1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/IntrinsicsAMDGPU.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/Support/KnownBits.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "AMDGPUtti"
28 
29 static cl::opt<unsigned> UnrollThresholdPrivate(
30   "amdgpu-unroll-threshold-private",
31   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
32   cl::init(2700), cl::Hidden);
33 
34 static cl::opt<unsigned> UnrollThresholdLocal(
35   "amdgpu-unroll-threshold-local",
36   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
37   cl::init(1000), cl::Hidden);
38 
39 static cl::opt<unsigned> UnrollThresholdIf(
40   "amdgpu-unroll-threshold-if",
41   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
42   cl::init(150), cl::Hidden);
43 
44 static cl::opt<bool> UnrollRuntimeLocal(
45   "amdgpu-unroll-runtime-local",
46   cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
47   cl::init(true), cl::Hidden);
48 
49 static cl::opt<bool> UseLegacyDA(
50   "amdgpu-use-legacy-divergence-analysis",
51   cl::desc("Enable legacy divergence analysis for AMDGPU"),
52   cl::init(false), cl::Hidden);
53 
54 static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
55     "amdgpu-unroll-max-block-to-analyze",
56     cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
57     cl::init(32), cl::Hidden);
58 
59 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
60                                        cl::Hidden, cl::init(4000),
61                                        cl::desc("Cost of alloca argument"));
62 
63 // If the amount of scratch memory to eliminate exceeds our ability to allocate
64 // it into registers we gain nothing by aggressively inlining functions for that
65 // heuristic.
66 static cl::opt<unsigned>
67     ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
68                     cl::init(256),
69                     cl::desc("Maximum alloca size to use for inline cost"));
70 
71 // Inliner constraint to achieve reasonable compilation time.
72 static cl::opt<size_t> InlineMaxBB(
73     "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
74     cl::desc("Maximum number of BBs allowed in a function after inlining"
75              " (compile time constraint)"));
76 
77 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
78                               unsigned Depth = 0) {
79   const Instruction *I = dyn_cast<Instruction>(Cond);
80   if (!I)
81     return false;
82 
83   for (const Value *V : I->operand_values()) {
84     if (!L->contains(I))
85       continue;
86     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
87       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
88                   return SubLoop->contains(PHI); }))
89         return true;
90     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
91       return true;
92   }
93   return false;
94 }
95 
96 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
97     : BaseT(TM, F.getParent()->getDataLayout()),
98       TargetTriple(TM->getTargetTriple()),
99       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
100       TLI(ST->getTargetLowering()) {}
101 
102 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
103                                             TTI::UnrollingPreferences &UP) {
104   const Function &F = *L->getHeader()->getParent();
105   UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
106   UP.MaxCount = std::numeric_limits<unsigned>::max();
107   UP.Partial = true;
108 
109   // TODO: Do we want runtime unrolling?
110 
111   // Maximum alloca size than can fit registers. Reserve 16 registers.
112   const unsigned MaxAlloca = (256 - 16) * 4;
113   unsigned ThresholdPrivate = UnrollThresholdPrivate;
114   unsigned ThresholdLocal = UnrollThresholdLocal;
115 
116   // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
117   // provided threshold value as the default for Threshold
118   if (MDNode *LoopUnrollThreshold =
119           findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
120     if (LoopUnrollThreshold->getNumOperands() == 2) {
121       ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
122           LoopUnrollThreshold->getOperand(1));
123       if (MetaThresholdValue) {
124         // We will also use the supplied value for PartialThreshold for now.
125         // We may introduce additional metadata if it becomes necessary in the
126         // future.
127         UP.Threshold = MetaThresholdValue->getSExtValue();
128         UP.PartialThreshold = UP.Threshold;
129         ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
130         ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
131       }
132     }
133   }
134 
135   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
136   for (const BasicBlock *BB : L->getBlocks()) {
137     const DataLayout &DL = BB->getModule()->getDataLayout();
138     unsigned LocalGEPsSeen = 0;
139 
140     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
141                return SubLoop->contains(BB); }))
142         continue; // Block belongs to an inner loop.
143 
144     for (const Instruction &I : *BB) {
145       // Unroll a loop which contains an "if" statement whose condition
146       // defined by a PHI belonging to the loop. This may help to eliminate
147       // if region and potentially even PHI itself, saving on both divergence
148       // and registers used for the PHI.
149       // Add a small bonus for each of such "if" statements.
150       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
151         if (UP.Threshold < MaxBoost && Br->isConditional()) {
152           BasicBlock *Succ0 = Br->getSuccessor(0);
153           BasicBlock *Succ1 = Br->getSuccessor(1);
154           if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
155               (L->contains(Succ1) && L->isLoopExiting(Succ1)))
156             continue;
157           if (dependsOnLocalPhi(L, Br->getCondition())) {
158             UP.Threshold += UnrollThresholdIf;
159             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
160                               << " for loop:\n"
161                               << *L << " due to " << *Br << '\n');
162             if (UP.Threshold >= MaxBoost)
163               return;
164           }
165         }
166         continue;
167       }
168 
169       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
170       if (!GEP)
171         continue;
172 
173       unsigned AS = GEP->getAddressSpace();
174       unsigned Threshold = 0;
175       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
176         Threshold = ThresholdPrivate;
177       else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
178         Threshold = ThresholdLocal;
179       else
180         continue;
181 
182       if (UP.Threshold >= Threshold)
183         continue;
184 
185       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
186         const Value *Ptr = GEP->getPointerOperand();
187         const AllocaInst *Alloca =
188             dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
189         if (!Alloca || !Alloca->isStaticAlloca())
190           continue;
191         Type *Ty = Alloca->getAllocatedType();
192         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
193         if (AllocaSize > MaxAlloca)
194           continue;
195       } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
196                  AS == AMDGPUAS::REGION_ADDRESS) {
197         LocalGEPsSeen++;
198         // Inhibit unroll for local memory if we have seen addressing not to
199         // a variable, most likely we will be unable to combine it.
