1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUSubtarget.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <limits> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "AMDGPUtti" 56 57 static cl::opt<unsigned> UnrollThresholdPrivate( 58 "amdgpu-unroll-threshold-private", 59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 60 cl::init(2700), cl::Hidden); 61 62 static cl::opt<unsigned> UnrollThresholdLocal( 63 "amdgpu-unroll-threshold-local", 64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 65 cl::init(1000), cl::Hidden); 66 67 static cl::opt<unsigned> UnrollThresholdIf( 68 "amdgpu-unroll-threshold-if", 69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 70 cl::init(150), cl::Hidden); 71 72 static cl::opt<bool> UnrollRuntimeLocal( 73 "amdgpu-unroll-runtime-local", 74 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<bool> UseLegacyDA( 78 "amdgpu-use-legacy-divergence-analysis", 79 cl::desc("Enable legacy divergence analysis for AMDGPU"), 80 cl::init(false), cl::Hidden); 81 82 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 83 unsigned Depth = 0) { 84 const Instruction *I = dyn_cast<Instruction>(Cond); 85 if (!I) 86 return false; 87 88 for (const Value *V : I->operand_values()) { 89 if (!L->contains(I)) 90 continue; 91 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 92 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 93 return SubLoop->contains(PHI); })) 94 return true; 95 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 96 return true; 97 } 98 return false; 99 } 100 101 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 102 TTI::UnrollingPreferences &UP) { 103 const Function &F = *L->getHeader()->getParent(); 104 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 105 UP.MaxCount = std::numeric_limits<unsigned>::max(); 106 UP.Partial = true; 107 108 // TODO: Do we want runtime unrolling? 109 110 // Maximum alloca size than can fit registers. Reserve 16 registers. 111 const unsigned MaxAlloca = (256 - 16) * 4; 112 unsigned ThresholdPrivate = UnrollThresholdPrivate; 113 unsigned ThresholdLocal = UnrollThresholdLocal; 114 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 115 for (const BasicBlock *BB : L->getBlocks()) { 116 const DataLayout &DL = BB->getModule()->getDataLayout(); 117 unsigned LocalGEPsSeen = 0; 118 119 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 120 return SubLoop->contains(BB); })) 121 continue; // Block belongs to an inner loop. 122 123 for (const Instruction &I : *BB) { 124 // Unroll a loop which contains an "if" statement whose condition 125 // defined by a PHI belonging to the loop. This may help to eliminate 126 // if region and potentially even PHI itself, saving on both divergence 127 // and registers used for the PHI. 128 // Add a small bonus for each of such "if" statements. 129 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 130 if (UP.Threshold < MaxBoost && Br->isConditional()) { 131 BasicBlock *Succ0 = Br->getSuccessor(0); 132 BasicBlock *Succ1 = Br->getSuccessor(1); 133 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 134 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 135 continue; 136 if (dependsOnLocalPhi(L, Br->getCondition())) { 137 UP.Threshold += UnrollThresholdIf; 138 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 139 << " for loop:\n" 140 << *L << " due to " << *Br << '\n'); 141 if (UP.Threshold >= MaxBoost) 142 return; 143 } 144 } 145 continue; 146 } 147 148 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 149 if (!GEP) 150 continue; 151 152 unsigned AS = GEP->getAddressSpace(); 153 unsigned Threshold = 0; 154 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 155 Threshold = ThresholdPrivate; 156 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 157 Threshold = ThresholdLocal; 158 else 159 continue; 160 161 if (UP.Threshold >= Threshold) 162 continue; 163 164 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 165 const Value *Ptr = GEP->getPointerOperand(); 166 const AllocaInst *Alloca = 167 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 168 if (!Alloca || !Alloca->isStaticAlloca()) 169 continue; 170 Type *Ty = Alloca->getAllocatedType(); 171 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 172 if (AllocaSize > MaxAlloca) 173 continue; 174 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 175 AS == AMDGPUAS::REGION_ADDRESS) { 176 LocalGEPsSeen++; 177 // Inhibit unroll for local memory if we have seen addressing not to 178 // a variable, most likely we will be unable to combine it. 179 // Do not unroll too deep inner loops for local memory to give a chance 180 // to unroll an outer loop for a more important reason. 