case Intrinsic::amdgcn_fcmp:
931     case Intrinsic::amdgcn_ballot:
932     case Intrinsic::amdgcn_if_break:
933       return true;
934     }
935   }
936 
937   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
938     if (CI->isInlineAsm())
939       return !isInlineAsmSourceOfDivergence(CI);
940     return false;
941   }
942 
943   const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
944   if (!ExtValue)
945     return false;
946 
947   const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
948   if (!CI)
949     return false;
950 
951   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
952     switch (Intrinsic->getIntrinsicID()) {
953     default:
954       return false;
955     case Intrinsic::amdgcn_if:
956     case Intrinsic::amdgcn_else: {
957       ArrayRef<unsigned> Indices = ExtValue->getIndices();
958       return Indices.size() == 1 && Indices[0] == 1;
959     }
960     }
961   }
962 
963   // If we have inline asm returning mixed SGPR and VGPR results, we inferred
964   // divergent for the overall struct return. We need to override it in the
965   // case we're extracting an SGPR component here.
966   if (CI->isInlineAsm())
967     return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
968 
969   return false;
970 }
971 
972 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
973                                             Intrinsic::ID IID) const {
974   switch (IID) {
975   case Intrinsic::amdgcn_atomic_inc:
976   case Intrinsic::amdgcn_atomic_dec:
977   case Intrinsic::amdgcn_ds_fadd:
978   case Intrinsic::amdgcn_ds_fmin:
979   case Intrinsic::amdgcn_ds_fmax:
980   case Intrinsic::amdgcn_is_shared:
981   case Intrinsic::amdgcn_is_private:
982     OpIndexes.push_back(0);
983     return true;
984   default:
985     return false;
986   }
987 }
988 
989 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
990                                                     Value *OldV,
991                                                     Value *NewV) const {
992   auto IntrID = II->getIntrinsicID();
993   switch (IntrID) {
994   case Intrinsic::amdgcn_atomic_inc:
995   case Intrinsic::amdgcn_atomic_dec:
996   case Intrinsic::amdgcn_ds_fadd:
997   case Intrinsic::amdgcn_ds_fmin:
998   case Intrinsic::amdgcn_ds_fmax: {
999     const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
1000     if (!IsVolatile->isZero())
1001       return nullptr;
1002     Module *M = II->getParent()->getParent()->getParent();
1003     Type *DestTy = II->getType();
1004     Type *SrcTy = NewV->getType();
1005     Function *NewDecl =
1006         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
1007     II->setArgOperand(0, NewV);
1008     II->setCalledFunction(NewDecl);
1009     return II;
1010   }
1011   case Intrinsic::amdgcn_is_shared:
1012   case Intrinsic::amdgcn_is_private: {
1013     unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
1014       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
1015     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1016     LLVMContext &Ctx = NewV->getType()->getContext();
1017     ConstantInt *NewVal = (TrueAS == NewAS) ?
1018       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
1019     return NewVal;
1020   }
1021   case Intrinsic::ptrmask: {
1022     unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1023     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1024     Value *MaskOp = II->getArgOperand(1);
1025     Type *MaskTy = MaskOp->getType();
1026 
1027     bool DoTruncate = false;
1028 
1029     const GCNTargetMachine &TM =
1030         static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
1031     if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
1032       // All valid 64-bit to 32-bit casts work by chopping off the high
1033       // bits. Any masking only clearing the low bits will also apply in the new
1034       // address space.
1035       if (DL.getPointerSizeInBits(OldAS) != 64 ||
1036           DL.getPointerSizeInBits(NewAS) != 32)
1037         return nullptr;
1038 
1039       // TODO: Do we need to thread more context in here?
1040       KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
1041       if (Known.countMinLeadingOnes() < 32)
1042         return nullptr;
1043 
1044       DoTruncate = true;
1045     }
1046 
1047     IRBuilder<> B(II);
1048     if (DoTruncate) {
1049       MaskTy = B.getInt32Ty();
1050       MaskOp = B.CreateTrunc(MaskOp, MaskTy);
1051     }
1052 
1053     return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
1054                              {NewV, MaskOp});
1055   }
1056   default:
1057     return nullptr;
1058   }
1059 }
1060 
1061 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT,
1062                                     int Index, VectorType *SubTp) {
1063   if (ST->hasVOP3PInsts()) {
1064     if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
1065         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
1066       // With op_sel VOP3P instructions freely can access the low half or high
1067       // half of a register, so any swizzle is free.
