1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUSubtarget.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <limits> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "AMDGPUtti" 56 57 static cl::opt<unsigned> UnrollThresholdPrivate( 58 "amdgpu-unroll-threshold-private", 59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 60 cl::init(2700), cl::Hidden); 61 62 static cl::opt<unsigned> UnrollThresholdLocal( 63 "amdgpu-unroll-threshold-local", 64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 65 cl::init(1000), cl::Hidden); 66 67 static cl::opt<unsigned> UnrollThresholdIf( 68 "amdgpu-unroll-threshold-if", 69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 70 cl::init(150), cl::Hidden); 71 72 static cl::opt<bool> UnrollRuntimeLocal( 73 "amdgpu-unroll-runtime-local", 74 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<bool> UseLegacyDA( 78 "amdgpu-use-legacy-divergence-analysis", 79 cl::desc("Enable legacy divergence analysis for AMDGPU"), 80 cl::init(false), cl::Hidden); 81 82 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 83 unsigned Depth = 0) { 84 const Instruction *I = dyn_cast<Instruction>(Cond); 85 if (!I) 86 return false; 87 88 for (const Value *V : I->operand_values()) { 89 if (!L->contains(I)) 90 continue; 91 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 92 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 93 return SubLoop->contains(PHI); })) 94 return true; 95 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 96 return true; 97 } 98 return false; 99 } 100 101 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 102 TTI::UnrollingPreferences &UP) { 103 const Function &F = *L->getHeader()->getParent(); 104 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 105 UP.MaxCount = std::numeric_limits<unsigned>::max(); 106 UP.Partial = true; 107 108 // TODO: Do we want runtime unrolling? 109 110 // Maximum alloca size than can fit registers. Reserve 16 registers. 111 const unsigned MaxAlloca = (256 - 16) * 4; 112 unsigned ThresholdPrivate = UnrollThresholdPrivate; 113 unsigned ThresholdLocal = UnrollThresholdLocal; 114 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 115 for (const BasicBlock *BB : L->getBlocks()) { 116 const DataLayout &DL = BB->getModule()->getDataLayout(); 117 unsigned LocalGEPsSeen = 0; 118 119 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 120 return SubLoop->contains(BB); })) 121 continue; // Block belongs to an inner loop. 122 123 for (const Instruction &I : *BB) { 124 // Unroll a loop which contains an "if" statement whose condition 125 // defined by a PHI belonging to the loop. This may help to eliminate 126 // if region and potentially even PHI itself, saving on both divergence 127 // and registers used for the PHI. 128 // Add a small bonus for each of such "if" statements. 129 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 130 if (UP.Threshold < MaxBoost && Br->isConditional()) { 131 BasicBlock *Succ0 = Br->getSuccessor(0); 132 BasicBlock *Succ1 = Br->getSuccessor(1); 133 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 134 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 135 continue; 136 if (dependsOnLocalPhi(L, Br->getCondition())) { 137 UP.Threshold += UnrollThresholdIf; 138 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 139 << " for loop:\n" 140 << *L << " due to " << *Br << '\n'); 141 if (UP.Threshold >= MaxBoost) 142 return; 143 } 144 } 145 continue; 146 } 147 148 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 149 if (!GEP) 150 continue; 151 152 unsigned AS = GEP->getAddressSpace(); 153 unsigned Threshold = 0; 154 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 155 Threshold = ThresholdPrivate; 156 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 157 Threshold = ThresholdLocal; 158 else 159 continue; 160 161 if (UP.Threshold >= Threshold) 162 continue; 163 164 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 165 const Value *Ptr = GEP->getPointerOperand(); 166 const AllocaInst *Alloca = 167 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 168 if (!Alloca || !Alloca->isStaticAlloca()) 169 continue; 170 Type *Ty = Alloca->getAllocatedType(); 171 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 172 if (AllocaSize > MaxAlloca) 173 continue; 174 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 175 AS == AMDGPUAS::REGION_ADDRESS) { 176 LocalGEPsSeen++; 177 // Inhibit unroll for local memory if we have seen addressing not to 178 // a variable, most likely we will be unable to combine it. 179 // Do not unroll too deep inner loops for local memory to give a chance 180 // to unroll an outer loop for a more important reason. 