200         // Do not unroll too deep inner loops for local memory to give a chance
201         // to unroll an outer loop for a more important reason.
202         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
203             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
204              !isa<Argument>(GEP->getPointerOperand())))
205           continue;
206         LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
207                           << *L << " due to LDS use.\n");
208         UP.Runtime = UnrollRuntimeLocal;
209       }
210 
211       // Check if GEP depends on a value defined by this loop itself.
212       bool HasLoopDef = false;
213       for (const Value *Op : GEP->operands()) {
214         const Instruction *Inst = dyn_cast<Instruction>(Op);
215         if (!Inst || L->isLoopInvariant(Op))
216           continue;
217 
218         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
219              return SubLoop->contains(Inst); }))
220           continue;
221         HasLoopDef = true;
222         break;
223       }
224       if (!HasLoopDef)
225         continue;
226 
227       // We want to do whatever we can to limit the number of alloca
228       // instructions that make it through to the code generator.  allocas
229       // require us to use indirect addressing, which is slow and prone to
230       // compiler bugs.  If this loop does an address calculation on an
231       // alloca ptr, then we want to use a higher than normal loop unroll
232       // threshold. This will give SROA a better chance to eliminate these
233       // allocas.
234       //
235       // We also want to have more unrolling for local memory to let ds
236       // instructions with different offsets combine.
237       //
238       // Don't use the maximum allowed value here as it will make some
239       // programs way too big.
240       UP.Threshold = Threshold;
241       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
242                         << " for loop:\n"
243                         << *L << " due to " << *GEP << '\n');
244       if (UP.Threshold >= MaxBoost)
245         return;
246     }
247 
248     // If we got a GEP in a small BB from inner loop then increase max trip
249     // count to analyze for better estimation cost in unroll
250     if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
251       UP.MaxIterationsCountToAnalyze = 32;
252   }
253 }
254 
255 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
256                                           TTI::PeelingPreferences &PP) {
257   BaseT::getPeelingPreferences(L, SE, PP);
258 }
259 
260 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
261     // Codegen control options which don't matter.
262     AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
263     AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
264     AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
265     AMDGPU::FeatureUnalignedAccessMode,
266 
267     AMDGPU::FeatureAutoWaitcntBeforeBarrier,
268 
269     // Property of the kernel/environment which can't actually differ.
270     AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
271     AMDGPU::FeatureTrapHandler,
272 
273     // The default assumption needs to be ecc is enabled, but no directly
274     // exposed operations depend on it, so it can be safely inlined.
275     AMDGPU::FeatureSRAMECC,
276 
277     // Perf-tuning features
278     AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
279 
280 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
281     : BaseT(TM, F.getParent()->getDataLayout()),
282       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
283       TLI(ST->getTargetLowering()), CommonTTI(TM, F),
284       IsGraphics(AMDGPU::isGraphics(F.getCallingConv())),
285       MaxVGPRs(ST->getMaxNumVGPRs(
286           std::max(ST->getWavesPerEU(F).first,
287                    ST->getWavesPerEUForWorkGroup(
288                        ST->getFlatWorkGroupSizes(F).second)))) {
289   AMDGPU::SIModeRegisterDefaults Mode(F);
290   HasFP32Denormals = Mode.allFP32Denormals();
291   HasFP64FP16Denormals = Mode.allFP64FP16Denormals();
292 }
293 
294 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
295   // The concept of vector registers doesn't really exist. Some packed vector
296   // operations operate on the normal 32-bit registers.
297   return MaxVGPRs;
298 }
299 
300 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
301   // This is really the number of registers to fill when vectorizing /
302   // interleaving loops, so we lie to avoid trying to use all registers.
303   return getHardwareNumberOfRegisters(Vec) >> 3;
304 }
305 
306 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
307   const SIRegisterInfo *TRI = ST->getRegisterInfo();
308   const TargetRegisterClass *RC = TRI->getRegClass(RCID);
309   unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32;
310   return getHardwareNumberOfRegisters(false) / NumVGPRs;
311 }
312 
313 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
314   return (Vector && ST->hasPackedFP32Ops()) ? 64 : 32;
315 }
316 
317 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
318   return 32;
319 }
320 
321 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
322   if (Opcode == Instruction::Load || Opcode == Instruction::Store)
323     return 32 * 4 / ElemWidth;
324   return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
325        : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
326        : 1;
327 }
328 
329 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
330                                          unsigned ChainSizeInBytes,
331                                          VectorType *VecTy) const {
332   unsigned VecRegBitWidth = VF * LoadSize;
333   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
334     // TODO: Support element-size less than 32bit?
