1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUSubtarget.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <limits> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "AMDGPUtti" 56 57 static cl::opt<unsigned> UnrollThresholdPrivate( 58 "amdgpu-unroll-threshold-private", 59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 60 cl::init(2700), cl::Hidden); 61 62 static cl::opt<unsigned> UnrollThresholdLocal( 63 "amdgpu-unroll-threshold-local", 64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 65 cl::init(1000), cl::Hidden); 66 67 static cl::opt<unsigned> UnrollThresholdIf( 68 "amdgpu-unroll-threshold-if", 69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 70 cl::init(150), cl::Hidden); 71 72 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 73 unsigned Depth = 0) { 74 const Instruction *I = dyn_cast<Instruction>(Cond); 75 if (!I) 76 return false; 77 78 for (const Value *V : I->operand_values()) { 79 if (!L->contains(I)) 80 continue; 81 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 82 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 83 return SubLoop->contains(PHI); })) 84 return true; 85 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 86 return true; 87 } 88 return false; 89 } 90 91 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 92 TTI::UnrollingPreferences &UP) { 93 const Function &F = *L->getHeader()->getParent(); 94 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 95 UP.MaxCount = std::numeric_limits<unsigned>::max(); 96 UP.Partial = true; 97 98 // TODO: Do we want runtime unrolling? 99 100 // Maximum alloca size than can fit registers. Reserve 16 registers. 101 const unsigned MaxAlloca = (256 - 16) * 4; 102 unsigned ThresholdPrivate = UnrollThresholdPrivate; 103 unsigned ThresholdLocal = UnrollThresholdLocal; 104 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 105 for (const BasicBlock *BB : L->getBlocks()) { 106 const DataLayout &DL = BB->getModule()->getDataLayout(); 107 unsigned LocalGEPsSeen = 0; 108 109 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 110 return SubLoop->contains(BB); })) 111 continue; // Block belongs to an inner loop. 112 113 for (const Instruction &I : *BB) { 114 // Unroll a loop which contains an "if" statement whose condition 115 // defined by a PHI belonging to the loop. This may help to eliminate 116 // if region and potentially even PHI itself, saving on both divergence 117 // and registers used for the PHI. 118 // Add a small bonus for each of such "if" statements. 119 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 120 if (UP.Threshold < MaxBoost && Br->isConditional()) { 121 BasicBlock *Succ0 = Br->getSuccessor(0); 122 BasicBlock *Succ1 = Br->getSuccessor(1); 123 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 124 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 125 continue; 126 if (dependsOnLocalPhi(L, Br->getCondition())) { 127 UP.Threshold += UnrollThresholdIf; 128 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 129 << " for loop:\n" 130 << *L << " due to " << *Br << '\n'); 131 if (UP.Threshold >= MaxBoost) 132 return; 133 } 134 } 135 continue; 136 } 137 138 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 139 if (!GEP) 140 continue; 141 142 unsigned AS = GEP->getAddressSpace(); 143 unsigned Threshold = 0; 144 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 145 Threshold = ThresholdPrivate; 146 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 147 Threshold = ThresholdLocal; 148 else 149 continue; 150 151 if (UP.Threshold >= Threshold) 152 continue; 153 154 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 155 const Value *Ptr = GEP->getPointerOperand(); 156 const AllocaInst *Alloca = 157 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 158 if (!Alloca || !Alloca->isStaticAlloca()) 159 continue; 160 Type *Ty = Alloca->getAllocatedType(); 161 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 162 if (AllocaSize > MaxAlloca) 163 continue; 164 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 165 AS == AMDGPUAS::REGION_ADDRESS) { 166 LocalGEPsSeen++; 167 // Inhibit unroll for local memory if we have seen addressing not to 168 // a variable, most likely we will be unable to combine it. 169 // Do not unroll too deep inner loops for local memory to give a chance 170 // to unroll an outer loop for a more important reason. 171 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 172 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 173 !isa<Argument>(GEP->getPointerOperand()))) 174 continue; 175 } 176 177 // Check if GEP depends on a value defined by this loop itself. 