181 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 182 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 183 !isa<Argument>(GEP->getPointerOperand()))) 184 continue; 185 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 186 << *L << " due to LDS use.\n"); 187 UP.Runtime = UnrollRuntimeLocal; 188 } 189 190 // Check if GEP depends on a value defined by this loop itself. 191 bool HasLoopDef = false; 192 for (const Value *Op : GEP->operands()) { 193 const Instruction *Inst = dyn_cast<Instruction>(Op); 194 if (!Inst || L->isLoopInvariant(Op)) 195 continue; 196 197 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 198 return SubLoop->contains(Inst); })) 199 continue; 200 HasLoopDef = true; 201 break; 202 } 203 if (!HasLoopDef) 204 continue; 205 206 // We want to do whatever we can to limit the number of alloca 207 // instructions that make it through to the code generator. allocas 208 // require us to use indirect addressing, which is slow and prone to 209 // compiler bugs. If this loop does an address calculation on an 210 // alloca ptr, then we want to use a higher than normal loop unroll 211 // threshold. This will give SROA a better chance to eliminate these 212 // allocas. 213 // 214 // We also want to have more unrolling for local memory to let ds 215 // instructions with different offsets combine. 216 // 217 // Don't use the maximum allowed value here as it will make some 218 // programs way too big. 219 UP.Threshold = Threshold; 220 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 221 << " for loop:\n" 222 << *L << " due to " << *GEP << '\n'); 223 if (UP.Threshold >= MaxBoost) 224 return; 225 } 226 } 227 } 228 229 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 230 // The concept of vector registers doesn't really exist. Some packed vector 231 // operations operate on the normal 32-bit registers. 232 return 256; 233 } 234 235 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 236 // This is really the number of registers to fill when vectorizing / 237 // interleaving loops, so we lie to avoid trying to use all registers. 238 return getHardwareNumberOfRegisters(Vec) >> 3; 239 } 240 241 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { 242 return 32; 243 } 244 245 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 246 return 32; 247 } 248 249 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 250 unsigned ChainSizeInBytes, 251 VectorType *VecTy) const { 252 unsigned VecRegBitWidth = VF * LoadSize; 253 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 254 // TODO: Support element-size less than 32bit? 255 return 128 / LoadSize; 256 257 return VF; 258 } 259 260 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 261 unsigned ChainSizeInBytes, 262 VectorType *VecTy) const { 263 unsigned VecRegBitWidth = VF * StoreSize; 264 if (VecRegBitWidth > 128) 265 return 128 / StoreSize; 266 267 return VF; 268 } 269 270 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 271 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 272 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 273 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 274 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 275 return 512; 276 } 277 278 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 279 return 8 * ST->getMaxPrivateElementSize(); 280 281 // Common to flat, global, local and region. Assume for unknown addrspace. 282 return 128; 283 } 284 285 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 286 unsigned Alignment, 287 unsigned AddrSpace) const { 288 // We allow vectorization of flat stores, even though we may need to decompose 289 // them later if they may access private memory. We don't have enough context 290 // here, and legalization can handle it. 291 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 292 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 293 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 294 } 295 return true; 296 } 297 298 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 299 unsigned Alignment, 300 unsigned AddrSpace) const { 301 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 302 } 303 304 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 305 unsigned Alignment, 306 unsigned AddrSpace) const { 307 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 308 } 309 310 // FIXME: Really we would like to issue multiple 128-bit loads and stores per 311 // iteration. Should we report a larger size and let it legalize? 312 // 313 // FIXME: Should we use narrower types for local/region, or account for when 314 // unaligned access is legal? 315 // 316 // FIXME: This could use fine tuning and microbenchmarks. 