335     return 128 / LoadSize;
336 
337   return VF;
338 }
339 
340 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
341                                              unsigned ChainSizeInBytes,
342                                              VectorType *VecTy) const {
343   unsigned VecRegBitWidth = VF * StoreSize;
344   if (VecRegBitWidth > 128)
345     return 128 / StoreSize;
346 
347   return VF;
348 }
349 
350 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
351   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
352       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
353       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
354       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
355     return 512;
356   }
357 
358   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
359     return 8 * ST->getMaxPrivateElementSize();
360 
361   // Common to flat, global, local and region. Assume for unknown addrspace.
362   return 128;
363 }
364 
365 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
366                                             Align Alignment,
367                                             unsigned AddrSpace) const {
368   // We allow vectorization of flat stores, even though we may need to decompose
369   // them later if they may access private memory. We don't have enough context
370   // here, and legalization can handle it.
371   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
372     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
373       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
374   }
375   return true;
376 }
377 
378 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
379                                              Align Alignment,
380                                              unsigned AddrSpace) const {
381   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
382 }
383 
384 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
385                                               Align Alignment,
386                                               unsigned AddrSpace) const {
387   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
388 }
389 
390 // FIXME: Really we would like to issue multiple 128-bit loads and stores per
391 // iteration. Should we report a larger size and let it legalize?
392 //
393 // FIXME: Should we use narrower types for local/region, or account for when
394 // unaligned access is legal?
395 //
396 // FIXME: This could use fine tuning and microbenchmarks.
397 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
398                                             unsigned SrcAddrSpace,
399                                             unsigned DestAddrSpace,
400                                             unsigned SrcAlign,
401                                             unsigned DestAlign) const {
402   unsigned MinAlign = std::min(SrcAlign, DestAlign);
403 
404   // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
405   // hardware into byte accesses. If you assume all alignments are equally
406   // probable, it's more efficient on average to use short accesses for this
407   // case.
408   if (MinAlign == 2)
409     return Type::getInt16Ty(Context);
410 
411   // Not all subtargets have 128-bit DS instructions, and we currently don't
412   // form them by default.
413   if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
414       SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
415       DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
416       DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
417     return FixedVectorType::get(Type::getInt32Ty(Context), 2);
418   }
419 
420   // Global memory works best with 16-byte accesses. Private memory will also
421   // hit this, although they'll be decomposed.
422   return FixedVectorType::get(Type::getInt32Ty(Context), 4);
423 }
424 
425 void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
426   SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
427   unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
428   unsigned SrcAlign, unsigned DestAlign) const {
429   assert(RemainingBytes < 16);
430 
431   unsigned MinAlign = std::min(SrcAlign, DestAlign);
432 
433   if (MinAlign != 2) {
434     Type *I64Ty = Type::getInt64Ty(Context);
435     while (RemainingBytes >= 8) {
436       OpsOut.push_back(I64Ty);
437       RemainingBytes -= 8;
438     }
439 
440     Type *I32Ty = Type::getInt32Ty(Context);
441     while (RemainingBytes >= 4) {
442       OpsOut.push_back(I32Ty);
443       RemainingBytes -= 4;
444     }
445   }
446 
447   Type *I16Ty = Type::getInt16Ty(Context);
448   while (RemainingBytes >= 2) {
449     OpsOut.push_back(I16Ty);
450     RemainingBytes -= 2;
451   }
452 
453   Type *I8Ty = Type::getInt8Ty(Context);
454   while (RemainingBytes) {
455     OpsOut.push_back(I8Ty);
456     --RemainingBytes;
457   }
458 }
459 
460 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
461   // Disable unrolling if the loop is not vectorized.
462   // TODO: Enable this again.
463   if (VF == 1)
464     return 1;
465 
466   return 8;
467 }
468 
469 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
470                                        MemIntrinsicInfo &Info) const {
471   switch (Inst->getIntrinsicID()) {
472   case Intrinsic::amdgcn_atomic_inc:
473   case Intrinsic::amdgcn_atomic_dec:
474   case Intrinsic::amdgcn_ds_ordered_add:
475   case Intrinsic::amdgcn_ds_ordered_swap:
476   case Intrinsic::amdgcn_ds_fadd:
477   case Intrinsic::amdgcn_ds_fmin:
478   case Intrinsic::amdgcn_ds_fmax: {
479     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
480     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
481     if (!Ordering || !Volatile)
482       return false; // Invalid.
483 
484     unsigned OrderingVal = Ordering->getZExtValue();
485     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
486       return false;
487 
488     Info.PtrVal = Inst->getArgOperand(0);
489     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
490     Info.ReadMem = true;
491     Info.WriteMem = true;
492     Info.IsVolatile = !Volatile->isNullValue();
493     return true;
494   }
495   default:
496     return false;
497   }
498 }
499 
500 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
501                                        TTI::TargetCostKind CostKind,
502                                        TTI::OperandValueKind Opd1Info,
503                                        TTI::OperandValueKind Opd2Info,
504                                        TTI::OperandValueProperties Opd1PropInfo,
505                                        TTI::OperandValueProperties Opd2PropInfo,
506                                        ArrayRef<const Value *> Args,
507                                        const Instruction *CxtI) {
508   EVT OrigTy = TLI->getValueType(DL, Ty);
509   if (!OrigTy.isSimple()) {
510     // FIXME: We're having to query the throughput cost so that the basic
511     // implementation tries to generate legalize and scalarization costs. Maybe
512     // we could hoist the scalarization code here?