178 bool HasLoopDef = false; 179 for (const Value *Op : GEP->operands()) { 180 const Instruction *Inst = dyn_cast<Instruction>(Op); 181 if (!Inst || L->isLoopInvariant(Op)) 182 continue; 183 184 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 185 return SubLoop->contains(Inst); })) 186 continue; 187 HasLoopDef = true; 188 break; 189 } 190 if (!HasLoopDef) 191 continue; 192 193 // We want to do whatever we can to limit the number of alloca 194 // instructions that make it through to the code generator. allocas 195 // require us to use indirect addressing, which is slow and prone to 196 // compiler bugs. If this loop does an address calculation on an 197 // alloca ptr, then we want to use a higher than normal loop unroll 198 // threshold. This will give SROA a better chance to eliminate these 199 // allocas. 200 // 201 // We also want to have more unrolling for local memory to let ds 202 // instructions with different offsets combine. 203 // 204 // Don't use the maximum allowed value here as it will make some 205 // programs way too big. 206 UP.Threshold = Threshold; 207 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 208 << " for loop:\n" 209 << *L << " due to " << *GEP << '\n'); 210 if (UP.Threshold >= MaxBoost) 211 return; 212 } 213 } 214 } 215 216 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 217 // The concept of vector registers doesn't really exist. Some packed vector 218 // operations operate on the normal 32-bit registers. 219 return 256; 220 } 221 222 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 223 // This is really the number of registers to fill when vectorizing / 224 // interleaving loops, so we lie to avoid trying to use all registers. 225 return getHardwareNumberOfRegisters(Vec) >> 3; 226 } 227 228 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { 229 return 32; 230 } 231 232 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 233 return 32; 234 } 235 236 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 237 unsigned ChainSizeInBytes, 238 VectorType *VecTy) const { 239 unsigned VecRegBitWidth = VF * LoadSize; 240 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 241 // TODO: Support element-size less than 32bit? 242 return 128 / LoadSize; 243 244 return VF; 245 } 246 247 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 248 unsigned ChainSizeInBytes, 249 VectorType *VecTy) const { 250 unsigned VecRegBitWidth = VF * StoreSize; 251 if (VecRegBitWidth > 128) 252 return 128 / StoreSize; 253 254 return VF; 255 } 256 257 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 258 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 259 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 260 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 261 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 262 return 512; 263 } 264 265 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS || 266 AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 267 AddrSpace == AMDGPUAS::REGION_ADDRESS) 268 return 128; 269 270 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 271 return 8 * ST->getMaxPrivateElementSize(); 272 273 llvm_unreachable("unhandled address space"); 274 } 275 276 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 277 unsigned Alignment, 278 unsigned AddrSpace) const { 279 // We allow vectorization of flat stores, even though we may need to decompose 280 // them later if they may access private memory. We don't have enough context 281 // here, and legalization can handle it. 282 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 283 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 284 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 285 } 286 return true; 287 } 288 289 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 290 unsigned Alignment, 291 unsigned AddrSpace) const { 292 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 293 } 294 295 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 296 unsigned Alignment, 297 unsigned AddrSpace) const { 298 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 299 } 300 301 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 302 // Disable unrolling if the loop is not vectorized. 303 // TODO: Enable this again. 304 if (VF == 1) 305 return 1; 306 307 return 8; 308 } 309 310 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 311 MemIntrinsicInfo &Info) const { 312 switch (Inst->getIntrinsicID()) { 313 case Intrinsic::amdgcn_atomic_inc: 314 case Intrinsic::amdgcn_atomic_dec: 315 case Intrinsic::amdgcn_ds_ordered_add: 316 case Intrinsic::amdgcn_ds_ordered_swap: 317 case Intrinsic::amdgcn_ds_fadd: 318 case Intrinsic::amdgcn_ds_fmin: 319 case Intrinsic::amdgcn_ds_fmax: { 320 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 321 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 322 if (!Ordering || !Volatile) 323 return false; // Invalid. 