317 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, 318 unsigned SrcAddrSpace, 319 unsigned DestAddrSpace, 320 unsigned SrcAlign, 321 unsigned DestAlign) const { 322 unsigned MinAlign = std::min(SrcAlign, DestAlign); 323 324 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 325 // hardware into byte accesses. If you assume all alignments are equally 326 // probable, it's more efficient on average to use short accesses for this 327 // case. 328 if (MinAlign == 2) 329 return Type::getInt16Ty(Context); 330 331 // Not all subtargets have 128-bit DS instructions, and we currently don't 332 // form them by default. 333 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 334 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 335 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 336 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 337 return FixedVectorType::get(Type::getInt32Ty(Context), 2); 338 } 339 340 // Global memory works best with 16-byte accesses. Private memory will also 341 // hit this, although they'll be decomposed. 342 return FixedVectorType::get(Type::getInt32Ty(Context), 4); 343 } 344 345 void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 346 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 347 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 348 unsigned SrcAlign, unsigned DestAlign) const { 349 assert(RemainingBytes < 16); 350 351 unsigned MinAlign = std::min(SrcAlign, DestAlign); 352 353 if (MinAlign != 2) { 354 Type *I64Ty = Type::getInt64Ty(Context); 355 while (RemainingBytes >= 8) { 356 OpsOut.push_back(I64Ty); 357 RemainingBytes -= 8; 358 } 359 360 Type *I32Ty = Type::getInt32Ty(Context); 361 while (RemainingBytes >= 4) { 362 OpsOut.push_back(I32Ty); 363 RemainingBytes -= 4; 364 } 365 } 366 367 Type *I16Ty = Type::getInt16Ty(Context); 368 while (RemainingBytes >= 2) { 369 OpsOut.push_back(I16Ty); 370 RemainingBytes -= 2; 371 } 372 373 Type *I8Ty = Type::getInt8Ty(Context); 374 while (RemainingBytes) { 375 OpsOut.push_back(I8Ty); 376 --RemainingBytes; 377 } 378 } 379 380 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 381 // Disable unrolling if the loop is not vectorized. 382 // TODO: Enable this again. 383 if (VF == 1) 384 return 1; 385 386 return 8; 387 } 388 389 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 390 MemIntrinsicInfo &Info) const { 391 switch (Inst->getIntrinsicID()) { 392 case Intrinsic::amdgcn_atomic_inc: 393 case Intrinsic::amdgcn_atomic_dec: 394 case Intrinsic::amdgcn_ds_ordered_add: 395 case Intrinsic::amdgcn_ds_ordered_swap: 396 case Intrinsic::amdgcn_ds_fadd: 397 case Intrinsic::amdgcn_ds_fmin: 398 case Intrinsic::amdgcn_ds_fmax: { 399 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 400 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 401 if (!Ordering || !Volatile) 402 return false; // Invalid. 403 404 unsigned OrderingVal = Ordering->getZExtValue(); 405 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 406 return false; 407 408 Info.PtrVal = Inst->getArgOperand(0); 409 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 410 Info.ReadMem = true; 411 Info.WriteMem = true; 412 Info.IsVolatile = !Volatile->isNullValue(); 413 return true; 414 } 415 default: 416 return false; 417 } 418 } 419 420 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 421 TTI::TargetCostKind CostKind, 422 TTI::OperandValueKind Opd1Info, 423 TTI::OperandValueKind Opd2Info, 424 TTI::OperandValueProperties Opd1PropInfo, 425 TTI::OperandValueProperties Opd2PropInfo, 426 ArrayRef<const Value *> Args, 427 const Instruction *CxtI) { 428 EVT OrigTy = TLI->getValueType(DL, Ty); 429 if (!OrigTy.isSimple()) { 430 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 431 Opd2Info, 432 Opd1PropInfo, Opd2PropInfo); 433 } 434 435 // Legalize the type. 436 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 437 int ISD = TLI->InstructionOpcodeToISD(Opcode); 438 439 // Because we don't have any legal vector operations, but the legal types, we 440 // need to account for split vectors. 441 unsigned NElts = LT.second.isVector() ? 442 LT.second.getVectorNumElements() : 1; 443 444 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 445 446 switch (ISD) { 447 case ISD::SHL: 448 case ISD::SRL: 449 case ISD::SRA: 450 if (SLT == MVT::i64) 451 return get64BitInstrCost() * LT.first * NElts; 452 453 if (ST->has16BitInsts() && SLT == MVT::i16) 454 NElts = (NElts + 1) / 2; 455 456 // i32 457 return getFullRateInstrCost() * LT.first * NElts; 458 case ISD::ADD: 459 case ISD::SUB: 460 case ISD::AND: 461 case ISD::OR: 462 case ISD::XOR: 463 if (SLT == MVT::i64) { 464 // and, or and xor are typically split into 2 VALU instructions. 