513     if (CostKind != TTI::TCK_CodeSize)
514       return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput,
515                                            Opd1Info, Opd2Info, Opd1PropInfo,
516                                            Opd2PropInfo, Args, CxtI);
517     // Scalarization
518 
519     // Check if any of the operands are vector operands.
520     int ISD = TLI->InstructionOpcodeToISD(Opcode);
521     assert(ISD && "Invalid opcode");
522 
523     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
524 
525     bool IsFloat = Ty->isFPOrFPVectorTy();
526     // Assume that floating point arithmetic operations cost twice as much as
527     // integer operations.
528     unsigned OpCost = (IsFloat ? 2 : 1);
529 
530     if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
531       // The operation is legal. Assume it costs 1.
532       // TODO: Once we have extract/insert subvector cost we need to use them.
533       return LT.first * OpCost;
534     }
535 
536     if (!TLI->isOperationExpand(ISD, LT.second)) {
537       // If the operation is custom lowered, then assume that the code is twice
538       // as expensive.
539       return LT.first * 2 * OpCost;
540     }
541 
542     // Else, assume that we need to scalarize this op.
543     // TODO: If one of the types get legalized by splitting, handle this
544     // similarly to what getCastInstrCost() does.
545     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
546       unsigned Num = cast<FixedVectorType>(VTy)->getNumElements();
547       unsigned Cost = getArithmeticInstrCost(
548           Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
549           Opd1PropInfo, Opd2PropInfo, Args, CxtI);
550       // Return the cost of multiple scalar invocation plus the cost of
551       // inserting and extracting the values.
552       SmallVector<Type *> Tys(Args.size(), Ty);
553       return getScalarizationOverhead(VTy, Args, Tys) + Num * Cost;
554     }
555 
556     // We don't know anything about this scalar instruction.
557     return OpCost;
558   }
559 
560   // Legalize the type.
561   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
562   int ISD = TLI->InstructionOpcodeToISD(Opcode);
563 
564   // Because we don't have any legal vector operations, but the legal types, we
565   // need to account for split vectors.
566   unsigned NElts = LT.second.isVector() ?
567     LT.second.getVectorNumElements() : 1;
568 
569   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
570 
571   switch (ISD) {
572   case ISD::SHL:
573   case ISD::SRL:
574   case ISD::SRA:
575     if (SLT == MVT::i64)
576       return get64BitInstrCost(CostKind) * LT.first * NElts;
577 
578     if (ST->has16BitInsts() && SLT == MVT::i16)
579       NElts = (NElts + 1) / 2;
580 
581     // i32
582     return getFullRateInstrCost() * LT.first * NElts;
583   case ISD::ADD:
584   case ISD::SUB:
585   case ISD::AND:
586   case ISD::OR:
587   case ISD::XOR:
588     if (SLT == MVT::i64) {
589       // and, or and xor are typically split into 2 VALU instructions.
590       return 2 * getFullRateInstrCost() * LT.first * NElts;
591     }
592 
593     if (ST->has16BitInsts() && SLT == MVT::i16)
594       NElts = (NElts + 1) / 2;
595 
596     return LT.first * NElts * getFullRateInstrCost();
597   case ISD::MUL: {
598     const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
599     if (SLT == MVT::i64) {
600       const int FullRateCost = getFullRateInstrCost();
601       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
602     }
603 
604     if (ST->has16BitInsts() && SLT == MVT::i16)
605       NElts = (NElts + 1) / 2;
606 
607     // i32
608     return QuarterRateCost * NElts * LT.first;
609   }
610   case ISD::FMUL:
611     // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
612     // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
613     // fused operation.
614     if (CxtI && CxtI->hasOneUse())
615       if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
616         const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
617         if (OPC == ISD::FADD || OPC == ISD::FSUB) {
618           if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
619             return TargetTransformInfo::TCC_Free;
620           if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
621             return TargetTransformInfo::TCC_Free;
622 
623           // Estimate all types may be fused with contract/unsafe flags
624           const TargetOptions &Options = TLI->getTargetMachine().Options;
625           if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
626               Options.UnsafeFPMath ||
627               (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
628             return TargetTransformInfo::TCC_Free;
629         }
630       }
631     LLVM_FALLTHROUGH;
632   case ISD::FADD:
633   case ISD::FSUB:
634     if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
635       NElts = (NElts + 1) / 2;
636     if (SLT == MVT::f64)
637       return LT.first * NElts * get64BitInstrCost(CostKind);
638 
639     if (ST->has16BitInsts() && SLT == MVT::f16)
640       NElts = (NElts + 1) / 2;
641 
642     if (SLT == MVT::f32 || SLT == MVT::f16)
643       return LT.first * NElts * getFullRateInstrCost();
644     break;
645   case ISD::FDIV:
646   case ISD::FREM:
647     // FIXME: frem should be handled separately. The fdiv in it is most of it,
648     // but the current lowering is also not entirely correct.