181 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 182 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 183 !isa<Argument>(GEP->getPointerOperand()))) 184 continue; 185 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 186 << *L << " due to LDS use.\n"); 187 UP.Runtime = UnrollRuntimeLocal; 188 } 189 190 // Check if GEP depends on a value defined by this loop itself. 191 bool HasLoopDef = false; 192 for (const Value *Op : GEP->operands()) { 193 const Instruction *Inst = dyn_cast<Instruction>(Op); 194 if (!Inst || L->isLoopInvariant(Op)) 195 continue; 196 197 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 198 return SubLoop->contains(Inst); })) 199 continue; 200 HasLoopDef = true; 201 break; 202 } 203 if (!HasLoopDef) 204 continue; 205 206 // We want to do whatever we can to limit the number of alloca 207 // instructions that make it through to the code generator. allocas 208 // require us to use indirect addressing, which is slow and prone to 209 // compiler bugs. If this loop does an address calculation on an 210 // alloca ptr, then we want to use a higher than normal loop unroll 211 // threshold. This will give SROA a better chance to eliminate these 212 // allocas. 213 // 214 // We also want to have more unrolling for local memory to let ds 215 // instructions with different offsets combine. 216 // 217 // Don't use the maximum allowed value here as it will make some 218 // programs way too big. 219 UP.Threshold = Threshold; 220 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 221 << " for loop:\n" 222 << *L << " due to " << *GEP << '\n'); 223 if (UP.Threshold >= MaxBoost) 224 return; 225 } 226 } 227 } 228 229 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 230 // The concept of vector registers doesn't really exist. Some packed vector 231 // operations operate on the normal 32-bit registers. 232 return 256; 233 } 234 235 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 236 // This is really the number of registers to fill when vectorizing / 237 // interleaving loops, so we lie to avoid trying to use all registers. 238 return getHardwareNumberOfRegisters(Vec) >> 3; 239 } 240 241 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { 242 return 32; 243 } 244 245 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 246 return 32; 247 } 248 249 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 250 unsigned ChainSizeInBytes, 251 VectorType *VecTy) const { 252 unsigned VecRegBitWidth = VF * LoadSize; 253 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 254 // TODO: Support element-size less than 32bit? 255 return 128 / LoadSize; 256 257 return VF; 258 } 259 260 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 261 unsigned ChainSizeInBytes, 262 VectorType *VecTy) const { 263 unsigned VecRegBitWidth = VF * StoreSize; 264 if (VecRegBitWidth > 128) 265 return 128 / StoreSize; 266 267 return VF; 268 } 269 270 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 271 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 272 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 273 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 274 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 275 return 512; 276 } 277 278 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 279 return 8 * ST->getMaxPrivateElementSize(); 280 281 // Common to flat, global, local and region. Assume for unknown addrspace. 282 return 128; 283 } 284 285 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 286 unsigned Alignment, 287 unsigned AddrSpace) const { 288 // We allow vectorization of flat stores, even though we may need to decompose 289 // them later if they may access private memory. We don't have enough context 290 // here, and legalization can handle it. 291 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 292 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 293 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 294 } 295 return true; 296 } 297 298 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 299 unsigned Alignment, 300 unsigned AddrSpace) const { 301 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 302 } 303 304 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 305 unsigned Alignment, 306 unsigned AddrSpace) const { 307 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 308 } 309 310 // FIXME: Really we would like to issue multiple 128-bit loads and stores per 311 // iteration. Should we report a larger size and let it legalize? 312 // 313 // FIXME: Should we use narrower types for local/region, or account for when 314 // unaligned access is legal? 