324 325 unsigned OrderingVal = Ordering->getZExtValue(); 326 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 327 return false; 328 329 Info.PtrVal = Inst->getArgOperand(0); 330 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 331 Info.ReadMem = true; 332 Info.WriteMem = true; 333 Info.IsVolatile = !Volatile->isNullValue(); 334 return true; 335 } 336 default: 337 return false; 338 } 339 } 340 341 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 342 TTI::OperandValueKind Opd1Info, 343 TTI::OperandValueKind Opd2Info, 344 TTI::OperandValueProperties Opd1PropInfo, 345 TTI::OperandValueProperties Opd2PropInfo, 346 ArrayRef<const Value *> Args, 347 const Instruction *CxtI) { 348 EVT OrigTy = TLI->getValueType(DL, Ty); 349 if (!OrigTy.isSimple()) { 350 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 351 Opd1PropInfo, Opd2PropInfo); 352 } 353 354 // Legalize the type. 355 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 356 int ISD = TLI->InstructionOpcodeToISD(Opcode); 357 358 // Because we don't have any legal vector operations, but the legal types, we 359 // need to account for split vectors. 360 unsigned NElts = LT.second.isVector() ? 361 LT.second.getVectorNumElements() : 1; 362 363 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 364 365 switch (ISD) { 366 case ISD::SHL: 367 case ISD::SRL: 368 case ISD::SRA: 369 if (SLT == MVT::i64) 370 return get64BitInstrCost() * LT.first * NElts; 371 372 // i32 373 return getFullRateInstrCost() * LT.first * NElts; 374 case ISD::ADD: 375 case ISD::SUB: 376 case ISD::AND: 377 case ISD::OR: 378 case ISD::XOR: 379 if (SLT == MVT::i64){ 380 // and, or and xor are typically split into 2 VALU instructions. 381 return 2 * getFullRateInstrCost() * LT.first * NElts; 382 } 383 384 return LT.first * NElts * getFullRateInstrCost(); 385 case ISD::MUL: { 386 const int QuarterRateCost = getQuarterRateInstrCost(); 387 if (SLT == MVT::i64) { 388 const int FullRateCost = getFullRateInstrCost(); 389 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 390 } 391 392 // i32 393 return QuarterRateCost * NElts * LT.first; 394 } 395 case ISD::FADD: 396 case ISD::FSUB: 397 case ISD::FMUL: 398 if (SLT == MVT::f64) 399 return LT.first * NElts * get64BitInstrCost(); 400 401 if (SLT == MVT::f32 || SLT == MVT::f16) 402 return LT.first * NElts * getFullRateInstrCost(); 403 break; 404 case ISD::FDIV: 405 case ISD::FREM: 406 // FIXME: frem should be handled separately. The fdiv in it is most of it, 407 // but the current lowering is also not entirely correct. 408 if (SLT == MVT::f64) { 409 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 410 // Add cost of workaround. 411 if (!ST->hasUsableDivScaleConditionOutput()) 412 Cost += 3 * getFullRateInstrCost(); 413 414 return LT.first * Cost * NElts; 415 } 416 417 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 418 // TODO: This is more complicated, unsafe flags etc. 419 if ((SLT == MVT::f32 && !HasFP32Denormals) || 420 (SLT == MVT::f16 && ST->has16BitInsts())) { 421 return LT.first * getQuarterRateInstrCost() * NElts; 422 } 423 } 424 425 if (SLT == MVT::f16 && ST->has16BitInsts()) { 426 // 2 x v_cvt_f32_f16 427 // f32 rcp 428 // f32 fmul 429 // v_cvt_f16_f32 430 // f16 div_fixup 431 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 432 return LT.first * Cost * NElts; 433 } 434 435 if (SLT == MVT::f32 || SLT == MVT::f16) { 436 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 437 438 if (!HasFP32Denormals) { 439 // FP mode switches. 440 Cost += 2 * getFullRateInstrCost(); 441 } 442 443 return LT.first * NElts * Cost; 444 } 445 break; 446 default: 447 break; 448 } 449 450 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 451 Opd1PropInfo, Opd2PropInfo); 452 } 453 454 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) { 455 // XXX - For some reason this isn't called for switch. 456 switch (Opcode) { 457 case Instruction::Br: 458 case Instruction::Ret: 459 return 10; 460 default: 461 return BaseT::getCFInstrCost(Opcode); 462 } 463 } 464 465 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 466 bool IsPairwise) { 467 EVT OrigTy = TLI->getValueType(DL, Ty); 468 469 // Computes cost on targets that have packed math instructions(which support 470 // 16-bit types only). 471 if (IsPairwise || 472 !ST->hasVOP3PInsts() || 473 OrigTy.getScalarSizeInBits() != 16) 474 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise); 475 476 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 477 return LT.first * getFullRateInstrCost(); 478 } 479 480 int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy, 481 bool IsPairwise, 482 bool IsUnsigned) { 483 EVT OrigTy = TLI->getValueType(DL, Ty); 484 485 // Computes cost on targets that have packed math instructions(which support 486 // 16-bit types only). 