1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/IntrinsicsAMDGPU.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/IR/PatternMatch.h" 24 #include "llvm/Support/KnownBits.h" 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "AMDGPUtti" 29 30 static cl::opt<unsigned> UnrollThresholdPrivate( 31 "amdgpu-unroll-threshold-private", 32 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 33 cl::init(2700), cl::Hidden); 34 35 static cl::opt<unsigned> UnrollThresholdLocal( 36 "amdgpu-unroll-threshold-local", 37 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 38 cl::init(1000), cl::Hidden); 39 40 static cl::opt<unsigned> UnrollThresholdIf( 41 "amdgpu-unroll-threshold-if", 42 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 43 cl::init(200), cl::Hidden); 44 45 static cl::opt<bool> UnrollRuntimeLocal( 46 "amdgpu-unroll-runtime-local", 47 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 48 cl::init(true), cl::Hidden); 49 50 static cl::opt<bool> UseLegacyDA( 51 "amdgpu-use-legacy-divergence-analysis", 52 cl::desc("Enable legacy divergence analysis for AMDGPU"), 53 cl::init(false), cl::Hidden); 54 55 static cl::opt<unsigned> UnrollMaxBlockToAnalyze( 56 "amdgpu-unroll-max-block-to-analyze", 57 cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"), 58 cl::init(32), cl::Hidden); 59 60 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost", 61 cl::Hidden, cl::init(4000), 62 cl::desc("Cost of alloca argument")); 63 64 // If the amount of scratch memory to eliminate exceeds our ability to allocate 65 // it into registers we gain nothing by aggressively inlining functions for that 66 // heuristic. 67 static cl::opt<unsigned> 68 ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden, 69 cl::init(256), 70 cl::desc("Maximum alloca size to use for inline cost")); 71 72 // Inliner constraint to achieve reasonable compilation time. 73 static cl::opt<size_t> InlineMaxBB( 74 "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100), 75 cl::desc("Maximum number of BBs allowed in a function after inlining" 76 " (compile time constraint)")); 77 78 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 79 unsigned Depth = 0) { 80 const Instruction *I = dyn_cast<Instruction>(Cond); 81 if (!I) 82 return false; 83 84 for (const Value *V : I->operand_values()) { 85 if (!L->contains(I)) 86 continue; 87 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 88 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 89 return SubLoop->contains(PHI); })) 90 return true; 91 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 92 return true; 93 } 94 return false; 95 } 96 97 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 98 : BaseT(TM, F.getParent()->getDataLayout()), 99 TargetTriple(TM->getTargetTriple()), 100 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))), 101 TLI(ST->getTargetLowering()) {} 102 103 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 104 TTI::UnrollingPreferences &UP) { 105 const Function &F = *L->getHeader()->getParent(); 106 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 107 UP.MaxCount = std::numeric_limits<unsigned>::max(); 108 UP.Partial = true; 109 110 // Conditional branch in a loop back edge needs 3 additional exec 111 // manipulations in average. 112 UP.BEInsns += 3; 113 114 // TODO: Do we want runtime unrolling? 115 116 // Maximum alloca size than can fit registers. Reserve 16 registers. 117 const unsigned MaxAlloca = (256 - 16) * 4; 118 unsigned ThresholdPrivate = UnrollThresholdPrivate; 119 unsigned ThresholdLocal = UnrollThresholdLocal; 120 121 // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the 122 // provided threshold value as the default for Threshold 123 if (MDNode *LoopUnrollThreshold = 124 findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) { 125 if (LoopUnrollThreshold->getNumOperands() == 2) { 126 ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>( 127 LoopUnrollThreshold->getOperand(1)); 128 if (MetaThresholdValue) { 129 // We will also use the supplied value for PartialThreshold for now. 130 // We may introduce additional metadata if it becomes necessary in the 131 // future. 132 UP.Threshold = MetaThresholdValue->getSExtValue(); 133 UP.PartialThreshold = UP.Threshold; 134 ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold); 135 ThresholdLocal = std::min(ThresholdLocal, UP.Threshold); 136 } 137 } 138 } 139 140 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 141 for (const BasicBlock *BB : L->getBlocks()) { 142 const DataLayout &DL = BB->getModule()->getDataLayout(); 143 unsigned LocalGEPsSeen = 0; 144 145 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 146 return SubLoop->contains(BB); })) 147 continue; // Block belongs to an inner loop. 148 149 for (const Instruction &I : *BB) { 150 // Unroll a loop which contains an "if" statement whose condition 151 // defined by a PHI belonging to the loop. This may help to eliminate 152 // if region and potentially even PHI itself, saving on both divergence 153 // and registers used for the PHI. 154 // Add a small bonus for each of such "if" statements. 