465 return 2 * getFullRateInstrCost() * LT.first * NElts; 466 } 467 468 if (ST->has16BitInsts() && SLT == MVT::i16) 469 NElts = (NElts + 1) / 2; 470 471 return LT.first * NElts * getFullRateInstrCost(); 472 case ISD::MUL: { 473 const int QuarterRateCost = getQuarterRateInstrCost(); 474 if (SLT == MVT::i64) { 475 const int FullRateCost = getFullRateInstrCost(); 476 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 477 } 478 479 if (ST->has16BitInsts() && SLT == MVT::i16) 480 NElts = (NElts + 1) / 2; 481 482 // i32 483 return QuarterRateCost * NElts * LT.first; 484 } 485 case ISD::FADD: 486 case ISD::FSUB: 487 case ISD::FMUL: 488 if (SLT == MVT::f64) 489 return LT.first * NElts * get64BitInstrCost(); 490 491 if (ST->has16BitInsts() && SLT == MVT::f16) 492 NElts = (NElts + 1) / 2; 493 494 if (SLT == MVT::f32 || SLT == MVT::f16) 495 return LT.first * NElts * getFullRateInstrCost(); 496 break; 497 case ISD::FDIV: 498 case ISD::FREM: 499 // FIXME: frem should be handled separately. The fdiv in it is most of it, 500 // but the current lowering is also not entirely correct. 501 if (SLT == MVT::f64) { 502 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 503 // Add cost of workaround. 504 if (!ST->hasUsableDivScaleConditionOutput()) 505 Cost += 3 * getFullRateInstrCost(); 506 507 return LT.first * Cost * NElts; 508 } 509 510 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 511 // TODO: This is more complicated, unsafe flags etc. 512 if ((SLT == MVT::f32 && !HasFP32Denormals) || 513 (SLT == MVT::f16 && ST->has16BitInsts())) { 514 return LT.first * getQuarterRateInstrCost() * NElts; 515 } 516 } 517 518 if (SLT == MVT::f16 && ST->has16BitInsts()) { 519 // 2 x v_cvt_f32_f16 520 // f32 rcp 521 // f32 fmul 522 // v_cvt_f16_f32 523 // f16 div_fixup 524 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 525 return LT.first * Cost * NElts; 526 } 527 528 if (SLT == MVT::f32 || SLT == MVT::f16) { 529 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 530 531 if (!HasFP32Denormals) { 532 // FP mode switches. 533 Cost += 2 * getFullRateInstrCost(); 534 } 535 536 return LT.first * NElts * Cost; 537 } 538 break; 539 default: 540 break; 541 } 542 543 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 544 Opd2Info, 545 Opd1PropInfo, Opd2PropInfo); 546 } 547 548 // Return true if there's a potential benefit from using v2f16 instructions for 549 // an intrinsic, even if it requires nontrivial legalization. 550 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 551 switch (ID) { 552 case Intrinsic::fma: // TODO: fmuladd 553 // There's a small benefit to using vector ops in the legalized code. 554 case Intrinsic::round: 555 return true; 556 default: 557 return false; 558 } 559 } 560 561 int GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 562 TTI::TargetCostKind CostKind) { 563 if (ICA.getID() == Intrinsic::fabs) 564 return 0; 565 566 if (!intrinsicHasPackedVectorBenefit(ICA.getID())) 567 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 568 569 Type *RetTy = ICA.getReturnType(); 570 EVT OrigTy = TLI->getValueType(DL, RetTy); 571 if (!OrigTy.isSimple()) { 572 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 573 } 574 575 // Legalize the type. 576 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 577 578 unsigned NElts = LT.second.isVector() ? 579 LT.second.getVectorNumElements() : 1; 580 581 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 582 583 if (SLT == MVT::f64) 584 return LT.first * NElts * get64BitInstrCost(); 585 586 if (ST->has16BitInsts() && SLT == MVT::f16) 587 NElts = (NElts + 1) / 2; 588 589 // TODO: Get more refined intrinsic costs? 590 unsigned InstRate = getQuarterRateInstrCost(); 591 if (ICA.getID() == Intrinsic::fma) { 592 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost() 593 : getQuarterRateInstrCost(); 594 } 595 596 return LT.first * NElts * InstRate; 597 } 598 599 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode, 600 TTI::TargetCostKind CostKind) { 601 // XXX - For some reason this isn't called for switch. 602 switch (Opcode) { 603 case Instruction::Br: 604 case Instruction::Ret: 605 return 10; 606 default: 607 return BaseT::getCFInstrCost(Opcode, CostKind); 608 } 609 } 610 611 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 612 bool IsPairwise, 613 TTI::TargetCostKind CostKind) { 614 EVT OrigTy = TLI->getValueType(DL, Ty); 615 616 // Computes cost on targets that have packed math instructions(which support 617 // 16-bit types only). 