649     if (SLT == MVT::f64) {
650       int Cost = 7 * get64BitInstrCost(CostKind) +
651                  getQuarterRateInstrCost(CostKind) +
652                  3 * getHalfRateInstrCost(CostKind);
653       // Add cost of workaround.
654       if (!ST->hasUsableDivScaleConditionOutput())
655         Cost += 3 * getFullRateInstrCost();
656 
657       return LT.first * Cost * NElts;
658     }
659 
660     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
661       // TODO: This is more complicated, unsafe flags etc.
662       if ((SLT == MVT::f32 && !HasFP32Denormals) ||
663           (SLT == MVT::f16 && ST->has16BitInsts())) {
664         return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
665       }
666     }
667 
668     if (SLT == MVT::f16 && ST->has16BitInsts()) {
669       // 2 x v_cvt_f32_f16
670       // f32 rcp
671       // f32 fmul
672       // v_cvt_f16_f32
673       // f16 div_fixup
674       int Cost =
675           4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
676       return LT.first * Cost * NElts;
677     }
678 
679     if (SLT == MVT::f32 || SLT == MVT::f16) {
680       // 4 more v_cvt_* insts without f16 insts support
681       int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
682                  1 * getQuarterRateInstrCost(CostKind);
683 
684       if (!HasFP32Denormals) {
685         // FP mode switches.
686         Cost += 2 * getFullRateInstrCost();
687       }
688 
689       return LT.first * NElts * Cost;
690     }
691     break;
692   case ISD::FNEG:
693     // Use the backend' estimation. If fneg is not free each element will cost
694     // one additional instruction.
695     return TLI->isFNegFree(SLT) ? 0 : NElts;
696   default:
697     break;
698   }
699 
700   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
701                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
702 }
703 
704 // Return true if there's a potential benefit from using v2f16/v2i16
705 // instructions for an intrinsic, even if it requires nontrivial legalization.
706 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
707   switch (ID) {
708   case Intrinsic::fma: // TODO: fmuladd
709   // There's a small benefit to using vector ops in the legalized code.
710   case Intrinsic::round:
711   case Intrinsic::uadd_sat:
712   case Intrinsic::usub_sat:
713   case Intrinsic::sadd_sat:
714   case Intrinsic::ssub_sat:
715     return true;
716   default:
717     return false;
718   }
719 }
720 
721 int GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
722                                       TTI::TargetCostKind CostKind) {
723   if (ICA.getID() == Intrinsic::fabs)
724     return 0;
725 
726   if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
727     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
728 
729   Type *RetTy = ICA.getReturnType();
730   EVT OrigTy = TLI->getValueType(DL, RetTy);
731   if (!OrigTy.isSimple()) {
732     if (CostKind != TTI::TCK_CodeSize)
733       return BaseT::getIntrinsicInstrCost(ICA, CostKind);
734 
735     // TODO: Combine these two logic paths.
736     if (ICA.isTypeBasedOnly())
737       return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
738 
739     unsigned RetVF =
740         (RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements()
741                              : 1);
742     const IntrinsicInst *I = ICA.getInst();
743     const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
744     FastMathFlags FMF = ICA.getFlags();
745     // Assume that we need to scalarize this intrinsic.
746 
747     // Compute the scalarization overhead based on Args for a vector
748     // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
749     // CostModel will pass a vector RetTy and VF is 1.
750     unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
751     if (RetVF > 1) {
752       ScalarizationCost = 0;
753       if (!RetTy->isVoidTy())
754         ScalarizationCost +=
755             getScalarizationOverhead(cast<VectorType>(RetTy), true, false);
756       ScalarizationCost +=
757           getOperandsScalarizationOverhead(Args, ICA.getArgTypes());
758     }
759 
760     IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, ICA.getArgTypes(), FMF, I,
761                                   ScalarizationCost);
762     return getIntrinsicInstrCost(Attrs, CostKind);
763   }
764 
765   // Legalize the type.
766   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
767 
768   unsigned NElts = LT.second.isVector() ?
769     LT.second.getVectorNumElements() : 1;
770 
771   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
772 
773   if (SLT == MVT::f64)
774     return LT.first * NElts * get64BitInstrCost(CostKind);
775 
776   if ((ST->has16BitInsts() && SLT == MVT::f16) ||
777       (ST->hasPackedFP32Ops() && SLT == MVT::f32))
778     NElts = (NElts + 1) / 2;
779 
780   // TODO: Get more refined intrinsic costs?
781   unsigned InstRate = getQuarterRateInstrCost(CostKind);
782 
783   switch (ICA.getID()) {
784   case Intrinsic::fma:
785     InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
786                                    : getQuarterRateInstrCost(CostKind);
787     break;
788   case Intrinsic::uadd_sat:
789   case Intrinsic::usub_sat:
790   case Intrinsic::sadd_sat:
791   case Intrinsic::ssub_sat:
792     static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
793     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
794       NElts = 1;
795     break;
796   }
797 
798   return LT.first * NElts * InstRate;
799 }
800 
801 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode,
802                                     TTI::TargetCostKind CostKind) {
803   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
804     return Opcode == Instruction::PHI ? 0 : 1;
805 
806   // XXX - For some reason this isn't called for switch.