155 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 156 if (UP.Threshold < MaxBoost && Br->isConditional()) { 157 BasicBlock *Succ0 = Br->getSuccessor(0); 158 BasicBlock *Succ1 = Br->getSuccessor(1); 159 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 160 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 161 continue; 162 if (dependsOnLocalPhi(L, Br->getCondition())) { 163 UP.Threshold += UnrollThresholdIf; 164 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 165 << " for loop:\n" 166 << *L << " due to " << *Br << '\n'); 167 if (UP.Threshold >= MaxBoost) 168 return; 169 } 170 } 171 continue; 172 } 173 174 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 175 if (!GEP) 176 continue; 177 178 unsigned AS = GEP->getAddressSpace(); 179 unsigned Threshold = 0; 180 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 181 Threshold = ThresholdPrivate; 182 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 183 Threshold = ThresholdLocal; 184 else 185 continue; 186 187 if (UP.Threshold >= Threshold) 188 continue; 189 190 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 191 const Value *Ptr = GEP->getPointerOperand(); 192 const AllocaInst *Alloca = 193 dyn_cast<AllocaInst>(getUnderlyingObject(Ptr)); 194 if (!Alloca || !Alloca->isStaticAlloca()) 195 continue; 196 Type *Ty = Alloca->getAllocatedType(); 197 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 198 if (AllocaSize > MaxAlloca) 199 continue; 200 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 201 AS == AMDGPUAS::REGION_ADDRESS) { 202 LocalGEPsSeen++; 203 // Inhibit unroll for local memory if we have seen addressing not to 204 // a variable, most likely we will be unable to combine it. 205 // Do not unroll too deep inner loops for local memory to give a chance 206 // to unroll an outer loop for a more important reason. 207 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 208 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 209 !isa<Argument>(GEP->getPointerOperand()))) 210 continue; 211 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 212 << *L << " due to LDS use.\n"); 213 UP.Runtime = UnrollRuntimeLocal; 214 } 215 216 // Check if GEP depends on a value defined by this loop itself. 217 bool HasLoopDef = false; 218 for (const Value *Op : GEP->operands()) { 219 const Instruction *Inst = dyn_cast<Instruction>(Op); 220 if (!Inst || L->isLoopInvariant(Op)) 221 continue; 222 223 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 224 return SubLoop->contains(Inst); })) 225 continue; 226 HasLoopDef = true; 227 break; 228 } 229 if (!HasLoopDef) 230 continue; 231 232 // We want to do whatever we can to limit the number of alloca 233 // instructions that make it through to the code generator. allocas 234 // require us to use indirect addressing, which is slow and prone to 235 // compiler bugs. If this loop does an address calculation on an 236 // alloca ptr, then we want to use a higher than normal loop unroll 237 // threshold. This will give SROA a better chance to eliminate these 238 // allocas. 239 // 240 // We also want to have more unrolling for local memory to let ds 241 // instructions with different offsets combine. 242 // 243 // Don't use the maximum allowed value here as it will make some 244 // programs way too big. 245 UP.Threshold = Threshold; 246 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 247 << " for loop:\n" 248 << *L << " due to " << *GEP << '\n'); 249 if (UP.Threshold >= MaxBoost) 250 return; 251 } 252 253 // If we got a GEP in a small BB from inner loop then increase max trip 254 // count to analyze for better estimation cost in unroll 255 if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze) 256 UP.MaxIterationsCountToAnalyze = 32; 257 } 258 } 259 260 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 261 TTI::PeelingPreferences &PP) { 262 BaseT::getPeelingPreferences(L, SE, PP); 263 } 264 265 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = { 266 // Codegen control options which don't matter. 267 AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler, 268 AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal, 269 AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess, 270 AMDGPU::FeatureUnalignedAccessMode, 271 272 AMDGPU::FeatureAutoWaitcntBeforeBarrier, 273 274 // Property of the kernel/environment which can't actually differ. 275 AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK, 276 AMDGPU::FeatureTrapHandler, 277 278 // The default assumption needs to be ecc is enabled, but no directly 279 // exposed operations depend on it, so it can be safely inlined. 280 AMDGPU::FeatureSRAMECC, 281 282 // Perf-tuning features 283 AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops}; 284 285 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 286 : BaseT(TM, F.getParent()->getDataLayout()), 287 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))), 288 TLI(ST->getTargetLowering()), CommonTTI(TM, F), 289 IsGraphics(AMDGPU::isGraphics(F.getCallingConv())), 290 MaxVGPRs(ST->getMaxNumVGPRs( 291 std::max(ST->getWavesPerEU(F).first, 292 ST->getWavesPerEUForWorkGroup( 293 ST->getFlatWorkGroupSizes(F).second)))) { 294 AMDGPU::SIModeRegisterDefaults Mode(F); 295 HasFP32Denormals = Mode.allFP32Denormals(); 296 HasFP64FP16Denormals = Mode.allFP64FP16Denormals(); 297 } 298 299 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 300 // The concept of vector registers doesn't really exist. Some packed vector 301 // operations operate on the normal 32-bit registers. 302 return MaxVGPRs; 303 } 304 305 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 306 // This is really the number of registers to fill when vectorizing / 307 // interleaving loops, so we lie to avoid trying to use all registers. 308 return getHardwareNumberOfRegisters(Vec) >> 3; 309 } 310 311 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const { 312 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 313 const TargetRegisterClass *RC = TRI->getRegClass(RCID); 314 unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32; 315 return getHardwareNumberOfRegisters(false) / NumVGPRs; 316 } 317 318 TypeSize 319 GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 320 switch (K) { 321 case TargetTransformInfo::RGK_Scalar: 322 return TypeSize::getFixed(32); 323 case TargetTransformInfo::RGK_FixedWidthVector: 324 return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32); 325 case TargetTransformInfo::RGK_ScalableVector: 326 return TypeSize::getScalable(0); 327 } 328 llvm_unreachable("Unsupported register kind"); 329 } 330 331 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 332 return 32; 333 } 334 335 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 336 if (Opcode == Instruction::Load || Opcode == Instruction::Store) 337 return 32 * 4 / ElemWidth; 338 return (ElemWidth == 16 && ST->has16BitInsts()) ? 