618 if (IsPairwise || 619 !ST->hasVOP3PInsts() || 620 OrigTy.getScalarSizeInBits() != 16) 621 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind); 622 623 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 624 return LT.first * getFullRateInstrCost(); 625 } 626 627 int GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 628 bool IsPairwise, bool IsUnsigned, 629 TTI::TargetCostKind CostKind) { 630 EVT OrigTy = TLI->getValueType(DL, Ty); 631 632 // Computes cost on targets that have packed math instructions(which support 633 // 16-bit types only). 634 if (IsPairwise || 635 !ST->hasVOP3PInsts() || 636 OrigTy.getScalarSizeInBits() != 16) 637 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned, 638 CostKind); 639 640 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 641 return LT.first * getHalfRateInstrCost(); 642 } 643 644 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 645 unsigned Index) { 646 switch (Opcode) { 647 case Instruction::ExtractElement: 648 case Instruction::InsertElement: { 649 unsigned EltSize 650 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 651 if (EltSize < 32) { 652 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 653 return 0; 654 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 655 } 656 657 // Extracts are just reads of a subregister, so are free. Inserts are 658 // considered free because we don't want to have any cost for scalarizing 659 // operations, and we don't have to copy into a different register class. 660 661 // Dynamic indexing isn't free and is best avoided. 662 return Index == ~0u ? 2 : 0; 663 } 664 default: 665 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 666 } 667 } 668 669 static bool isArgPassedInSGPR(const Argument *A) { 670 const Function *F = A->getParent(); 671 672 // Arguments to compute shaders are never a source of divergence. 673 CallingConv::ID CC = F->getCallingConv(); 674 switch (CC) { 675 case CallingConv::AMDGPU_KERNEL: 676 case CallingConv::SPIR_KERNEL: 677 return true; 678 case CallingConv::AMDGPU_VS: 679 case CallingConv::AMDGPU_LS: 680 case CallingConv::AMDGPU_HS: 681 case CallingConv::AMDGPU_ES: 682 case CallingConv::AMDGPU_GS: 683 case CallingConv::AMDGPU_PS: 684 case CallingConv::AMDGPU_CS: 685 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 686 // Everything else is in VGPRs. 687 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 688 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 689 default: 690 // TODO: Should calls support inreg for SGPR inputs? 691 return false; 692 } 693 } 694 695 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 696 /// this is analyzing the collective result of all output registers. Otherwise, 697 /// this is only querying a specific result index if this returns multiple 698 /// registers in a struct. 699 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 700 const CallInst *CI, ArrayRef<unsigned> Indices) const { 701 // TODO: Handle complex extract indices 702 if (Indices.size() > 1) 703 return true; 704 705 const DataLayout &DL = CI->getModule()->getDataLayout(); 706 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 707 TargetLowering::AsmOperandInfoVector TargetConstraints = 708 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 709 710 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 711 712 int OutputIdx = 0; 713 for (auto &TC : TargetConstraints) { 714 if (TC.Type != InlineAsm::isOutput) 715 continue; 716 717 // Skip outputs we don't care about. 718 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 719 continue; 720 721 TLI->ComputeConstraintToUse(TC, SDValue()); 722 723 Register AssignedReg; 724 const TargetRegisterClass *RC; 725 std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( 726 TRI, TC.ConstraintCode, TC.ConstraintVT); 727 if (AssignedReg) { 728 // FIXME: This is a workaround for getRegForInlineAsmConstraint 729 // returning VS_32 730 RC = TRI->getPhysRegClass(AssignedReg); 731 } 732 733 // For AGPR constraints null is returned on subtargets without AGPRs, so 734 // assume divergent for null. 735 if (!RC || !TRI->isSGPRClass(RC)) 736 return true; 737 } 738 739 return false; 740 } 741 742 /// \returns true if the new GPU divergence analysis is enabled. 743 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 744 return !UseLegacyDA; 745 } 746 747 /// \returns true if the result of the value could potentially be 748 /// different across workitems in a wavefront. 749 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 750 if (const Argument *A = dyn_cast<Argument>(V)) 751 return !isArgPassedInSGPR(A); 752 753 // Loads from the private and flat address spaces are divergent, because 754 // threads can execute the load instruction with the same inputs and get 755 // different results. 756 // 757 // All other loads are not divergent, because if threads issue loads with the 758 // same arguments, they will always get the same result. 