315 // 316 // FIXME: This could use fine tuning and microbenchmarks. 317 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, 318 unsigned SrcAddrSpace, 319 unsigned DestAddrSpace, 320 unsigned SrcAlign, 321 unsigned DestAlign) const { 322 unsigned MinAlign = std::min(SrcAlign, DestAlign); 323 324 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 325 // hardware into byte accesses. If you assume all alignments are equally 326 // probable, it's more efficient on average to use short accesses for this 327 // case. 328 if (MinAlign == 2) 329 return Type::getInt16Ty(Context); 330 331 // Not all subtargets have 128-bit DS instructions, and we currently don't 332 // form them by default. 333 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 334 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 335 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 336 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 337 return VectorType::get(Type::getInt32Ty(Context), 2); 338 } 339 340 // Global memory works best with 16-byte accesses. Private memory will also 341 // hit this, although they'll be decomposed. 342 return VectorType::get(Type::getInt32Ty(Context), 4); 343 } 344 345 void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 346 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 347 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 348 unsigned SrcAlign, unsigned DestAlign) const { 349 assert(RemainingBytes < 16); 350 351 unsigned MinAlign = std::min(SrcAlign, DestAlign); 352 353 if (MinAlign != 2) { 354 Type *I64Ty = Type::getInt64Ty(Context); 355 while (RemainingBytes >= 8) { 356 OpsOut.push_back(I64Ty); 357 RemainingBytes -= 8; 358 } 359 360 Type *I32Ty = Type::getInt32Ty(Context); 361 while (RemainingBytes >= 4) { 362 OpsOut.push_back(I32Ty); 363 RemainingBytes -= 4; 364 } 365 } 366 367 Type *I16Ty = Type::getInt16Ty(Context); 368 while (RemainingBytes >= 2) { 369 OpsOut.push_back(I16Ty); 370 RemainingBytes -= 2; 371 } 372 373 Type *I8Ty = Type::getInt8Ty(Context); 374 while (RemainingBytes) { 375 OpsOut.push_back(I8Ty); 376 --RemainingBytes; 377 } 378 } 379 380 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 381 // Disable unrolling if the loop is not vectorized. 382 // TODO: Enable this again. 383 if (VF == 1) 384 return 1; 385 386 return 8; 387 } 388 389 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 390 MemIntrinsicInfo &Info) const { 391 switch (Inst->getIntrinsicID()) { 392 case Intrinsic::amdgcn_atomic_inc: 393 case Intrinsic::amdgcn_atomic_dec: 394 case Intrinsic::amdgcn_ds_ordered_add: 395 case Intrinsic::amdgcn_ds_ordered_swap: 396 case Intrinsic::amdgcn_ds_fadd: 397 case Intrinsic::amdgcn_ds_fmin: 398 case Intrinsic::amdgcn_ds_fmax: { 399 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 400 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 401 if (!Ordering || !Volatile) 402 return false; // Invalid. 403 404 unsigned OrderingVal = Ordering->getZExtValue(); 405 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 406 return false; 407 408 Info.PtrVal = Inst->getArgOperand(0); 409 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 410 Info.ReadMem = true; 411 Info.WriteMem = true; 412 Info.IsVolatile = !Volatile->isNullValue(); 413 return true; 414 } 415 default: 416 return false; 417 } 418 } 419 420 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 421 TTI::TargetCostKind CostKind, 422 TTI::OperandValueKind Opd1Info, 423 TTI::OperandValueKind Opd2Info, 424 TTI::OperandValueProperties Opd1PropInfo, 425 TTI::OperandValueProperties Opd2PropInfo, 426 ArrayRef<const Value *> Args, 427 const Instruction *CxtI) { 428 EVT OrigTy = TLI->getValueType(DL, Ty); 429 if (!OrigTy.isSimple()) { 430 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 431 Opd2Info, 432 Opd1PropInfo, Opd2PropInfo); 433 } 434 435 // Legalize the type. 436 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 437 int ISD = TLI->InstructionOpcodeToISD(Opcode); 438 439 // Because we don't have any legal vector operations, but the legal types, we 440 // need to account for split vectors. 441 unsigned NElts = LT.second.isVector() ? 442 LT.second.getVectorNumElements() : 1; 443 444 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 445 446 switch (ISD) { 447 case ISD::SHL: 448 case ISD::SRL: 449 case ISD::SRA: 450 if (SLT == MVT::i64) 451 return get64BitInstrCost() * LT.first * NElts; 452 453 if (ST->has16BitInsts() && SLT == MVT::i16) 454 NElts = (NElts + 1) / 2; 455 456 // i32 457 return getFullRateInstrCost() * LT.first * NElts; 458 case ISD::ADD: 459 case ISD::SUB: 460 case ISD::AND: 461 case ISD::OR: 462 case ISD::XOR: 463 if (SLT == MVT::i64) { 464 // and, or and xor are typically split into 2 VALU instructions. 