2 339 : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2 340 : 1; 341 } 342 343 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 344 unsigned ChainSizeInBytes, 345 VectorType *VecTy) const { 346 unsigned VecRegBitWidth = VF * LoadSize; 347 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 348 // TODO: Support element-size less than 32bit? 349 return 128 / LoadSize; 350 351 return VF; 352 } 353 354 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 355 unsigned ChainSizeInBytes, 356 VectorType *VecTy) const { 357 unsigned VecRegBitWidth = VF * StoreSize; 358 if (VecRegBitWidth > 128) 359 return 128 / StoreSize; 360 361 return VF; 362 } 363 364 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 365 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 366 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 367 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 368 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 369 return 512; 370 } 371 372 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 373 return 8 * ST->getMaxPrivateElementSize(); 374 375 // Common to flat, global, local and region. Assume for unknown addrspace. 376 return 128; 377 } 378 379 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 380 Align Alignment, 381 unsigned AddrSpace) const { 382 // We allow vectorization of flat stores, even though we may need to decompose 383 // them later if they may access private memory. We don't have enough context 384 // here, and legalization can handle it. 385 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 386 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 387 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 388 } 389 return true; 390 } 391 392 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 393 Align Alignment, 394 unsigned AddrSpace) const { 395 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 396 } 397 398 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 399 Align Alignment, 400 unsigned AddrSpace) const { 401 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 402 } 403 404 // FIXME: Really we would like to issue multiple 128-bit loads and stores per 405 // iteration. Should we report a larger size and let it legalize? 406 // 407 // FIXME: Should we use narrower types for local/region, or account for when 408 // unaligned access is legal? 409 // 410 // FIXME: This could use fine tuning and microbenchmarks. 411 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, 412 unsigned SrcAddrSpace, 413 unsigned DestAddrSpace, 414 unsigned SrcAlign, 415 unsigned DestAlign) const { 416 unsigned MinAlign = std::min(SrcAlign, DestAlign); 417 418 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 419 // hardware into byte accesses. If you assume all alignments are equally 420 // probable, it's more efficient on average to use short accesses for this 421 // case. 422 if (MinAlign == 2) 423 return Type::getInt16Ty(Context); 424 425 // Not all subtargets have 128-bit DS instructions, and we currently don't 426 // form them by default. 427 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 428 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 429 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 430 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 431 return FixedVectorType::get(Type::getInt32Ty(Context), 2); 432 } 433 434 // Global memory works best with 16-byte accesses. Private memory will also 435 // hit this, although they'll be decomposed. 436 return FixedVectorType::get(Type::getInt32Ty(Context), 4); 437 } 438 439 void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 440 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 441 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 442 unsigned SrcAlign, unsigned DestAlign) const { 443 assert(RemainingBytes < 16); 444 445 unsigned MinAlign = std::min(SrcAlign, DestAlign); 446 447 if (MinAlign != 2) { 448 Type *I64Ty = Type::getInt64Ty(Context); 449 while (RemainingBytes >= 8) { 450 OpsOut.push_back(I64Ty); 451 RemainingBytes -= 8; 452 } 453 454 Type *I32Ty = Type::getInt32Ty(Context); 455 while (RemainingBytes >= 4) { 456 OpsOut.push_back(I32Ty); 457 RemainingBytes -= 4; 458 } 459 } 460 461 Type *I16Ty = Type::getInt16Ty(Context); 462 while (RemainingBytes >= 2) { 463 OpsOut.push_back(I16Ty); 464 RemainingBytes -= 2; 465 } 466 467 Type *I8Ty = Type::getInt8Ty(Context); 468 while (RemainingBytes) { 469 OpsOut.push_back(I8Ty); 470 --RemainingBytes; 471 } 472 } 473 474 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 475 // Disable unrolling if the loop is not vectorized. 476 // TODO: Enable this again. 477 if (VF == 1) 478 return 1; 479 480 return 8; 481 } 482 483 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 484 MemIntrinsicInfo &Info) const { 485 switch (Inst->getIntrinsicID()) { 486 case Intrinsic::amdgcn_atomic_inc: 487 case Intrinsic::amdgcn_atomic_dec: 488 case Intrinsic::amdgcn_ds_ordered_add: 489 case Intrinsic::amdgcn_ds_ordered_swap: 490 case Intrinsic::amdgcn_ds_fadd: 491 case Intrinsic::amdgcn_ds_fmin: 492 case Intrinsic::amdgcn_ds_fmax: { 493 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 494 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 495 if (!Ordering || !Volatile) 496 return false; // Invalid. 