759 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 760 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 761 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 762 763 // Atomics are divergent because they are executed sequentially: when an 764 // atomic operation refers to the same address in each thread, then each 765 // thread after the first sees the value written by the previous thread as 766 // original value. 767 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 768 return true; 769 770 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 771 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 772 773 // Assume all function calls are a source of divergence. 774 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 775 if (CI->isInlineAsm()) 776 return isInlineAsmSourceOfDivergence(CI); 777 return true; 778 } 779 780 // Assume all function calls are a source of divergence. 781 if (isa<InvokeInst>(V)) 782 return true; 783 784 return false; 785 } 786 787 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 788 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 789 switch (Intrinsic->getIntrinsicID()) { 790 default: 791 return false; 792 case Intrinsic::amdgcn_readfirstlane: 793 case Intrinsic::amdgcn_readlane: 794 case Intrinsic::amdgcn_icmp: 795 case Intrinsic::amdgcn_fcmp: 796 case Intrinsic::amdgcn_ballot: 797 case Intrinsic::amdgcn_if_break: 798 return true; 799 } 800 } 801 802 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 803 if (CI->isInlineAsm()) 804 return !isInlineAsmSourceOfDivergence(CI); 805 return false; 806 } 807 808 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 809 if (!ExtValue) 810 return false; 811 812 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 813 if (!CI) 814 return false; 815 816 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 817 switch (Intrinsic->getIntrinsicID()) { 818 default: 819 return false; 820 case Intrinsic::amdgcn_if: 821 case Intrinsic::amdgcn_else: { 822 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 823 return Indices.size() == 1 && Indices[0] == 1; 824 } 825 } 826 } 827 828 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 829 // divergent for the overall struct return. We need to override it in the 830 // case we're extracting an SGPR component here. 831 if (CI->isInlineAsm()) 832 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 833 834 return false; 835 } 836 837 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 838 Intrinsic::ID IID) const { 839 switch (IID) { 840 case Intrinsic::amdgcn_atomic_inc: 841 case Intrinsic::amdgcn_atomic_dec: 842 case Intrinsic::amdgcn_ds_fadd: 843 case Intrinsic::amdgcn_ds_fmin: 844 case Intrinsic::amdgcn_ds_fmax: 845 case Intrinsic::amdgcn_is_shared: 846 case Intrinsic::amdgcn_is_private: 847 OpIndexes.push_back(0); 848 return true; 849 default: 850 return false; 851 } 852 } 853 854 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 855 Value *OldV, 856 Value *NewV) const { 857 auto IntrID = II->getIntrinsicID(); 858 switch (IntrID) { 859 case Intrinsic::amdgcn_atomic_inc: 860 case Intrinsic::amdgcn_atomic_dec: 861 case Intrinsic::amdgcn_ds_fadd: 862 case Intrinsic::amdgcn_ds_fmin: 863 case Intrinsic::amdgcn_ds_fmax: { 864 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 865 if (!IsVolatile->isZero()) 866 return nullptr; 867 Module *M = II->getParent()->getParent()->getParent(); 868 Type *DestTy = II->getType(); 869 Type *SrcTy = NewV->getType(); 870 Function *NewDecl = 871 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 872 II->setArgOperand(0, NewV); 873 II->setCalledFunction(NewDecl); 874 return II; 875 } 876 case Intrinsic::amdgcn_is_shared: 877 case Intrinsic::amdgcn_is_private: { 878 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 879 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 880 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 881 LLVMContext &Ctx = NewV->getType()->getContext(); 882 ConstantInt *NewVal = (TrueAS == NewAS) ? 883 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 884 return NewVal; 885 } 886 case Intrinsic::ptrmask: { 887 unsigned OldAS = OldV->getType()->getPointerAddressSpace(); 888 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 889 Value *MaskOp = II->getArgOperand(1); 890 Type *MaskTy = MaskOp->getType(); 891 892 bool DoTruncate = false; 893 if (!getTLI()->isNoopAddrSpaceCast(OldAS, NewAS)) { 894 // All valid 64-bit to 32-bit casts work by chopping off the high 895 // bits. Any masking only clearing the low bits will also apply in the new 896 // address space. 