1068 
1069       switch (Kind) {
1070       case TTI::SK_Broadcast:
1071       case TTI::SK_Reverse:
1072       case TTI::SK_PermuteSingleSrc:
1073         return 0;
1074       default:
1075         break;
1076       }
1077     }
1078   }
1079 
1080   return BaseT::getShuffleCost(Kind, VT, Index, SubTp);
1081 }
1082 
1083 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
1084                                      const Function *Callee) const {
1085   const TargetMachine &TM = getTLI()->getTargetMachine();
1086   const GCNSubtarget *CallerST
1087     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1088   const GCNSubtarget *CalleeST
1089     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1090 
1091   const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1092   const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1093 
1094   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1095   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1096   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1097     return false;
1098 
1099   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1100   // no way to support merge for backend defined attributes.
1101   AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
1102   AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
1103   return CallerMode.isInlineCompatible(CalleeMode);
1104 }
1105 
1106 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1107                                          TTI::UnrollingPreferences &UP) {
1108   CommonTTI.getUnrollingPreferences(L, SE, UP);
1109 }
1110 
1111 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1112                                        TTI::PeelingPreferences &PP) {
1113   CommonTTI.getPeelingPreferences(L, SE, PP);
1114 }
1115 
1116 R600TTIImpl::R600TTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
1117     : BaseT(TM, F.getParent()->getDataLayout()),
1118       ST(static_cast<const R600Subtarget *>(TM->getSubtargetImpl(F))),
1119       TLI(ST->getTargetLowering()), CommonTTI(TM, F) {}
1120 
1121 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
1122   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
1123 }
1124 
1125 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
1126   return getHardwareNumberOfRegisters(Vec);
1127 }
1128 
1129 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
1130   return 32;
1131 }
1132 
1133 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
1134   return 32;
1135 }
1136 
1137 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
1138   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
1139       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
1140     return 128;
1141   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1142       AddrSpace == AMDGPUAS::REGION_ADDRESS)
1143     return 64;
1144   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
1145     return 32;
1146 
1147   if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
1148       AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
1149       (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
1150       AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
1151     return 128;
1152   llvm_unreachable("unhandled address space");
1153 }
1154 
1155 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
1156                                              Align Alignment,
1157                                              unsigned AddrSpace) const {
1158   // We allow vectorization of flat stores, even though we may need to decompose
1159   // them later if they may access private memory. We don't have enough context
1160   // here, and legalization can handle it.
1161   return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
1162 }
1163 
1164 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1165                                               Align Alignment,
1166                                               unsigned AddrSpace) const {
1167   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
1168 }
1169 
1170 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1171                                                Align Alignment,
1172                                                unsigned AddrSpace) const {
1173   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
1174 }
1175 
1176 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
1177   // Disable unrolling if the loop is not vectorized.
1178   // TODO: Enable this again.
1179   if (VF == 1)
1180     return 1;
1181 
1182   return 8;
1183 }
1184 
1185 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode,
1186                                      TTI::TargetCostKind CostKind) {
1187   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
1188     return Opcode == Instruction::PHI ? 0 : 1;
1189 
1190   // XXX - For some reason this isn't called for switch.
1191   switch (Opcode) {
1192   case Instruction::Br:
1193   case Instruction::Ret:
1194     return 10;
1195   default:
1196     return BaseT::getCFInstrCost(Opcode, CostKind);
1197   }
1198 }
1199 
1200 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
1201                                     unsigned Index) {
1202   switch (Opcode) {
1203   case Instruction::ExtractElement:
1204   case Instruction::InsertElement: {
1205     unsigned EltSize
1206       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
1207     if (EltSize < 32) {
1208       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
1209     }
1210 
1211     // Extracts are just reads of a subregister, so are free. Inserts are
1212     // considered free because we don't want to have any cost for scalarizing
1213     // operations, and we don't have to copy into a different register class.
1214 
1215     // Dynamic indexing isn't free and is best avoided.
1216     return Index == ~0u ? 2 : 0;
1217   }
1218   default:
1219     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
1220   }
1221 }
1222 
1223 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1224                                           TTI::UnrollingPreferences &UP) {
1225   CommonTTI.getUnrollingPreferences(L, SE, UP);
1226 }
1227 
1228 void R600TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1229                                         TTI::PeelingPreferences &PP) {
1230   CommonTTI.getPeelingPreferences(L, SE, PP);
1231 }
1232