1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUSubtarget.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <limits> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "AMDGPUtti" 56 57 static cl::opt<unsigned> UnrollThresholdPrivate( 58 "amdgpu-unroll-threshold-private", 59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 60 cl::init(2500), cl::Hidden); 61 62 static cl::opt<unsigned> UnrollThresholdLocal( 63 "amdgpu-unroll-threshold-local", 64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 65 cl::init(1000), cl::Hidden); 66 67 static cl::opt<unsigned> UnrollThresholdIf( 68 "amdgpu-unroll-threshold-if", 69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 70 cl::init(150), cl::Hidden); 71 72 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 73 unsigned Depth = 0) { 74 const Instruction *I = dyn_cast<Instruction>(Cond); 75 if (!I) 76 return false; 77 78 for (const Value *V : I->operand_values()) { 79 if (!L->contains(I)) 80 continue; 81 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 82 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 83 return SubLoop->contains(PHI); })) 84 return true; 85 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 86 return true; 87 } 88 return false; 89 } 90 91 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 92 TTI::UnrollingPreferences &UP) { 93 UP.Threshold = 300; // Twice the default. 94 UP.MaxCount = std::numeric_limits<unsigned>::max(); 95 UP.Partial = true; 96 97 // TODO: Do we want runtime unrolling? 98 99 // Maximum alloca size than can fit registers. Reserve 16 registers. 100 const unsigned MaxAlloca = (256 - 16) * 4; 101 unsigned ThresholdPrivate = UnrollThresholdPrivate; 102 unsigned ThresholdLocal = UnrollThresholdLocal; 103 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 104 for (const BasicBlock *BB : L->getBlocks()) { 105 const DataLayout &DL = BB->getModule()->getDataLayout(); 106 unsigned LocalGEPsSeen = 0; 107 108 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 109 return SubLoop->contains(BB); })) 110 continue; // Block belongs to an inner loop. 111 112 for (const Instruction &I : *BB) { 113 // Unroll a loop which contains an "if" statement whose condition 114 // defined by a PHI belonging to the loop. This may help to eliminate 115 // if region and potentially even PHI itself, saving on both divergence 116 // and registers used for the PHI. 117 // Add a small bonus for each of such "if" statements. 118 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 119 if (UP.Threshold < MaxBoost && Br->isConditional()) { 120 if (L->isLoopExiting(Br->getSuccessor(0)) || 121 L->isLoopExiting(Br->getSuccessor(1))) 122 continue; 123 if (dependsOnLocalPhi(L, Br->getCondition())) { 124 UP.Threshold += UnrollThresholdIf; 125 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 126 << " for loop:\n" 127 << *L << " due to " << *Br << '\n'); 128 if (UP.Threshold >= MaxBoost) 129 return; 130 } 131 } 132 continue; 133 } 134 135 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 136 if (!GEP) 137 continue; 138 139 unsigned AS = GEP->getAddressSpace(); 140 unsigned Threshold = 0; 141 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 142 Threshold = ThresholdPrivate; 143 else if (AS == AMDGPUAS::LOCAL_ADDRESS) 144 Threshold = ThresholdLocal; 145 else 146 continue; 147 148 if (UP.Threshold >= Threshold) 149 continue; 150 151 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 152 const Value *Ptr = GEP->getPointerOperand(); 153 const AllocaInst *Alloca = 154 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 155 if (!Alloca || !Alloca->isStaticAlloca()) 156 continue; 157 Type *Ty = Alloca->getAllocatedType(); 158 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 159 if (AllocaSize > MaxAlloca) 160 continue; 161 } else if (AS == AMDGPUAS::LOCAL_ADDRESS) { 162 LocalGEPsSeen++; 163 // Inhibit unroll for local memory if we have seen addressing not to 164 // a variable, most likely we will be unable to combine it. 165 // Do not unroll too deep inner loops for local memory to give a chance 166 // to unroll an outer loop for a more important reason. 167 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 168 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 169 !isa<Argument>(GEP->getPointerOperand()))) 170 continue; 171 } 172 173 // Check if GEP depends on a value defined by this loop itself. 