487 if (IsPairwise || 488 !ST->hasVOP3PInsts() || 489 OrigTy.getScalarSizeInBits() != 16) 490 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned); 491 492 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 493 return LT.first * getHalfRateInstrCost(); 494 } 495 496 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 497 unsigned Index) { 498 switch (Opcode) { 499 case Instruction::ExtractElement: 500 case Instruction::InsertElement: { 501 unsigned EltSize 502 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 503 if (EltSize < 32) { 504 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 505 return 0; 506 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 507 } 508 509 // Extracts are just reads of a subregister, so are free. Inserts are 510 // considered free because we don't want to have any cost for scalarizing 511 // operations, and we don't have to copy into a different register class. 512 513 // Dynamic indexing isn't free and is best avoided. 514 return Index == ~0u ? 2 : 0; 515 } 516 default: 517 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 518 } 519 } 520 521 522 523 static bool isArgPassedInSGPR(const Argument *A) { 524 const Function *F = A->getParent(); 525 526 // Arguments to compute shaders are never a source of divergence. 527 CallingConv::ID CC = F->getCallingConv(); 528 switch (CC) { 529 case CallingConv::AMDGPU_KERNEL: 530 case CallingConv::SPIR_KERNEL: 531 return true; 532 case CallingConv::AMDGPU_VS: 533 case CallingConv::AMDGPU_LS: 534 case CallingConv::AMDGPU_HS: 535 case CallingConv::AMDGPU_ES: 536 case CallingConv::AMDGPU_GS: 537 case CallingConv::AMDGPU_PS: 538 case CallingConv::AMDGPU_CS: 539 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 540 // Everything else is in VGPRs. 541 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 542 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 543 default: 544 // TODO: Should calls support inreg for SGPR inputs? 545 return false; 546 } 547 } 548 549 /// \returns true if the result of the value could potentially be 550 /// different across workitems in a wavefront. 551 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 552 if (const Argument *A = dyn_cast<Argument>(V)) 553 return !isArgPassedInSGPR(A); 554 555 // Loads from the private and flat address spaces are divergent, because 556 // threads can execute the load instruction with the same inputs and get 557 // different results. 558 // 559 // All other loads are not divergent, because if threads issue loads with the 560 // same arguments, they will always get the same result. 561 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 562 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 563 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 564 565 // Atomics are divergent because they are executed sequentially: when an 566 // atomic operation refers to the same address in each thread, then each 567 // thread after the first sees the value written by the previous thread as 568 // original value. 569 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 570 return true; 571 572 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 573 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 574 575 // Assume all function calls are a source of divergence. 576 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 577 return true; 578 579 return false; 580 } 581 582 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 583 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 584 switch (Intrinsic->getIntrinsicID()) { 585 default: 586 return false; 587 case Intrinsic::amdgcn_readfirstlane: 588 case Intrinsic::amdgcn_readlane: 589 case Intrinsic::amdgcn_icmp: 590 case Intrinsic::amdgcn_fcmp: 591 return true; 592 } 593 } 594 return false; 595 } 596 597 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 598 Intrinsic::ID IID) const { 599 switch (IID) { 600 case Intrinsic::amdgcn_atomic_inc: 601 case Intrinsic::amdgcn_atomic_dec: 602 case Intrinsic::amdgcn_ds_fadd: 603 case Intrinsic::amdgcn_ds_fmin: 604 case Intrinsic::amdgcn_ds_fmax: 605 case Intrinsic::amdgcn_is_shared: 606 case Intrinsic::amdgcn_is_private: 607 OpIndexes.push_back(0); 608 return true; 609 default: 610 return false; 611 } 612 } 613 614 bool GCNTTIImpl::rewriteIntrinsicWithAddressSpace( 615 IntrinsicInst *II, Value *OldV, Value *NewV) const { 616 auto IntrID = II->getIntrinsicID(); 617 switch (IntrID) { 618 case Intrinsic::amdgcn_atomic_inc: 619 case Intrinsic::amdgcn_atomic_dec: 620 case Intrinsic::amdgcn_ds_fadd: 621 case Intrinsic::amdgcn_ds_fmin: 622 case Intrinsic::amdgcn_ds_fmax: { 623 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 624 if (!IsVolatile->isZero()) 625 return false; 626 Module *M = II->getParent()->getParent()->getParent(); 627 Type *DestTy = II->getType(); 628 Type *SrcTy = NewV->getType(); 629 Function *NewDecl = 630 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 631 II->setArgOperand(0, NewV); 632 II->setCalledFunction(NewDecl); 633 return true; 634 } 635 case Intrinsic::amdgcn_is_shared: 636 case Intrinsic::amdgcn_is_private: { 637 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 638 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 639 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 640 LLVMContext &Ctx = NewV->getType()->getContext(); 641 ConstantInt *NewVal = (TrueAS == NewAS) ? 