897 if (DL.getPointerSizeInBits(OldAS) != 64 || 898 DL.getPointerSizeInBits(NewAS) != 32) 899 return nullptr; 900 901 // TODO: Do we need to thread more context in here? 902 KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II); 903 if (Known.countMinLeadingOnes() < 32) 904 return nullptr; 905 906 DoTruncate = true; 907 } 908 909 IRBuilder<> B(II); 910 if (DoTruncate) { 911 MaskTy = B.getInt32Ty(); 912 MaskOp = B.CreateTrunc(MaskOp, MaskTy); 913 } 914 915 return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy}, 916 {NewV, MaskOp}); 917 } 918 default: 919 return nullptr; 920 } 921 } 922 923 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT, 924 int Index, VectorType *SubTp) { 925 if (ST->hasVOP3PInsts()) { 926 if (cast<FixedVectorType>(VT)->getNumElements() == 2 && 927 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 928 // With op_sel VOP3P instructions freely can access the low half or high 929 // half of a register, so any swizzle is free. 930 931 switch (Kind) { 932 case TTI::SK_Broadcast: 933 case TTI::SK_Reverse: 934 case TTI::SK_PermuteSingleSrc: 935 return 0; 936 default: 937 break; 938 } 939 } 940 } 941 942 return BaseT::getShuffleCost(Kind, VT, Index, SubTp); 943 } 944 945 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 946 const Function *Callee) const { 947 const TargetMachine &TM = getTLI()->getTargetMachine(); 948 const GCNSubtarget *CallerST 949 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 950 const GCNSubtarget *CalleeST 951 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 952 953 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 954 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 955 956 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 957 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 958 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 959 return false; 960 961 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 962 // no way to support merge for backend defined attributes. 963 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); 964 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); 965 return CallerMode.isInlineCompatible(CalleeMode); 966 } 967 968 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 969 TTI::UnrollingPreferences &UP) { 970 CommonTTI.getUnrollingPreferences(L, SE, UP); 971 } 972 973 unsigned 974 GCNTTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands, 975 TTI::TargetCostKind CostKind) { 976 const Instruction *I = dyn_cast<Instruction>(U); 977 if (!I) 978 return BaseT::getUserCost(U, Operands, CostKind); 979 980 // Estimate different operations to be optimized out 981 switch (I->getOpcode()) { 982 case Instruction::ExtractElement: { 983 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 984 unsigned Idx = -1; 985 if (CI) 986 Idx = CI->getZExtValue(); 987 return getVectorInstrCost(I->getOpcode(), I->getOperand(0)->getType(), Idx); 988 } 989 case Instruction::InsertElement: { 990 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 991 unsigned Idx = -1; 992 if (CI) 993 Idx = CI->getZExtValue(); 994 return getVectorInstrCost(I->getOpcode(), I->getType(), Idx); 995 } 996 case Instruction::Call: { 997 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 998 IntrinsicCostAttributes CostAttrs(*II); 999 return getIntrinsicInstrCost(CostAttrs, CostKind); 1000 } else { 1001 return BaseT::getUserCost(U, Operands, CostKind); 1002 } 1003 } 1004 case Instruction::ShuffleVector: { 1005 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1006 auto *Ty = cast<VectorType>(Shuffle->getType()); 1007 auto *SrcTy = cast<VectorType>(Shuffle->getOperand(0)->getType()); 1008 1009 // TODO: Identify and add costs for insert subvector, etc. 1010 int SubIndex; 1011 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1012 return getShuffleCost(TTI::SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1013 1014 if (Shuffle->changesLength()) 1015 return BaseT::getUserCost(U, Operands, CostKind); 1016 1017 if (Shuffle->isIdentity()) 1018 return 0; 1019 1020 if (Shuffle->isReverse()) 1021 return getShuffleCost(TTI::SK_Reverse, Ty, 0, nullptr); 1022 1023 if (Shuffle->isSelect()) 1024 return getShuffleCost(TTI::SK_Select, Ty, 0, nullptr); 1025 1026 if (Shuffle->isTranspose()) 1027 return getShuffleCost(TTI::SK_Transpose, Ty, 0, nullptr); 1028 1029 if (Shuffle->isZeroEltSplat()) 1030 return getShuffleCost(TTI::SK_Broadcast, Ty, 0, nullptr); 1031 1032 if (Shuffle->isSingleSource()) 1033 return getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, nullptr); 1034 1035 return getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, 0, nullptr); 1036 } 1037 case Instruction::ZExt: 1038 case Instruction::SExt: 1039 case Instruction::FPToUI: 