174 bool HasLoopDef = false; 175 for (const Value *Op : GEP->operands()) { 176 const Instruction *Inst = dyn_cast<Instruction>(Op); 177 if (!Inst || L->isLoopInvariant(Op)) 178 continue; 179 180 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 181 return SubLoop->contains(Inst); })) 182 continue; 183 HasLoopDef = true; 184 break; 185 } 186 if (!HasLoopDef) 187 continue; 188 189 // We want to do whatever we can to limit the number of alloca 190 // instructions that make it through to the code generator. allocas 191 // require us to use indirect addressing, which is slow and prone to 192 // compiler bugs. If this loop does an address calculation on an 193 // alloca ptr, then we want to use a higher than normal loop unroll 194 // threshold. This will give SROA a better chance to eliminate these 195 // allocas. 196 // 197 // We also want to have more unrolling for local memory to let ds 198 // instructions with different offsets combine. 199 // 200 // Don't use the maximum allowed value here as it will make some 201 // programs way too big. 202 UP.Threshold = Threshold; 203 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 204 << " for loop:\n" 205 << *L << " due to " << *GEP << '\n'); 206 if (UP.Threshold >= MaxBoost) 207 return; 208 } 209 } 210 } 211 212 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 213 // The concept of vector registers doesn't really exist. Some packed vector 214 // operations operate on the normal 32-bit registers. 215 return 256; 216 } 217 218 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 219 // This is really the number of registers to fill when vectorizing / 220 // interleaving loops, so we lie to avoid trying to use all registers. 221 return getHardwareNumberOfRegisters(Vec) >> 3; 222 } 223 224 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { 225 return 32; 226 } 227 228 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 229 return 32; 230 } 231 232 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 233 unsigned ChainSizeInBytes, 234 VectorType *VecTy) const { 235 unsigned VecRegBitWidth = VF * LoadSize; 236 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 237 // TODO: Support element-size less than 32bit? 238 return 128 / LoadSize; 239 240 return VF; 241 } 242 243 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 244 unsigned ChainSizeInBytes, 245 VectorType *VecTy) const { 246 unsigned VecRegBitWidth = VF * StoreSize; 247 if (VecRegBitWidth > 128) 248 return 128 / StoreSize; 249 250 return VF; 251 } 252 253 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 254 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 255 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 256 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 257 return 512; 258 } 259 260 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS || 261 AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 262 AddrSpace == AMDGPUAS::REGION_ADDRESS) 263 return 128; 264 265 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 266 return 8 * ST->getMaxPrivateElementSize(); 267 268 llvm_unreachable("unhandled address space"); 269 } 270 271 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 272 unsigned Alignment, 273 unsigned AddrSpace) const { 274 // We allow vectorization of flat stores, even though we may need to decompose 275 // them later if they may access private memory. We don't have enough context 276 // here, and legalization can handle it. 277 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 278 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 279 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 280 } 281 return true; 282 } 283 284 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 285 unsigned Alignment, 286 unsigned AddrSpace) const { 287 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 288 } 289 290 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 291 unsigned Alignment, 292 unsigned AddrSpace) const { 293 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 294 } 295 296 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 297 // Disable unrolling if the loop is not vectorized. 298 // TODO: Enable this again. 299 if (VF == 1) 300 return 1; 301 302 return 8; 303 } 304 305 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 306 MemIntrinsicInfo &Info) const { 307 switch (Inst->getIntrinsicID()) { 308 case Intrinsic::amdgcn_atomic_inc: 309 case Intrinsic::amdgcn_atomic_dec: 310 case Intrinsic::amdgcn_ds_ordered_add: 311 case Intrinsic::amdgcn_ds_ordered_swap: 312 case Intrinsic::amdgcn_ds_fadd: 313 case Intrinsic::amdgcn_ds_fmin: 314 case Intrinsic::amdgcn_ds_fmax: { 315 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 316 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 317 if (!Ordering || !Volatile) 318 return false; // Invalid. 