497 498 unsigned OrderingVal = Ordering->getZExtValue(); 499 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 500 return false; 501 502 Info.PtrVal = Inst->getArgOperand(0); 503 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 504 Info.ReadMem = true; 505 Info.WriteMem = true; 506 Info.IsVolatile = !Volatile->isNullValue(); 507 return true; 508 } 509 default: 510 return false; 511 } 512 } 513 514 InstructionCost GCNTTIImpl::getArithmeticInstrCost( 515 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 516 TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, 517 TTI::OperandValueProperties Opd1PropInfo, 518 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 519 const Instruction *CxtI) { 520 EVT OrigTy = TLI->getValueType(DL, Ty); 521 if (!OrigTy.isSimple()) { 522 // FIXME: We're having to query the throughput cost so that the basic 523 // implementation tries to generate legalize and scalarization costs. Maybe 524 // we could hoist the scalarization code here? 525 if (CostKind != TTI::TCK_CodeSize) 526 return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput, 527 Opd1Info, Opd2Info, Opd1PropInfo, 528 Opd2PropInfo, Args, CxtI); 529 // Scalarization 530 531 // Check if any of the operands are vector operands. 532 int ISD = TLI->InstructionOpcodeToISD(Opcode); 533 assert(ISD && "Invalid opcode"); 534 535 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 536 537 bool IsFloat = Ty->isFPOrFPVectorTy(); 538 // Assume that floating point arithmetic operations cost twice as much as 539 // integer operations. 540 unsigned OpCost = (IsFloat ? 2 : 1); 541 542 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 543 // The operation is legal. Assume it costs 1. 544 // TODO: Once we have extract/insert subvector cost we need to use them. 545 return LT.first * OpCost; 546 } 547 548 if (!TLI->isOperationExpand(ISD, LT.second)) { 549 // If the operation is custom lowered, then assume that the code is twice 550 // as expensive. 551 return LT.first * 2 * OpCost; 552 } 553 554 // Else, assume that we need to scalarize this op. 555 // TODO: If one of the types get legalized by splitting, handle this 556 // similarly to what getCastInstrCost() does. 557 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 558 unsigned Num = cast<FixedVectorType>(VTy)->getNumElements(); 559 InstructionCost Cost = getArithmeticInstrCost( 560 Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info, 561 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 562 // Return the cost of multiple scalar invocation plus the cost of 563 // inserting and extracting the values. 564 SmallVector<Type *> Tys(Args.size(), Ty); 565 return getScalarizationOverhead(VTy, Args, Tys) + Num * Cost; 566 } 567 568 // We don't know anything about this scalar instruction. 569 return OpCost; 570 } 571 572 // Legalize the type. 573 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 574 int ISD = TLI->InstructionOpcodeToISD(Opcode); 575 576 // Because we don't have any legal vector operations, but the legal types, we 577 // need to account for split vectors. 578 unsigned NElts = LT.second.isVector() ? 579 LT.second.getVectorNumElements() : 1; 580 581 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 582 583 switch (ISD) { 584 case ISD::SHL: 585 case ISD::SRL: 586 case ISD::SRA: 587 if (SLT == MVT::i64) 588 return get64BitInstrCost(CostKind) * LT.first * NElts; 589 590 if (ST->has16BitInsts() && SLT == MVT::i16) 591 NElts = (NElts + 1) / 2; 592 593 // i32 594 return getFullRateInstrCost() * LT.first * NElts; 595 case ISD::ADD: 596 case ISD::SUB: 597 case ISD::AND: 598 case ISD::OR: 599 case ISD::XOR: 600 if (SLT == MVT::i64) { 601 // and, or and xor are typically split into 2 VALU instructions. 602 return 2 * getFullRateInstrCost() * LT.first * NElts; 603 } 604 605 if (ST->has16BitInsts() && SLT == MVT::i16) 606 NElts = (NElts + 1) / 2; 607 608 return LT.first * NElts * getFullRateInstrCost(); 609 case ISD::MUL: { 610 const int QuarterRateCost = getQuarterRateInstrCost(CostKind); 611 if (SLT == MVT::i64) { 612 const int FullRateCost = getFullRateInstrCost(); 613 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 614 } 615 616 if (ST->has16BitInsts() && SLT == MVT::i16) 617 NElts = (NElts + 1) / 2; 618 619 // i32 620 return QuarterRateCost * NElts * LT.first; 621 } 622 case ISD::FMUL: 623 // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for 624 // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole 625 // fused operation. 626 if (CxtI && CxtI->hasOneUse()) 627 if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) { 628 const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode()); 629 if (OPC == ISD::FADD || OPC == ISD::FSUB) { 630 if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals) 631 return TargetTransformInfo::TCC_Free; 632 if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals) 633 return TargetTransformInfo::TCC_Free; 634 635 // Estimate all types may be fused with contract/unsafe flags 636 const TargetOptions &Options = TLI->getTargetMachine().Options; 637 if (Options.AllowFPOpFusion == FPOpFusion::Fast || 638 Options.UnsafeFPMath || 639 (FAdd->hasAllowContract() && CxtI->hasAllowContract())) 640 return TargetTransformInfo::TCC_Free; 641 } 642 } 643 LLVM_FALLTHROUGH; 644 case ISD::FADD: 645 case ISD::FSUB: 646 if (ST->hasPackedFP32Ops() && SLT == MVT::f32) 647 NElts = (NElts + 1) / 2; 648 if (SLT == MVT::f64) 649 return LT.first * NElts * get64BitInstrCost(CostKind); 650 651 if (ST->has16BitInsts() && SLT == MVT::f16) 652 NElts = (NElts + 1) / 2; 653 654 if (SLT == MVT::f32 || SLT == MVT::f16) 655 return LT.first * NElts * getFullRateInstrCost(); 656 break; 657 case ISD::FDIV: 658 case ISD::FREM: 659 // FIXME: frem should be handled separately. The fdiv in it is most of it, 660 // but the current lowering is also not entirely correct. 661 if (SLT == MVT::f64) { 662 int Cost = 7 * get64BitInstrCost(CostKind) + 663 getQuarterRateInstrCost(CostKind) + 664 3 * getHalfRateInstrCost(CostKind); 665 // Add cost of workaround. 