1040 case Instruction::FPToSI: 1041 case Instruction::FPExt: 1042 case Instruction::PtrToInt: 1043 case Instruction::IntToPtr: 1044 case Instruction::SIToFP: 1045 case Instruction::UIToFP: 1046 case Instruction::Trunc: 1047 case Instruction::FPTrunc: 1048 case Instruction::BitCast: 1049 case Instruction::AddrSpaceCast: { 1050 return getCastInstrCost(I->getOpcode(), I->getType(), 1051 I->getOperand(0)->getType(), CostKind, I); 1052 } 1053 case Instruction::Add: 1054 case Instruction::FAdd: 1055 case Instruction::Sub: 1056 case Instruction::FSub: 1057 case Instruction::Mul: 1058 case Instruction::FMul: 1059 case Instruction::UDiv: 1060 case Instruction::SDiv: 1061 case Instruction::FDiv: 1062 case Instruction::URem: 1063 case Instruction::SRem: 1064 case Instruction::FRem: 1065 case Instruction::Shl: 1066 case Instruction::LShr: 1067 case Instruction::AShr: 1068 case Instruction::And: 1069 case Instruction::Or: 1070 case Instruction::Xor: 1071 case Instruction::FNeg: { 1072 return getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind, 1073 TTI::OK_AnyValue, TTI::OK_AnyValue, 1074 TTI::OP_None, TTI::OP_None, Operands, I); 1075 } 1076 default: 1077 break; 1078 } 1079 1080 return BaseT::getUserCost(U, Operands, CostKind); 1081 } 1082 1083 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 1084 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 1085 } 1086 1087 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 1088 return getHardwareNumberOfRegisters(Vec); 1089 } 1090 1091 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { 1092 return 32; 1093 } 1094 1095 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 1096 return 32; 1097 } 1098 1099 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 1100 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 1101 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 1102 return 128; 1103 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1104 AddrSpace == AMDGPUAS::REGION_ADDRESS) 1105 return 64; 1106 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 1107 return 32; 1108 1109 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 1110 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 1111 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 1112 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 1113 return 128; 1114 llvm_unreachable("unhandled address space"); 1115 } 1116 1117 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 1118 unsigned Alignment, 1119 unsigned AddrSpace) const { 1120 // We allow vectorization of flat stores, even though we may need to decompose 1121 // them later if they may access private memory. We don't have enough context 1122 // here, and legalization can handle it. 1123 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 1124 } 1125 1126 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 1127 unsigned Alignment, 1128 unsigned AddrSpace) const { 1129 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1130 } 1131 1132 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 1133 unsigned Alignment, 1134 unsigned AddrSpace) const { 1135 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1136 } 1137 1138 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1139 // Disable unrolling if the loop is not vectorized. 1140 // TODO: Enable this again. 1141 if (VF == 1) 1142 return 1; 1143 1144 return 8; 1145 } 1146 1147 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode, 1148 TTI::TargetCostKind CostKind) { 1149 // XXX - For some reason this isn't called for switch. 1150 switch (Opcode) { 1151 case Instruction::Br: 1152 case Instruction::Ret: 1153 return 10; 1154 default: 1155 return BaseT::getCFInstrCost(Opcode, CostKind); 1156 } 1157 } 1158 1159 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 1160 unsigned Index) { 1161 switch (Opcode) { 1162 case Instruction::ExtractElement: 1163 case Instruction::InsertElement: { 1164 unsigned EltSize 1165 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 1166 if (EltSize < 32) { 1167 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1168 } 1169 1170 // Extracts are just reads of a subregister, so are free. Inserts are 1171 // considered free because we don't want to have any cost for scalarizing 1172 // operations, and we don't have to copy into a different register class. 1173 1174 // Dynamic indexing isn't free and is best avoided. 1175 return Index == ~0u ? 2 : 0; 1176 } 1177 default: 1178 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1179 } 1180 } 1181 1182 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1183 TTI::UnrollingPreferences &UP) { 1184 CommonTTI.getUnrollingPreferences(L, SE, UP); 1185 } 1186