642 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 643 II->replaceAllUsesWith(NewVal); 644 II->eraseFromParent(); 645 return true; 646 } 647 default: 648 return false; 649 } 650 } 651 652 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 653 Type *SubTp) { 654 if (ST->hasVOP3PInsts()) { 655 VectorType *VT = cast<VectorType>(Tp); 656 if (VT->getNumElements() == 2 && 657 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 658 // With op_sel VOP3P instructions freely can access the low half or high 659 // half of a register, so any swizzle is free. 660 661 switch (Kind) { 662 case TTI::SK_Broadcast: 663 case TTI::SK_Reverse: 664 case TTI::SK_PermuteSingleSrc: 665 return 0; 666 default: 667 break; 668 } 669 } 670 } 671 672 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 673 } 674 675 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 676 const Function *Callee) const { 677 const TargetMachine &TM = getTLI()->getTargetMachine(); 678 const GCNSubtarget *CallerST 679 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 680 const GCNSubtarget *CalleeST 681 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 682 683 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 684 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 685 686 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 687 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 688 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 689 return false; 690 691 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 692 // no way to support merge for backend defined attributes. 693 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller, *CallerST); 694 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee, *CalleeST); 695 return CallerMode.isInlineCompatible(CalleeMode); 696 } 697 698 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 699 TTI::UnrollingPreferences &UP) { 700 CommonTTI.getUnrollingPreferences(L, SE, UP); 701 } 702 703 unsigned GCNTTIImpl::getUserCost(const User *U, 704 ArrayRef<const Value *> Operands) { 705 const Instruction *I = dyn_cast<Instruction>(U); 706 if (!I) 707 return BaseT::getUserCost(U, Operands); 708 709 // Estimate different operations to be optimized out 710 switch (I->getOpcode()) { 711 case Instruction::ExtractElement: { 712 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 713 unsigned Idx = -1; 714 if (CI) 715 Idx = CI->getZExtValue(); 716 return getVectorInstrCost(I->getOpcode(), I->getOperand(0)->getType(), Idx); 717 } 718 case Instruction::InsertElement: { 719 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 720 unsigned Idx = -1; 721 if (CI) 722 Idx = CI->getZExtValue(); 723 return getVectorInstrCost(I->getOpcode(), I->getType(), Idx); 724 } 725 case Instruction::Call: { 726 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 727 SmallVector<Value *, 4> Args(II->arg_operands()); 728 FastMathFlags FMF; 729 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 730 FMF = FPMO->getFastMathFlags(); 731 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args, 732 FMF); 733 } else { 734 return BaseT::getUserCost(U, Operands); 735 } 736 } 737 case Instruction::ShuffleVector: { 738 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 739 Type *Ty = Shuffle->getType(); 740 Type *SrcTy = Shuffle->getOperand(0)->getType(); 741 742 // TODO: Identify and add costs for insert subvector, etc. 743 int SubIndex; 744 if (Shuffle->isExtractSubvectorMask(SubIndex)) 745 return getShuffleCost(TTI::SK_ExtractSubvector, SrcTy, SubIndex, Ty); 746 747 if (Shuffle->changesLength()) 748 return BaseT::getUserCost(U, Operands); 749 750 if (Shuffle->isIdentity()) 751 return 0; 752 753 if (Shuffle->isReverse()) 754 return getShuffleCost(TTI::SK_Reverse, Ty, 0, nullptr); 755 756 if (Shuffle->isSelect()) 757 return getShuffleCost(TTI::SK_Select, Ty, 0, nullptr); 758 759 if (Shuffle->isTranspose()) 760 return getShuffleCost(TTI::SK_Transpose, Ty, 0, nullptr); 761 762 if (Shuffle->isZeroEltSplat()) 763 return getShuffleCost(TTI::SK_Broadcast, Ty, 0, nullptr); 764 