666 if (!ST->hasUsableDivScaleConditionOutput()) 667 Cost += 3 * getFullRateInstrCost(); 668 669 return LT.first * Cost * NElts; 670 } 671 672 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 673 // TODO: This is more complicated, unsafe flags etc. 674 if ((SLT == MVT::f32 && !HasFP32Denormals) || 675 (SLT == MVT::f16 && ST->has16BitInsts())) { 676 return LT.first * getQuarterRateInstrCost(CostKind) * NElts; 677 } 678 } 679 680 if (SLT == MVT::f16 && ST->has16BitInsts()) { 681 // 2 x v_cvt_f32_f16 682 // f32 rcp 683 // f32 fmul 684 // v_cvt_f16_f32 685 // f16 div_fixup 686 int Cost = 687 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind); 688 return LT.first * Cost * NElts; 689 } 690 691 if (SLT == MVT::f32 || SLT == MVT::f16) { 692 // 4 more v_cvt_* insts without f16 insts support 693 int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() + 694 1 * getQuarterRateInstrCost(CostKind); 695 696 if (!HasFP32Denormals) { 697 // FP mode switches. 698 Cost += 2 * getFullRateInstrCost(); 699 } 700 701 return LT.first * NElts * Cost; 702 } 703 break; 704 case ISD::FNEG: 705 // Use the backend' estimation. If fneg is not free each element will cost 706 // one additional instruction. 707 return TLI->isFNegFree(SLT) ? 0 : NElts; 708 default: 709 break; 710 } 711 712 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info, 713 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 714 } 715 716 // Return true if there's a potential benefit from using v2f16/v2i16 717 // instructions for an intrinsic, even if it requires nontrivial legalization. 718 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 719 switch (ID) { 720 case Intrinsic::fma: // TODO: fmuladd 721 // There's a small benefit to using vector ops in the legalized code. 722 case Intrinsic::round: 723 case Intrinsic::uadd_sat: 724 case Intrinsic::usub_sat: 725 case Intrinsic::sadd_sat: 726 case Intrinsic::ssub_sat: 727 return true; 728 default: 729 return false; 730 } 731 } 732 733 InstructionCost 734 GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 735 TTI::TargetCostKind CostKind) { 736 if (ICA.getID() == Intrinsic::fabs) 737 return 0; 738 739 if (!intrinsicHasPackedVectorBenefit(ICA.getID())) 740 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 741 742 Type *RetTy = ICA.getReturnType(); 743 EVT OrigTy = TLI->getValueType(DL, RetTy); 744 if (!OrigTy.isSimple()) { 745 if (CostKind != TTI::TCK_CodeSize) 746 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 747 748 // TODO: Combine these two logic paths. 749 if (ICA.isTypeBasedOnly()) 750 return getTypeBasedIntrinsicInstrCost(ICA, CostKind); 751 752 unsigned RetVF = 753 (RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements() 754 : 1); 755 const IntrinsicInst *I = ICA.getInst(); 756 const SmallVectorImpl<const Value *> &Args = ICA.getArgs(); 757 FastMathFlags FMF = ICA.getFlags(); 758 // Assume that we need to scalarize this intrinsic. 759 760 // Compute the scalarization overhead based on Args for a vector 761 // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while 762 // CostModel will pass a vector RetTy and VF is 1. 763 InstructionCost ScalarizationCost = InstructionCost::getInvalid(); 764 if (RetVF > 1) { 765 ScalarizationCost = 0; 766 if (!RetTy->isVoidTy()) 767 ScalarizationCost += 768 getScalarizationOverhead(cast<VectorType>(RetTy), true, false); 769 ScalarizationCost += 770 getOperandsScalarizationOverhead(Args, ICA.getArgTypes()); 771 } 772 773 IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, ICA.getArgTypes(), FMF, I, 774 ScalarizationCost); 775 return getIntrinsicInstrCost(Attrs, CostKind); 776 } 777 778 // Legalize the type. 779 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 780 781 unsigned NElts = LT.second.isVector() ? 782 LT.second.getVectorNumElements() : 1; 783 784 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 785 786 if (SLT == MVT::f64) 787 return LT.first * NElts * get64BitInstrCost(CostKind); 788 789 if ((ST->has16BitInsts() && SLT == MVT::f16) || 790 (ST->hasPackedFP32Ops() && SLT == MVT::f32)) 791 NElts = (NElts + 1) / 2; 792 793 // TODO: Get more refined intrinsic costs? 794 unsigned InstRate = getQuarterRateInstrCost(CostKind); 795 796 switch (ICA.getID()) { 797 case Intrinsic::fma: 798 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind) 799 : getQuarterRateInstrCost(CostKind); 800 break; 801 case Intrinsic::uadd_sat: 802 case Intrinsic::usub_sat: 803 case Intrinsic::sadd_sat: 804 case Intrinsic::ssub_sat: 805 static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16}; 806 if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) 807 NElts = 1; 808 break; 809 } 810 811 return LT.first * NElts * InstRate; 812 } 813 814 InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode, 815 TTI::TargetCostKind CostKind, 816 const Instruction *I) { 817 assert((I == nullptr || I->getOpcode() == Opcode) && 818 "Opcode should reflect passed instruction."); 819 const bool SCost = 820 (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency); 821 const int CBrCost = SCost ? 5 : 7; 822 switch (Opcode) { 823 case Instruction::Br: { 824 // Branch instruction takes about 4 slots on gfx900. 825 auto BI = dyn_cast_or_null<BranchInst>(I); 826 if (BI && BI->isUnconditional()) 827 return SCost ? 1 : 4; 828 // Suppose conditional branch takes additional 3 exec manipulations 829 // instructions in average. 830 return CBrCost; 831 } 832 case Instruction::Switch: { 833 auto SI = dyn_cast_or_null<SwitchInst>(I); 834 // Each case (including default) takes 1 cmp + 1 cbr instructions in 835 // average. 836 return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1); 837 } 838 case Instruction::Ret: 839 return SCost ? 1 : 10; 840 case Instruction::PHI: 841 // TODO: 1. A prediction phi won't be eliminated? 842 // 2. Estimate data copy instructions in this case. 843 return 1; 844 } 845 return BaseT::getCFInstrCost(Opcode, CostKind, I); 846 } 847 848 InstructionCost 849 GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 850 bool IsPairwise, 851 TTI::TargetCostKind CostKind) { 852 EVT OrigTy = TLI->getValueType(DL, Ty); 853 854 // Computes cost on targets that have packed math instructions(which support 855 // 16-bit types only). 