319 320 unsigned OrderingVal = Ordering->getZExtValue(); 321 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 322 return false; 323 324 Info.PtrVal = Inst->getArgOperand(0); 325 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 326 Info.ReadMem = true; 327 Info.WriteMem = true; 328 Info.IsVolatile = !Volatile->isNullValue(); 329 return true; 330 } 331 default: 332 return false; 333 } 334 } 335 336 int GCNTTIImpl::getArithmeticInstrCost( 337 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, 338 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 339 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) { 340 EVT OrigTy = TLI->getValueType(DL, Ty); 341 if (!OrigTy.isSimple()) { 342 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 343 Opd1PropInfo, Opd2PropInfo); 344 } 345 346 // Legalize the type. 347 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 348 int ISD = TLI->InstructionOpcodeToISD(Opcode); 349 350 // Because we don't have any legal vector operations, but the legal types, we 351 // need to account for split vectors. 352 unsigned NElts = LT.second.isVector() ? 353 LT.second.getVectorNumElements() : 1; 354 355 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 356 357 switch (ISD) { 358 case ISD::SHL: 359 case ISD::SRL: 360 case ISD::SRA: 361 if (SLT == MVT::i64) 362 return get64BitInstrCost() * LT.first * NElts; 363 364 // i32 365 return getFullRateInstrCost() * LT.first * NElts; 366 case ISD::ADD: 367 case ISD::SUB: 368 case ISD::AND: 369 case ISD::OR: 370 case ISD::XOR: 371 if (SLT == MVT::i64){ 372 // and, or and xor are typically split into 2 VALU instructions. 373 return 2 * getFullRateInstrCost() * LT.first * NElts; 374 } 375 376 return LT.first * NElts * getFullRateInstrCost(); 377 case ISD::MUL: { 378 const int QuarterRateCost = getQuarterRateInstrCost(); 379 if (SLT == MVT::i64) { 380 const int FullRateCost = getFullRateInstrCost(); 381 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 382 } 383 384 // i32 385 return QuarterRateCost * NElts * LT.first; 386 } 387 case ISD::FADD: 388 case ISD::FSUB: 389 case ISD::FMUL: 390 if (SLT == MVT::f64) 391 return LT.first * NElts * get64BitInstrCost(); 392 393 if (SLT == MVT::f32 || SLT == MVT::f16) 394 return LT.first * NElts * getFullRateInstrCost(); 395 break; 396 case ISD::FDIV: 397 case ISD::FREM: 398 // FIXME: frem should be handled separately. The fdiv in it is most of it, 399 // but the current lowering is also not entirely correct. 400 if (SLT == MVT::f64) { 401 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 402 // Add cost of workaround. 403 if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) 404 Cost += 3 * getFullRateInstrCost(); 405 406 return LT.first * Cost * NElts; 407 } 408 409 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 410 // TODO: This is more complicated, unsafe flags etc. 411 if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) || 412 (SLT == MVT::f16 && ST->has16BitInsts())) { 413 return LT.first * getQuarterRateInstrCost() * NElts; 414 } 415 } 416 417 if (SLT == MVT::f16 && ST->has16BitInsts()) { 418 // 2 x v_cvt_f32_f16 419 // f32 rcp 420 // f32 fmul 421 // v_cvt_f16_f32 422 // f16 div_fixup 423 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 424 return LT.first * Cost * NElts; 425 } 426 427 if (SLT == MVT::f32 || SLT == MVT::f16) { 428 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 429 430 if (!ST->hasFP32Denormals()) { 431 // FP mode switches. 432 Cost += 2 * getFullRateInstrCost(); 433 } 434 435 return LT.first * NElts * Cost; 436 } 437 break; 438 default: 439 break; 440 } 441 442 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 443 Opd1PropInfo, Opd2PropInfo); 444 } 445 446 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) { 447 // XXX - For some reason this isn't called for switch. 448 switch (Opcode) { 449 case Instruction::Br: 450 case Instruction::Ret: 451 return 10; 452 default: 453 return BaseT::getCFInstrCost(Opcode); 454 } 455 } 456 457 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 458 bool IsPairwise) { 459 EVT OrigTy = TLI->getValueType(DL, Ty); 460 461 // Computes cost on targets that have packed math instructions(which support 462 // 16-bit types only). 