765 if (Shuffle->isSingleSource()) 766 return getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, nullptr); 767 768 return getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, 0, nullptr); 769 } 770 case Instruction::ZExt: 771 case Instruction::SExt: 772 case Instruction::FPToUI: 773 case Instruction::FPToSI: 774 case Instruction::FPExt: 775 case Instruction::PtrToInt: 776 case Instruction::IntToPtr: 777 case Instruction::SIToFP: 778 case Instruction::UIToFP: 779 case Instruction::Trunc: 780 case Instruction::FPTrunc: 781 case Instruction::BitCast: 782 case Instruction::AddrSpaceCast: { 783 return getCastInstrCost(I->getOpcode(), I->getType(), 784 I->getOperand(0)->getType(), I); 785 } 786 case Instruction::Add: 787 case Instruction::FAdd: 788 case Instruction::Sub: 789 case Instruction::FSub: 790 case Instruction::Mul: 791 case Instruction::FMul: 792 case Instruction::UDiv: 793 case Instruction::SDiv: 794 case Instruction::FDiv: 795 case Instruction::URem: 796 case Instruction::SRem: 797 case Instruction::FRem: 798 case Instruction::Shl: 799 case Instruction::LShr: 800 case Instruction::AShr: 801 case Instruction::And: 802 case Instruction::Or: 803 case Instruction::Xor: 804 case Instruction::FNeg: { 805 return getArithmeticInstrCost(I->getOpcode(), I->getType(), 806 TTI::OK_AnyValue, TTI::OK_AnyValue, 807 TTI::OP_None, TTI::OP_None, Operands, I); 808 } 809 default: 810 break; 811 } 812 813 return BaseT::getUserCost(U, Operands); 814 } 815 816 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 817 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 818 } 819 820 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 821 return getHardwareNumberOfRegisters(Vec); 822 } 823 824 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { 825 return 32; 826 } 827 828 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 829 return 32; 830 } 831 832 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 833 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 834 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 835 return 128; 836 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 837 AddrSpace == AMDGPUAS::REGION_ADDRESS) 838 return 64; 839 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 840 return 32; 841 842 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 843 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 844 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 845 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 846 return 128; 847 llvm_unreachable("unhandled address space"); 848 } 849 850 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 851 unsigned Alignment, 852 unsigned AddrSpace) const { 853 // We allow vectorization of flat stores, even though we may need to decompose 854 // them later if they may access private memory. We don't have enough context 855 // here, and legalization can handle it. 856 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 857 } 858 859 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 860 unsigned Alignment, 861 unsigned AddrSpace) const { 862 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 863 } 864 865 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 866 unsigned Alignment, 867 unsigned AddrSpace) const { 868 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 869 } 870 871 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 872 // Disable unrolling if the loop is not vectorized. 873 // TODO: Enable this again. 874 if (VF == 1) 875 return 1; 876 877 return 8; 878 } 879 880 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) { 881 // XXX - For some reason this isn't called for switch. 882 switch (Opcode) { 883 case Instruction::Br: 884 case Instruction::Ret: 885 return 10; 886 default: 887 return BaseT::getCFInstrCost(Opcode); 888 } 889 } 890 891 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 892 unsigned Index) { 893 switch (Opcode) { 894 case Instruction::ExtractElement: 895 case Instruction::InsertElement: { 896 unsigned EltSize 897 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 898 if (EltSize < 32) { 899 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 900 } 901 902 // Extracts are just reads of a subregister, so are free. Inserts are 903 // considered free because we don't want to have any cost for scalarizing 904 // operations, and we don't have to copy into a different register class. 905 906 // Dynamic indexing isn't free and is best avoided. 907 return Index == ~0u ? 2 : 0; 908 } 909 default: 910 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 911 } 912 } 913 914 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 915 TTI::UnrollingPreferences &UP) { 916 CommonTTI.getUnrollingPreferences(L, SE, UP); 917 } 918