856 if (IsPairwise || 857 !ST->hasVOP3PInsts() || 858 OrigTy.getScalarSizeInBits() != 16) 859 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind); 860 861 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 862 return LT.first * getFullRateInstrCost(); 863 } 864 865 InstructionCost 866 GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 867 bool IsPairwise, bool IsUnsigned, 868 TTI::TargetCostKind CostKind) { 869 EVT OrigTy = TLI->getValueType(DL, Ty); 870 871 // Computes cost on targets that have packed math instructions(which support 872 // 16-bit types only). 873 if (IsPairwise || 874 !ST->hasVOP3PInsts() || 875 OrigTy.getScalarSizeInBits() != 16) 876 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned, 877 CostKind); 878 879 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 880 return LT.first * getHalfRateInstrCost(CostKind); 881 } 882 883 InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 884 unsigned Index) { 885 switch (Opcode) { 886 case Instruction::ExtractElement: 887 case Instruction::InsertElement: { 888 unsigned EltSize 889 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 890 if (EltSize < 32) { 891 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 892 return 0; 893 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 894 } 895 896 // Extracts are just reads of a subregister, so are free. Inserts are 897 // considered free because we don't want to have any cost for scalarizing 898 // operations, and we don't have to copy into a different register class. 899 900 // Dynamic indexing isn't free and is best avoided. 901 return Index == ~0u ? 2 : 0; 902 } 903 default: 904 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 905 } 906 } 907 908 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 909 /// this is analyzing the collective result of all output registers. Otherwise, 910 /// this is only querying a specific result index if this returns multiple 911 /// registers in a struct. 912 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 913 const CallInst *CI, ArrayRef<unsigned> Indices) const { 914 // TODO: Handle complex extract indices 915 if (Indices.size() > 1) 916 return true; 917 918 const DataLayout &DL = CI->getModule()->getDataLayout(); 919 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 920 TargetLowering::AsmOperandInfoVector TargetConstraints = 921 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 922 923 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 924 925 int OutputIdx = 0; 926 for (auto &TC : TargetConstraints) { 927 if (TC.Type != InlineAsm::isOutput) 928 continue; 929 930 // Skip outputs we don't care about. 931 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 932 continue; 933 934 TLI->ComputeConstraintToUse(TC, SDValue()); 935 936 Register AssignedReg; 937 const TargetRegisterClass *RC; 938 std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( 939 TRI, TC.ConstraintCode, TC.ConstraintVT); 940 if (AssignedReg) { 941 // FIXME: This is a workaround for getRegForInlineAsmConstraint 942 // returning VS_32 943 RC = TRI->getPhysRegClass(AssignedReg); 944 } 945 946 // For AGPR constraints null is returned on subtargets without AGPRs, so 947 // assume divergent for null. 948 if (!RC || !TRI->isSGPRClass(RC)) 949 return true; 950 } 951 952 return false; 953 } 954 955 /// \returns true if the new GPU divergence analysis is enabled. 956 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 957 return !UseLegacyDA; 958 } 959 960 /// \returns true if the result of the value could potentially be 961 /// different across workitems in a wavefront. 962 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 963 if (const Argument *A = dyn_cast<Argument>(V)) 964 return !AMDGPU::isArgPassedInSGPR(A); 965 966 // Loads from the private and flat address spaces are divergent, because 967 // threads can execute the load instruction with the same inputs and get 968 // different results. 969 // 970 // All other loads are not divergent, because if threads issue loads with the 971 // same arguments, they will always get the same result. 972 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 973 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 974 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 975 976 // Atomics are divergent because they are executed sequentially: when an 977 // atomic operation refers to the same address in each thread, then each 978 // thread after the first sees the value written by the previous thread as 979 // original value. 980 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 981 return true; 982 983 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 984 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 985 986 // Assume all function calls are a source of divergence. 987 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 988 if (CI->isInlineAsm()) 989 return isInlineAsmSourceOfDivergence(CI); 990 return true; 991 } 992 993 // Assume all function calls are a source of divergence. 