465 return 2 * getFullRateInstrCost() * LT.first * NElts; 466 } 467 468 if (ST->has16BitInsts() && SLT == MVT::i16) 469 NElts = (NElts + 1) / 2; 470 471 return LT.first * NElts * getFullRateInstrCost(); 472 case ISD::MUL: { 473 const int QuarterRateCost = getQuarterRateInstrCost(); 474 if (SLT == MVT::i64) { 475 const int FullRateCost = getFullRateInstrCost(); 476 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 477 } 478 479 if (ST->has16BitInsts() && SLT == MVT::i16) 480 NElts = (NElts + 1) / 2; 481 482 // i32 483 return QuarterRateCost * NElts * LT.first; 484 } 485 case ISD::FADD: 486 case ISD::FSUB: 487 case ISD::FMUL: 488 if (SLT == MVT::f64) 489 return LT.first * NElts * get64BitInstrCost(); 490 491 if (ST->has16BitInsts() && SLT == MVT::f16) 492 NElts = (NElts + 1) / 2; 493 494 if (SLT == MVT::f32 || SLT == MVT::f16) 495 return LT.first * NElts * getFullRateInstrCost(); 496 break; 497 case ISD::FDIV: 498 case ISD::FREM: 499 // FIXME: frem should be handled separately. The fdiv in it is most of it, 500 // but the current lowering is also not entirely correct. 501 if (SLT == MVT::f64) { 502 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 503 // Add cost of workaround. 504 if (!ST->hasUsableDivScaleConditionOutput()) 505 Cost += 3 * getFullRateInstrCost(); 506 507 return LT.first * Cost * NElts; 508 } 509 510 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 511 // TODO: This is more complicated, unsafe flags etc. 512 if ((SLT == MVT::f32 && !HasFP32Denormals) || 513 (SLT == MVT::f16 && ST->has16BitInsts())) { 514 return LT.first * getQuarterRateInstrCost() * NElts; 515 } 516 } 517 518 if (SLT == MVT::f16 && ST->has16BitInsts()) { 519 // 2 x v_cvt_f32_f16 520 // f32 rcp 521 // f32 fmul 522 // v_cvt_f16_f32 523 // f16 div_fixup 524 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 525 return LT.first * Cost * NElts; 526 } 527 528 if (SLT == MVT::f32 || SLT == MVT::f16) { 529 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 530 531 if (!HasFP32Denormals) { 532 // FP mode switches. 533 Cost += 2 * getFullRateInstrCost(); 534 } 535 536 return LT.first * NElts * Cost; 537 } 538 break; 539 default: 540 break; 541 } 542 543 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 544 Opd2Info, 545 Opd1PropInfo, Opd2PropInfo); 546 } 547 548 // Return true if there's a potential benefit from using v2f16 instructions for 549 // an intrinsic, even if it requires nontrivial legalization. 550 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 551 switch (ID) { 552 case Intrinsic::fma: // TODO: fmuladd 553 // There's a small benefit to using vector ops in the legalized code. 554 case Intrinsic::round: 555 return true; 556 default: 557 return false; 558 } 559 } 560 561 template <typename T> 562 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 563 ArrayRef<T *> Args, FastMathFlags FMF, 564 unsigned VF, 565 TTI::TargetCostKind CostKind, 566 const Instruction *I) { 567 if (!intrinsicHasPackedVectorBenefit(ID)) 568 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, CostKind, I); 569 570 EVT OrigTy = TLI->getValueType(DL, RetTy); 571 if (!OrigTy.isSimple()) { 572 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, CostKind, I); 573 } 574 575 // Legalize the type. 576 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 577 578 unsigned NElts = LT.second.isVector() ? 579 LT.second.getVectorNumElements() : 1; 580 581 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 582 583 if (SLT == MVT::f64) 584 return LT.first * NElts * get64BitInstrCost(); 585 586 if (ST->has16BitInsts() && SLT == MVT::f16) 587 NElts = (NElts + 1) / 2; 588 589 // TODO: Get more refined intrinsic costs? 590 unsigned InstRate = getQuarterRateInstrCost(); 591 if (ID == Intrinsic::fma) { 592 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost() 593 : getQuarterRateInstrCost(); 594 } 595 596 return LT.first * NElts * InstRate; 597 } 598 599 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 600 ArrayRef<Value *> Args, FastMathFlags FMF, 601 unsigned VF, 602 TTI::TargetCostKind CostKind, 603 const Instruction *I) { 604 return getIntrinsicInstrCost<Value>(ID, RetTy, Args, FMF, VF, CostKind, I); 605 } 606 607 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 608 ArrayRef<Type *> Tys, FastMathFlags FMF, 609 unsigned ScalarizationCostPassed, 610 TTI::TargetCostKind CostKind, 611 const Instruction *I) { 612 return getIntrinsicInstrCost<Type>(ID, RetTy, Tys, FMF, 613 ScalarizationCostPassed, CostKind, I); 614 } 615 616 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode, 617 TTI::TargetCostKind CostKind) { 618 // XXX - For some reason this isn't called for switch. 