807   switch (Opcode) {
808   case Instruction::Br:
809   case Instruction::Ret:
810     return 10;
811   default:
812     return BaseT::getCFInstrCost(Opcode, CostKind);
813   }
814 }
815 
816 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
817                                            bool IsPairwise,
818                                            TTI::TargetCostKind CostKind) {
819   EVT OrigTy = TLI->getValueType(DL, Ty);
820 
821   // Computes cost on targets that have packed math instructions(which support
822   // 16-bit types only).
823   if (IsPairwise ||
824       !ST->hasVOP3PInsts() ||
825       OrigTy.getScalarSizeInBits() != 16)
826     return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind);
827 
828   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
829   return LT.first * getFullRateInstrCost();
830 }
831 
832 int GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
833                                        bool IsPairwise, bool IsUnsigned,
834                                        TTI::TargetCostKind CostKind) {
835   EVT OrigTy = TLI->getValueType(DL, Ty);
836 
837   // Computes cost on targets that have packed math instructions(which support
838   // 16-bit types only).
839   if (IsPairwise ||
840       !ST->hasVOP3PInsts() ||
841       OrigTy.getScalarSizeInBits() != 16)
842     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned,
843                                          CostKind);
844 
845   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
846   return LT.first * getHalfRateInstrCost(CostKind);
847 }
848 
849 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
850                                       unsigned Index) {
851   switch (Opcode) {
852   case Instruction::ExtractElement:
853   case Instruction::InsertElement: {
854     unsigned EltSize
855       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
856     if (EltSize < 32) {
857       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
858         return 0;
859       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
860     }
861 
862     // Extracts are just reads of a subregister, so are free. Inserts are
863     // considered free because we don't want to have any cost for scalarizing
864     // operations, and we don't have to copy into a different register class.
865 
866     // Dynamic indexing isn't free and is best avoided.
867     return Index == ~0u ? 2 : 0;
868   }
869   default:
870     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
871   }
872 }
873 
874 /// Analyze if the results of inline asm are divergent. If \p Indices is empty,
875 /// this is analyzing the collective result of all output registers. Otherwise,
876 /// this is only querying a specific result index if this returns multiple
877 /// registers in a struct.
878 bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
879   const CallInst *CI, ArrayRef<unsigned> Indices) const {
880   // TODO: Handle complex extract indices
881   if (Indices.size() > 1)
882     return true;
883 
884   const DataLayout &DL = CI->getModule()->getDataLayout();
885   const SIRegisterInfo *TRI = ST->getRegisterInfo();
886   TargetLowering::AsmOperandInfoVector TargetConstraints =
887       TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
888 
889   const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
890 
891   int OutputIdx = 0;
892   for (auto &TC : TargetConstraints) {
893     if (TC.Type != InlineAsm::isOutput)
894       continue;
895 
896     // Skip outputs we don't care about.
897     if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
898       continue;
899 
900     TLI->ComputeConstraintToUse(TC, SDValue());
901 
902     Register AssignedReg;
903     const TargetRegisterClass *RC;
904     std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint(
905       TRI, TC.ConstraintCode, TC.ConstraintVT);
906     if (AssignedReg) {
907       // FIXME: This is a workaround for getRegForInlineAsmConstraint
908       // returning VS_32
909       RC = TRI->getPhysRegClass(AssignedReg);
910     }
911 
912     // For AGPR constraints null is returned on subtargets without AGPRs, so
913     // assume divergent for null.
914     if (!RC || !TRI->isSGPRClass(RC))
915       return true;
916   }
917 
918   return false;
919 }
920 
921 /// \returns true if the new GPU divergence analysis is enabled.
922 bool GCNTTIImpl::useGPUDivergenceAnalysis() const {
923   return !UseLegacyDA;
924 }
925 
926 /// \returns true if the result of the value could potentially be
927 /// different across workitems in a wavefront.
928 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
929   if (const Argument *A = dyn_cast<Argument>(V))
930     return !AMDGPU::isArgPassedInSGPR(A);
931 
932   // Loads from the private and flat address spaces are divergent, because
933   // threads can execute the load instruction with the same inputs and get
934   // different results.
935   //
936   // All other loads are not divergent, because if threads issue loads with the
937   // same arguments, they will always get the same result.
938   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
939     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
940            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
941 
942   // Atomics are divergent because they are executed sequentially: when an
943   // atomic operation refers to the same address in each thread, then each
944   // thread after the first sees the value written by the previous thread as
945   // original value.
946   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
947     return true;
948 
949   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
950     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
951 
952   // Assume all function calls are a source of divergence.
953   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
954     if (CI->isInlineAsm())
955       return isInlineAsmSourceOfDivergence(CI);
956     return true;
957   }
958 
959   // Assume all function calls are a source of divergence.