994 if (isa<InvokeInst>(V)) 995 return true; 996 997 return false; 998 } 999 1000 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 1001 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 1002 switch (Intrinsic->getIntrinsicID()) { 1003 default: 1004 return false; 1005 case Intrinsic::amdgcn_readfirstlane: 1006 case Intrinsic::amdgcn_readlane: 1007 case Intrinsic::amdgcn_icmp: 1008 case Intrinsic::amdgcn_fcmp: 1009 case Intrinsic::amdgcn_ballot: 1010 case Intrinsic::amdgcn_if_break: 1011 return true; 1012 } 1013 } 1014 1015 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 1016 if (CI->isInlineAsm()) 1017 return !isInlineAsmSourceOfDivergence(CI); 1018 return false; 1019 } 1020 1021 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 1022 if (!ExtValue) 1023 return false; 1024 1025 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 1026 if (!CI) 1027 return false; 1028 1029 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 1030 switch (Intrinsic->getIntrinsicID()) { 1031 default: 1032 return false; 1033 case Intrinsic::amdgcn_if: 1034 case Intrinsic::amdgcn_else: { 1035 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 1036 return Indices.size() == 1 && Indices[0] == 1; 1037 } 1038 } 1039 } 1040 1041 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 1042 // divergent for the overall struct return. We need to override it in the 1043 // case we're extracting an SGPR component here. 1044 if (CI->isInlineAsm()) 1045 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 1046 1047 return false; 1048 } 1049 1050 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 1051 Intrinsic::ID IID) const { 1052 switch (IID) { 1053 case Intrinsic::amdgcn_atomic_inc: 1054 case Intrinsic::amdgcn_atomic_dec: 1055 case Intrinsic::amdgcn_ds_fadd: 1056 case Intrinsic::amdgcn_ds_fmin: 1057 case Intrinsic::amdgcn_ds_fmax: 1058 case Intrinsic::amdgcn_is_shared: 1059 case Intrinsic::amdgcn_is_private: 1060 OpIndexes.push_back(0); 1061 return true; 1062 default: 1063 return false; 1064 } 1065 } 1066 1067 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 1068 Value *OldV, 1069 Value *NewV) const { 1070 auto IntrID = II->getIntrinsicID(); 1071 switch (IntrID) { 1072 case Intrinsic::amdgcn_atomic_inc: 1073 case Intrinsic::amdgcn_atomic_dec: 1074 case Intrinsic::amdgcn_ds_fadd: 1075 case Intrinsic::amdgcn_ds_fmin: 1076 case Intrinsic::amdgcn_ds_fmax: { 1077 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 1078 if (!IsVolatile->isZero()) 1079 return nullptr; 1080 Module *M = II->getParent()->getParent()->getParent(); 1081 Type *DestTy = II->getType(); 1082 Type *SrcTy = NewV->getType(); 1083 Function *NewDecl = 1084 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 1085 II->setArgOperand(0, NewV); 1086 II->setCalledFunction(NewDecl); 1087 return II; 1088 } 1089 case Intrinsic::amdgcn_is_shared: 1090 case Intrinsic::amdgcn_is_private: { 1091 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 1092 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 1093 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1094 LLVMContext &Ctx = NewV->getType()->getContext(); 1095 ConstantInt *NewVal = (TrueAS == NewAS) ? 1096 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 1097 return NewVal; 1098 } 1099 case Intrinsic::ptrmask: { 1100 unsigned OldAS = OldV->getType()->getPointerAddressSpace(); 1101 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1102 Value *MaskOp = II->getArgOperand(1); 1103 Type *MaskTy = MaskOp->getType(); 1104 1105 bool DoTruncate = false; 1106 1107 const GCNTargetMachine &TM = 1108 static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine()); 1109 if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) { 1110 // All valid 64-bit to 32-bit casts work by chopping off the high 1111 // bits. Any masking only clearing the low bits will also apply in the new 1112 // address space. 1113 if (DL.getPointerSizeInBits(OldAS) != 64 || 1114 DL.getPointerSizeInBits(NewAS) != 32) 1115 return nullptr; 1116 1117 // TODO: Do we need to thread more context in here? 1118 KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II); 1119 if (Known.countMinLeadingOnes() < 32) 1120 return nullptr; 1121 1122 DoTruncate = true; 1123 } 1124 1125 IRBuilder<> B(II); 1126 if (DoTruncate) { 1127 MaskTy = B.getInt32Ty(); 1128 MaskOp = B.CreateTrunc(MaskOp, MaskTy); 1129 } 1130 1131 return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy}, 1132 {NewV, MaskOp}); 1133 } 1134 default: 1135 return nullptr; 1136 } 1137 } 1138 1139 InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1140 VectorType *VT, ArrayRef<int> Mask, 1141 int Index, VectorType *SubTp) { 1142 Kind = improveShuffleKindFromMask(Kind, Mask); 1143 if (ST->hasVOP3PInsts()) { 1144 if (cast<FixedVectorType>(VT)->getNumElements() == 2 && 1145 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 1146 // With op_sel VOP3P instructions freely can access the low half or high 1147 // half of a register, so any swizzle is free. 1148 1149 switch (Kind) { 1150 case TTI::SK_Broadcast: 1151 case TTI::SK_Reverse: 1152 case TTI::SK_PermuteSingleSrc: 1153 return 0; 1154 default: 1155 break; 1156 } 1157 } 1158 } 1159 1160 return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp); 1161 } 1162 1163 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 1164 const Function *Callee) const { 1165 const TargetMachine &TM = getTLI()->getTargetMachine(); 1166 const GCNSubtarget *CallerST 1167 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 1168 const GCNSubtarget *CalleeST 1169 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 1170 1171 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 1172 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 1173 1174 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 1175 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 1176 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 1177 return false; 1178 1179 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 1180 // no way to support merge for backend defined attributes. 1181 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); 1182 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); 1183 if (!CallerMode.isInlineCompatible(CalleeMode)) 1184 return false; 1185 1186 if (Callee->hasFnAttribute(Attribute::AlwaysInline) || 1187 Callee->hasFnAttribute(Attribute::InlineHint)) 1188 return true; 1189 1190 // Hack to make compile times reasonable. 1191 if (InlineMaxBB) { 1192 // Single BB does not increase total BB amount. 