619 switch (Opcode) { 620 case Instruction::Br: 621 case Instruction::Ret: 622 return 10; 623 default: 624 return BaseT::getCFInstrCost(Opcode, CostKind); 625 } 626 } 627 628 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 629 bool IsPairwise, 630 TTI::TargetCostKind CostKind) { 631 EVT OrigTy = TLI->getValueType(DL, Ty); 632 633 // Computes cost on targets that have packed math instructions(which support 634 // 16-bit types only). 635 if (IsPairwise || 636 !ST->hasVOP3PInsts() || 637 OrigTy.getScalarSizeInBits() != 16) 638 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind); 639 640 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 641 return LT.first * getFullRateInstrCost(); 642 } 643 644 int GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 645 bool IsPairwise, bool IsUnsigned, 646 TTI::TargetCostKind CostKind) { 647 EVT OrigTy = TLI->getValueType(DL, Ty); 648 649 // Computes cost on targets that have packed math instructions(which support 650 // 16-bit types only). 651 if (IsPairwise || 652 !ST->hasVOP3PInsts() || 653 OrigTy.getScalarSizeInBits() != 16) 654 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned, 655 CostKind); 656 657 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 658 return LT.first * getHalfRateInstrCost(); 659 } 660 661 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 662 unsigned Index) { 663 switch (Opcode) { 664 case Instruction::ExtractElement: 665 case Instruction::InsertElement: { 666 unsigned EltSize 667 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 668 if (EltSize < 32) { 669 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 670 return 0; 671 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 672 } 673 674 // Extracts are just reads of a subregister, so are free. Inserts are 675 // considered free because we don't want to have any cost for scalarizing 676 // operations, and we don't have to copy into a different register class. 677 678 // Dynamic indexing isn't free and is best avoided. 679 return Index == ~0u ? 2 : 0; 680 } 681 default: 682 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 683 } 684 } 685 686 static bool isArgPassedInSGPR(const Argument *A) { 687 const Function *F = A->getParent(); 688 689 // Arguments to compute shaders are never a source of divergence. 690 CallingConv::ID CC = F->getCallingConv(); 691 switch (CC) { 692 case CallingConv::AMDGPU_KERNEL: 693 case CallingConv::SPIR_KERNEL: 694 return true; 695 case CallingConv::AMDGPU_VS: 696 case CallingConv::AMDGPU_LS: 697 case CallingConv::AMDGPU_HS: 698 case CallingConv::AMDGPU_ES: 699 case CallingConv::AMDGPU_GS: 700 case CallingConv::AMDGPU_PS: 701 case CallingConv::AMDGPU_CS: 702 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 703 // Everything else is in VGPRs. 704 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 705 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 706 default: 707 // TODO: Should calls support inreg for SGPR inputs? 708 return false; 709 } 710 } 711 712 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 713 /// this is analyzing the collective result of all output registers. Otherwise, 714 /// this is only querying a specific result index if this returns multiple 715 /// registers in a struct. 716 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 717 const CallInst *CI, ArrayRef<unsigned> Indices) const { 718 // TODO: Handle complex extract indices 719 if (Indices.size() > 1) 720 return true; 721 722 const DataLayout &DL = CI->getModule()->getDataLayout(); 723 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 724 TargetLowering::AsmOperandInfoVector TargetConstraints = 725 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 726 727 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 728 729 int OutputIdx = 0; 730 for (auto &TC : TargetConstraints) { 731 if (TC.Type != InlineAsm::isOutput) 732 continue; 733 734 // Skip outputs we don't care about. 735 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 736 continue; 737 738 TLI->ComputeConstraintToUse(TC, SDValue()); 739 740 Register AssignedReg; 741 const TargetRegisterClass *RC; 742 std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( 743 TRI, TC.ConstraintCode, TC.ConstraintVT); 744 if (AssignedReg) { 745 // FIXME: This is a workaround for getRegForInlineAsmConstraint 746 // returning VS_32 747 RC = TRI->getPhysRegClass(AssignedReg); 748 } 749 750 // For AGPR constraints null is returned on subtargets without AGPRs, so 751 // assume divergent for null. 752 if (!RC || !TRI->isSGPRClass(RC)) 753 return true; 754 } 755 756 return false; 757 } 758 759 /// \returns true if the new GPU divergence analysis is enabled. 