960   if (isa<InvokeInst>(V))
961     return true;
962 
963   return false;
964 }
965 
966 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
967   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
968     switch (Intrinsic->getIntrinsicID()) {
969     default:
970       return false;
971     case Intrinsic::amdgcn_readfirstlane:
972     case Intrinsic::amdgcn_readlane:
973     case Intrinsic::amdgcn_icmp:
974     case Intrinsic::amdgcn_fcmp:
975     case Intrinsic::amdgcn_ballot:
976     case Intrinsic::amdgcn_if_break:
977       return true;
978     }
979   }
980 
981   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
982     if (CI->isInlineAsm())
983       return !isInlineAsmSourceOfDivergence(CI);
984     return false;
985   }
986 
987   const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
988   if (!ExtValue)
989     return false;
990 
991   const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
992   if (!CI)
993     return false;
994 
995   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
996     switch (Intrinsic->getIntrinsicID()) {
997     default:
998       return false;
999     case Intrinsic::amdgcn_if:
1000     case Intrinsic::amdgcn_else: {
1001       ArrayRef<unsigned> Indices = ExtValue->getIndices();
1002       return Indices.size() == 1 && Indices[0] == 1;
1003     }
1004     }
1005   }
1006 
1007   // If we have inline asm returning mixed SGPR and VGPR results, we inferred
1008   // divergent for the overall struct return. We need to override it in the
1009   // case we're extracting an SGPR component here.
1010   if (CI->isInlineAsm())
1011     return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
1012 
1013   return false;
1014 }
1015 
1016 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1017                                             Intrinsic::ID IID) const {
1018   switch (IID) {
1019   case Intrinsic::amdgcn_atomic_inc:
1020   case Intrinsic::amdgcn_atomic_dec:
1021   case Intrinsic::amdgcn_ds_fadd:
1022   case Intrinsic::amdgcn_ds_fmin:
1023   case Intrinsic::amdgcn_ds_fmax:
1024   case Intrinsic::amdgcn_is_shared:
1025   case Intrinsic::amdgcn_is_private:
1026     OpIndexes.push_back(0);
1027     return true;
1028   default:
1029     return false;
1030   }
1031 }
1032 
1033 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1034                                                     Value *OldV,
1035                                                     Value *NewV) const {
1036   auto IntrID = II->getIntrinsicID();
1037   switch (IntrID) {
1038   case Intrinsic::amdgcn_atomic_inc:
1039   case Intrinsic::amdgcn_atomic_dec:
1040   case Intrinsic::amdgcn_ds_fadd:
1041   case Intrinsic::amdgcn_ds_fmin:
1042   case Intrinsic::amdgcn_ds_fmax: {
1043     const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
1044     if (!IsVolatile->isZero())
1045       return nullptr;
1046     Module *M = II->getParent()->getParent()->getParent();
1047     Type *DestTy = II->getType();
1048     Type *SrcTy = NewV->getType();
1049     Function *NewDecl =
1050         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
1051     II->setArgOperand(0, NewV);
1052     II->setCalledFunction(NewDecl);
1053     return II;
1054   }
1055   case Intrinsic::amdgcn_is_shared:
1056   case Intrinsic::amdgcn_is_private: {
1057     unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
1058       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
1059     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1060     LLVMContext &Ctx = NewV->getType()->getContext();
1061     ConstantInt *NewVal = (TrueAS == NewAS) ?
1062       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
1063     return NewVal;
1064   }
1065   case Intrinsic::ptrmask: {
1066     unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1067     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1068     Value *MaskOp = II->getArgOperand(1);
1069     Type *MaskTy = MaskOp->getType();
1070 
1071     bool DoTruncate = false;
1072 
1073     const GCNTargetMachine &TM =
1074         static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
1075     if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
1076       // All valid 64-bit to 32-bit casts work by chopping off the high
1077       // bits. Any masking only clearing the low bits will also apply in the new
1078       // address space.
1079       if (DL.getPointerSizeInBits(OldAS) != 64 ||
1080           DL.getPointerSizeInBits(NewAS) != 32)
1081         return nullptr;
1082 
1083       // TODO: Do we need to thread more context in here?
1084       KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
1085       if (Known.countMinLeadingOnes() < 32)
1086         return nullptr;
1087 
1088       DoTruncate = true;
1089     }
1090 
1091     IRBuilder<> B(II);
1092     if (DoTruncate) {
1093       MaskTy = B.getInt32Ty();
1094       MaskOp = B.CreateTrunc(MaskOp, MaskTy);
1095     }
1096 
1097     return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
1098                              {NewV, MaskOp});
1099   }
1100   default:
1101     return nullptr;
1102   }
1103 }
1104 
1105 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT,
1106                                     int Index, VectorType *SubTp) {
1107   if (ST->hasVOP3PInsts()) {
1108     if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
1109         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
1110       // With op_sel VOP3P instructions freely can access the low half or high
1111       // half of a register, so any swizzle is free.
1112 
1113       switch (Kind) {
1114       case TTI::SK_Broadcast:
1115       case TTI::SK_Reverse:
1116       case TTI::SK_PermuteSingleSrc:
1117         return 0;
1118       default:
1119         break;
1120       }
1121     }
1122   }
1123 
1124   return BaseT::getShuffleCost(Kind, VT, Index, SubTp);
1125 }
1126 
1127 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
1128                                      const Function *Callee) const {
1129   const TargetMachine &TM = getTLI()->getTargetMachine();
1130   const GCNSubtarget *CallerST
1131     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1132   const GCNSubtarget *CalleeST
1133     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1134 
1135   const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1136   const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1137 
1138   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1139   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1140   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1141     return false;
1142 
1143   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1144   // no way to support merge for backend defined attributes.