1193 if (Callee->size() == 1) 1194 return true; 1195 size_t BBSize = Caller->size() + Callee->size() - 1; 1196 return BBSize <= InlineMaxBB; 1197 } 1198 1199 return true; 1200 } 1201 1202 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const { 1203 // If we have a pointer to private array passed into a function 1204 // it will not be optimized out, leaving scratch usage. 1205 // Increase the inline threshold to allow inlining in this case. 1206 uint64_t AllocaSize = 0; 1207 SmallPtrSet<const AllocaInst *, 8> AIVisited; 1208 for (Value *PtrArg : CB->args()) { 1209 PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType()); 1210 if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS && 1211 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS)) 1212 continue; 1213 1214 PtrArg = getUnderlyingObject(PtrArg); 1215 if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) { 1216 if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second) 1217 continue; 1218 AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType()); 1219 // If the amount of stack memory is excessive we will not be able 1220 // to get rid of the scratch anyway, bail out. 1221 if (AllocaSize > ArgAllocaCutoff) { 1222 AllocaSize = 0; 1223 break; 1224 } 1225 } 1226 } 1227 if (AllocaSize) 1228 return ArgAllocaCost; 1229 return 0; 1230 } 1231 1232 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1233 TTI::UnrollingPreferences &UP) { 1234 CommonTTI.getUnrollingPreferences(L, SE, UP); 1235 } 1236 1237 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1238 TTI::PeelingPreferences &PP) { 1239 CommonTTI.getPeelingPreferences(L, SE, PP); 1240 } 1241 1242 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const { 1243 return ST->hasFullRate64Ops() 1244 ? getFullRateInstrCost() 1245 : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind) 1246 : getQuarterRateInstrCost(CostKind); 1247 } 1248 1249 R600TTIImpl::R600TTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 1250 : BaseT(TM, F.getParent()->getDataLayout()), 1251 ST(static_cast<const R600Subtarget *>(TM->getSubtargetImpl(F))), 1252 TLI(ST->getTargetLowering()), CommonTTI(TM, F) {} 1253 1254 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 1255 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 1256 } 1257 1258 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 1259 return getHardwareNumberOfRegisters(Vec); 1260 } 1261 1262 TypeSize 1263 R600TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 1264 return TypeSize::getFixed(32); 1265 } 1266 1267 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 1268 return 32; 1269 } 1270 1271 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 1272 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 1273 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 1274 return 128; 1275 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1276 AddrSpace == AMDGPUAS::REGION_ADDRESS) 1277 return 64; 1278 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 1279 return 32; 1280 1281 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 1282 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 1283 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 1284 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 1285 return 128; 1286 llvm_unreachable("unhandled address space"); 1287 } 1288 1289 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 1290 Align Alignment, 1291 unsigned AddrSpace) const { 1292 // We allow vectorization of flat stores, even though we may need to decompose 1293 // them later if they may access private memory. We don't have enough context 1294 // here, and legalization can handle it. 1295 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 1296 } 1297 1298 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 1299 Align Alignment, 1300 unsigned AddrSpace) const { 1301 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1302 } 1303 1304 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 1305 Align Alignment, 1306 unsigned AddrSpace) const { 1307 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1308 } 1309 1310 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1311 // Disable unrolling if the loop is not vectorized. 1312 // TODO: Enable this again. 1313 if (VF == 1) 1314 return 1; 1315 1316 return 8; 1317 } 1318 1319 InstructionCost R600TTIImpl::getCFInstrCost(unsigned Opcode, 1320 TTI::TargetCostKind CostKind, 1321 const Instruction *I) { 1322 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 1323 return Opcode == Instruction::PHI ? 0 : 1; 1324 1325 // XXX - For some reason this isn't called for switch. 1326 switch (Opcode) { 1327 case Instruction::Br: 1328 case Instruction::Ret: 1329 return 10; 1330 default: 1331 return BaseT::getCFInstrCost(Opcode, CostKind, I); 1332 } 1333 } 1334 1335 InstructionCost R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 1336 unsigned Index) { 1337 switch (Opcode) { 1338 case Instruction::ExtractElement: 1339 case Instruction::InsertElement: { 1340 unsigned EltSize 1341 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 1342 if (EltSize < 32) { 1343 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1344 } 1345 1346 // Extracts are just reads of a subregister, so are free. Inserts are 1347 // considered free because we don't want to have any cost for scalarizing 1348 // operations, and we don't have to copy into a different register class. 1349 1350 // Dynamic indexing isn't free and is best avoided. 1351 return Index == ~0u ? 2 : 0; 1352 } 1353 default: 1354 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1355 } 1356 } 1357 1358 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1359 TTI::UnrollingPreferences &UP) { 1360 CommonTTI.getUnrollingPreferences(L, SE, UP); 1361 } 1362 1363 void R600TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1364 TTI::PeelingPreferences &PP) { 1365 CommonTTI.getPeelingPreferences(L, SE, PP); 1366 } 1367