760 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 761 return !UseLegacyDA; 762 } 763 764 /// \returns true if the result of the value could potentially be 765 /// different across workitems in a wavefront. 766 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 767 if (const Argument *A = dyn_cast<Argument>(V)) 768 return !isArgPassedInSGPR(A); 769 770 // Loads from the private and flat address spaces are divergent, because 771 // threads can execute the load instruction with the same inputs and get 772 // different results. 773 // 774 // All other loads are not divergent, because if threads issue loads with the 775 // same arguments, they will always get the same result. 776 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 777 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 778 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 779 780 // Atomics are divergent because they are executed sequentially: when an 781 // atomic operation refers to the same address in each thread, then each 782 // thread after the first sees the value written by the previous thread as 783 // original value. 784 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 785 return true; 786 787 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 788 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 789 790 // Assume all function calls are a source of divergence. 791 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 792 if (CI->isInlineAsm()) 793 return isInlineAsmSourceOfDivergence(CI); 794 return true; 795 } 796 797 // Assume all function calls are a source of divergence. 798 if (isa<InvokeInst>(V)) 799 return true; 800 801 return false; 802 } 803 804 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 805 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 806 switch (Intrinsic->getIntrinsicID()) { 807 default: 808 return false; 809 case Intrinsic::amdgcn_readfirstlane: 810 case Intrinsic::amdgcn_readlane: 811 case Intrinsic::amdgcn_icmp: 812 case Intrinsic::amdgcn_fcmp: 813 case Intrinsic::amdgcn_ballot: 814 case Intrinsic::amdgcn_if_break: 815 return true; 816 } 817 } 818 819 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 820 if (CI->isInlineAsm()) 821 return !isInlineAsmSourceOfDivergence(CI); 822 return false; 823 } 824 825 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 826 if (!ExtValue) 827 return false; 828 829 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 830 if (!CI) 831 return false; 832 833 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 834 switch (Intrinsic->getIntrinsicID()) { 835 default: 836 return false; 837 case Intrinsic::amdgcn_if: 838 case Intrinsic::amdgcn_else: { 839 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 840 return Indices.size() == 1 && Indices[0] == 1; 841 } 842 } 843 } 844 845 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 846 // divergent for the overall struct return. We need to override it in the 847 // case we're extracting an SGPR component here. 848 if (CI->isInlineAsm()) 849 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 850 851 return false; 852 } 853 854 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 855 Intrinsic::ID IID) const { 856 switch (IID) { 857 case Intrinsic::amdgcn_atomic_inc: 858 case Intrinsic::amdgcn_atomic_dec: 859 case Intrinsic::amdgcn_ds_fadd: 860 case Intrinsic::amdgcn_ds_fmin: 861 case Intrinsic::amdgcn_ds_fmax: 862 case Intrinsic::amdgcn_is_shared: 863 case Intrinsic::amdgcn_is_private: 864 OpIndexes.push_back(0); 865 return true; 866 default: 867 return false; 868 } 869 } 870 871 bool GCNTTIImpl::rewriteIntrinsicWithAddressSpace( 872 IntrinsicInst *II, Value *OldV, Value *NewV) const { 873 auto IntrID = II->getIntrinsicID(); 874 switch (IntrID) { 875 case Intrinsic::amdgcn_atomic_inc: 876 case Intrinsic::amdgcn_atomic_dec: 877 case Intrinsic::amdgcn_ds_fadd: 878 case Intrinsic::amdgcn_ds_fmin: 879 case Intrinsic::amdgcn_ds_fmax: { 880 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 881 if (!IsVolatile->isZero()) 882 return false; 883 Module *M = II->getParent()->getParent()->getParent(); 884 Type *DestTy = II->getType(); 885 Type *SrcTy = NewV->getType(); 886 Function *NewDecl = 887 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 888 II->setArgOperand(0, NewV); 889 II->setCalledFunction(NewDecl); 890 return true; 891 } 892 case Intrinsic::amdgcn_is_shared: 893 case Intrinsic::amdgcn_is_private: { 894 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 895 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 896 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 897 LLVMContext &Ctx = NewV->getType()->getContext(); 898 ConstantInt *NewVal = (TrueAS == NewAS) ? 