1145   AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
1146   AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
1147   if (!CallerMode.isInlineCompatible(CalleeMode))
1148     return false;
1149 
1150   if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
1151       Callee->hasFnAttribute(Attribute::InlineHint))
1152     return true;
1153 
1154   // Hack to make compile times reasonable.
1155   if (InlineMaxBB) {
1156     // Single BB does not increase total BB amount.
1157     if (Callee->size() == 1)
1158       return true;
1159     size_t BBSize = Caller->size() + Callee->size() - 1;
1160     return BBSize <= InlineMaxBB;
1161   }
1162 
1163   return true;
1164 }
1165 
1166 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
1167   // If we have a pointer to private array passed into a function
1168   // it will not be optimized out, leaving scratch usage.
1169   // Increase the inline threshold to allow inlining in this case.
1170   uint64_t AllocaSize = 0;
1171   SmallPtrSet<const AllocaInst *, 8> AIVisited;
1172   for (Value *PtrArg : CB->args()) {
1173     PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
1174     if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS &&
1175                 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS))
1176       continue;
1177 
1178     PtrArg = getUnderlyingObject(PtrArg);
1179     if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) {
1180       if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second)
1181         continue;
1182       AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
1183       // If the amount of stack memory is excessive we will not be able
1184       // to get rid of the scratch anyway, bail out.
1185       if (AllocaSize > ArgAllocaCutoff) {
1186         AllocaSize = 0;
1187         break;
1188       }
1189     }
1190   }
1191   if (AllocaSize)
1192     return ArgAllocaCost;
1193   return 0;
1194 }
1195 
1196 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1197                                          TTI::UnrollingPreferences &UP) {
1198   CommonTTI.getUnrollingPreferences(L, SE, UP);
1199 }
1200 
1201 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1202                                        TTI::PeelingPreferences &PP) {
1203   CommonTTI.getPeelingPreferences(L, SE, PP);
1204 }
1205 
1206 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
1207   return ST->hasFullRate64Ops()
1208              ? getFullRateInstrCost()
1209              : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
1210                                       : getQuarterRateInstrCost(CostKind);
1211 }
1212 
1213 R600TTIImpl::R600TTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
1214     : BaseT(TM, F.getParent()->getDataLayout()),
1215       ST(static_cast<const R600Subtarget *>(TM->getSubtargetImpl(F))),
1216       TLI(ST->getTargetLowering()), CommonTTI(TM, F) {}
1217 
1218 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
1219   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
1220 }
1221 
1222 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
1223   return getHardwareNumberOfRegisters(Vec);
1224 }
1225 
1226 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
1227   return 32;
1228 }
1229 
1230 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
1231   return 32;
1232 }
1233 
1234 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
1235   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
1236       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
1237     return 128;
1238   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1239       AddrSpace == AMDGPUAS::REGION_ADDRESS)
1240     return 64;
1241   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
1242     return 32;
1243 
1244   if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
1245       AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
1246       (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
1247       AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
1248     return 128;
1249   llvm_unreachable("unhandled address space");
1250 }
1251 
1252 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
1253                                              Align Alignment,
1254                                              unsigned AddrSpace) const {
1255   // We allow vectorization of flat stores, even though we may need to decompose
1256   // them later if they may access private memory. We don't have enough context
1257   // here, and legalization can handle it.
1258   return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
1259 }
1260 
1261 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1262                                               Align Alignment,
1263                                               unsigned AddrSpace) const {
1264   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
1265 }
1266 
1267 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1268                                                Align Alignment,
1269                                                unsigned AddrSpace) const {
1270   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
1271 }
1272 
1273 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
1274   // Disable unrolling if the loop is not vectorized.
1275   // TODO: Enable this again.
1276   if (VF == 1)
1277     return 1;
1278 
1279   return 8;
1280 }
1281 
1282 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode,
1283                                      TTI::TargetCostKind CostKind) {
1284   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
1285     return Opcode == Instruction::PHI ? 0 : 1;
1286 
1287   // XXX - For some reason this isn't called for switch.
1288   switch (Opcode) {
1289   case Instruction::Br:
1290   case Instruction::Ret:
1291     return 10;
1292   default:
1293     return BaseT::getCFInstrCost(Opcode, CostKind);
1294   }
1295 }
1296 
1297 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
1298                                     unsigned Index) {
1299   switch (Opcode) {
1300   case Instruction::ExtractElement:
1301   case Instruction::InsertElement: {
1302     unsigned EltSize
1303       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
1304     if (EltSize < 32) {
1305       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
1306     }
1307 
1308     // Extracts are just reads of a subregister, so are free. Inserts are
1309     // considered free because we don't want to have any cost for scalarizing
1310     // operations, and we don't have to copy into a different register class.
1311 
1312     // Dynamic indexing isn't free and is best avoided.
1313     return Index == ~0u ? 2 : 0;
1314   }
1315   default:
1316     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
1317   }
1318 }
1319 
1320 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1321                                           TTI::UnrollingPreferences &UP) {
1322   CommonTTI.getUnrollingPreferences(L, SE, UP);
1323 }
1324 
1325 void R600TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1326                                         TTI::PeelingPreferences &PP) {
1327   CommonTTI.getPeelingPreferences(L, SE, PP);
1328 }
1329