899 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 900 II->replaceAllUsesWith(NewVal); 901 II->eraseFromParent(); 902 return true; 903 } 904 default: 905 return false; 906 } 907 } 908 909 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT, 910 int Index, VectorType *SubTp) { 911 if (ST->hasVOP3PInsts()) { 912 if (cast<FixedVectorType>(VT)->getNumElements() == 2 && 913 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 914 // With op_sel VOP3P instructions freely can access the low half or high 915 // half of a register, so any swizzle is free. 916 917 switch (Kind) { 918 case TTI::SK_Broadcast: 919 case TTI::SK_Reverse: 920 case TTI::SK_PermuteSingleSrc: 921 return 0; 922 default: 923 break; 924 } 925 } 926 } 927 928 return BaseT::getShuffleCost(Kind, VT, Index, SubTp); 929 } 930 931 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 932 const Function *Callee) const { 933 const TargetMachine &TM = getTLI()->getTargetMachine(); 934 const GCNSubtarget *CallerST 935 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 936 const GCNSubtarget *CalleeST 937 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 938 939 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 940 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 941 942 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 943 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 944 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 945 return false; 946 947 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 948 // no way to support merge for backend defined attributes. 949 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); 950 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); 951 return CallerMode.isInlineCompatible(CalleeMode); 952 } 953 954 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 955 TTI::UnrollingPreferences &UP) { 956 CommonTTI.getUnrollingPreferences(L, SE, UP); 957 } 958 959 unsigned 960 GCNTTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands, 961 TTI::TargetCostKind CostKind) { 962 const Instruction *I = dyn_cast<Instruction>(U); 963 if (!I) 964 return BaseT::getUserCost(U, Operands, CostKind); 965 966 // Estimate different operations to be optimized out 967 switch (I->getOpcode()) { 968 case Instruction::ExtractElement: { 969 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 970 unsigned Idx = -1; 971 if (CI) 972 Idx = CI->getZExtValue(); 973 return getVectorInstrCost(I->getOpcode(), I->getOperand(0)->getType(), Idx); 974 } 975 case Instruction::InsertElement: { 976 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 977 unsigned Idx = -1; 978 if (CI) 979 Idx = CI->getZExtValue(); 980 return getVectorInstrCost(I->getOpcode(), I->getType(), Idx); 981 } 982 case Instruction::Call: { 983 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 984 SmallVector<Value *, 4> Args(II->arg_operands()); 985 FastMathFlags FMF; 986 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 987 FMF = FPMO->getFastMathFlags(); 988 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args, 989 FMF, 1, CostKind, II); 990 } else { 991 return BaseT::getUserCost(U, Operands, CostKind); 992 } 993 } 994 case Instruction::ShuffleVector: { 995 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 996 auto *Ty = cast<VectorType>(Shuffle->getType()); 997 auto *SrcTy = cast<VectorType>(Shuffle->getOperand(0)->getType()); 998 999 // TODO: Identify and add costs for insert subvector, etc. 1000 int SubIndex; 1001 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1002 return getShuffleCost(TTI::SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1003 1004 if (Shuffle->changesLength()) 1005 return BaseT::getUserCost(U, Operands, CostKind); 1006 1007 if (Shuffle->isIdentity()) 1008 return 0; 1009 1010 if (Shuffle->isReverse()) 1011 return getShuffleCost(TTI::SK_Reverse, Ty, 0, nullptr); 1012 1013 if (Shuffle->isSelect()) 1014 return getShuffleCost(TTI::SK_Select, Ty, 0, nullptr); 1015 1016 if (Shuffle->isTranspose()) 1017 return getShuffleCost(TTI::SK_Transpose, Ty, 0, nullptr); 1018 1019 if (Shuffle->isZeroEltSplat()) 1020 return getShuffleCost(TTI::SK_Broadcast, Ty, 0, nullptr); 1021 1022 if (Shuffle->isSingleSource()) 1023 return getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, nullptr); 1024 1025 return getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, 0, nullptr); 1026 } 1027 case Instruction::ZExt: 1028 case Instruction::SExt: 1029 case Instruction::FPToUI: 1030 case Instruction::FPToSI: 1031 case Instruction::FPExt: 1032 case Instruction::PtrToInt: 1033 case Instruction::IntToPtr: 1034 case Instruction::SIToFP: 1035 case Instruction::UIToFP: 1036 case Instruction::Trunc: 1037 case Instruction::FPTrunc: 1038 case Instruction::BitCast: 1039 case Instruction::AddrSpaceCast: { 1040 return getCastInstrCost(I->getOpcode(), I->getType(), 1041 I->getOperand(0)->getType(), CostKind, I); 1042 } 1043 case Instruction::Add: 1044 case Instruction::FAdd: 1045 case Instruction::Sub: 1046 case Instruction::FSub: 1047 case Instruction::Mul: 1048 case Instruction::FMul: 1049 case Instruction::UDiv: 1050 case Instruction::SDiv: 1051 case Instruction::FDiv: 1052 case Instruction::URem: 1053 case Instruction::SRem: 1054 case Instruction::FRem: 1055 case Instruction::Shl: 1056 case Instruction::LShr: 1057 case Instruction::AShr: 1058 case Instruction::And: 1059 case Instruction::Or: 1060 case Instruction::Xor: 1061 case Instruction::FNeg: { 1062 return getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind, 1063 TTI::OK_AnyValue, TTI::OK_AnyValue, 1064 TTI::OP_None, TTI::OP_None, Operands, I); 1065 } 1066 default: 1067 break; 1068 } 1069 1070 return BaseT::getUserCost(U, Operands, CostKind); 1071 } 1072 1073 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 1074 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 1075 } 1076 1077 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 1078 return getHardwareNumberOfRegisters(Vec); 1079 } 1080 1081 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { 1082 return 32; 1083 } 1084 1085 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 1086 return 32; 1087 } 1088 1089 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 1090 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 1091 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 1092 return 128; 1093 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1094 AddrSpace == AMDGPUAS::REGION_ADDRESS) 1095 return 64; 1096 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 1097 return 32; 1098 1099 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 1100 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 1101 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 1102 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 1103 return 128; 1104 llvm_unreachable("unhandled address space"); 1105 } 1106 1107 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 1108 unsigned Alignment, 1109 unsigned AddrSpace) const { 1110 // We allow vectorization of flat stores, even though we may need to decompose 1111 // them later if they may access private memory. We don't have enough context 1112 // here, and legalization can handle it. 1113 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 1114 } 1115 1116 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 1117 unsigned Alignment, 1118 unsigned AddrSpace) const { 1119 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1120 } 1121 1122 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 1123 unsigned Alignment, 1124 unsigned AddrSpace) const { 1125 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1126 } 1127 1128 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1129 // Disable unrolling if the loop is not vectorized. 1130 // TODO: Enable this again. 1131 if (VF == 1) 1132 return 1; 1133 1134 return 8; 1135 } 1136 1137 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode, 1138 TTI::TargetCostKind CostKind) { 1139 // XXX - For some reason this isn't called for switch. 1140 switch (Opcode) { 1141 case Instruction::Br: 1142 case Instruction::Ret: 1143 return 10; 1144 default: 1145 return BaseT::getCFInstrCost(Opcode, CostKind); 1146 } 1147 } 1148 1149 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 1150 unsigned Index) { 1151 switch (Opcode) { 1152 case Instruction::ExtractElement: 1153 case Instruction::InsertElement: { 1154 unsigned EltSize 1155 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 1156 if (EltSize < 32) { 1157 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1158 } 1159 1160 // Extracts are just reads of a subregister, so are free. Inserts are 1161 // considered free because we don't want to have any cost for scalarizing 1162 // operations, and we don't have to copy into a different register class. 1163 1164 // Dynamic indexing isn't free and is best avoided. 1165 return Index == ~0u ? 2 : 0; 1166 } 1167 default: 1168 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1169 } 1170 } 1171 1172 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1173 TTI::UnrollingPreferences &UP) { 1174 CommonTTI.getUnrollingPreferences(L, SE, UP); 1175 } 1176