463 if (IsPairwise || 464 !ST->hasVOP3PInsts() || 465 OrigTy.getScalarSizeInBits() != 16) 466 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise); 467 468 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 469 return LT.first * getFullRateInstrCost(); 470 } 471 472 int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy, 473 bool IsPairwise, 474 bool IsUnsigned) { 475 EVT OrigTy = TLI->getValueType(DL, Ty); 476 477 // Computes cost on targets that have packed math instructions(which support 478 // 16-bit types only). 479 if (IsPairwise || 480 !ST->hasVOP3PInsts() || 481 OrigTy.getScalarSizeInBits() != 16) 482 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned); 483 484 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 485 return LT.first * getHalfRateInstrCost(); 486 } 487 488 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 489 unsigned Index) { 490 switch (Opcode) { 491 case Instruction::ExtractElement: 492 case Instruction::InsertElement: { 493 unsigned EltSize 494 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 495 if (EltSize < 32) { 496 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 497 return 0; 498 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 499 } 500 501 // Extracts are just reads of a subregister, so are free. Inserts are 502 // considered free because we don't want to have any cost for scalarizing 503 // operations, and we don't have to copy into a different register class. 504 505 // Dynamic indexing isn't free and is best avoided. 506 return Index == ~0u ? 2 : 0; 507 } 508 default: 509 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 510 } 511 } 512 513 514 515 static bool isArgPassedInSGPR(const Argument *A) { 516 const Function *F = A->getParent(); 517 518 // Arguments to compute shaders are never a source of divergence. 519 CallingConv::ID CC = F->getCallingConv(); 520 switch (CC) { 521 case CallingConv::AMDGPU_KERNEL: 522 case CallingConv::SPIR_KERNEL: 523 return true; 524 case CallingConv::AMDGPU_VS: 525 case CallingConv::AMDGPU_LS: 526 case CallingConv::AMDGPU_HS: 527 case CallingConv::AMDGPU_ES: 528 case CallingConv::AMDGPU_GS: 529 case CallingConv::AMDGPU_PS: 530 case CallingConv::AMDGPU_CS: 531 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 532 // Everything else is in VGPRs. 533 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 534 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 535 default: 536 // TODO: Should calls support inreg for SGPR inputs? 537 return false; 538 } 539 } 540 541 /// \returns true if the result of the value could potentially be 542 /// different across workitems in a wavefront. 543 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 544 if (const Argument *A = dyn_cast<Argument>(V)) 545 return !isArgPassedInSGPR(A); 546 547 // Loads from the private and flat address spaces are divergent, because 548 // threads can execute the load instruction with the same inputs and get 549 // different results. 550 // 551 // All other loads are not divergent, because if threads issue loads with the 552 // same arguments, they will always get the same result. 553 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 554 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 555 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 556 557 // Atomics are divergent because they are executed sequentially: when an 558 // atomic operation refers to the same address in each thread, then each 559 // thread after the first sees the value written by the previous thread as 560 // original value. 561 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 562 return true; 563 564 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 565 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 566 567 // Assume all function calls are a source of divergence. 568 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 569 return true; 570 571 return false; 572 } 573 574 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 575 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 576 switch (Intrinsic->getIntrinsicID()) { 577 default: 578 return false; 579 case Intrinsic::amdgcn_readfirstlane: 580 case Intrinsic::amdgcn_readlane: 581 case Intrinsic::amdgcn_icmp: 582 case Intrinsic::amdgcn_fcmp: 583 return true; 584 } 585 } 586 return false; 587 } 588 589 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 590 Type *SubTp) { 591 if (ST->hasVOP3PInsts()) { 592 VectorType *VT = cast<VectorType>(Tp); 593 if (VT->getNumElements() == 2 && 594 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 595 // With op_sel VOP3P instructions freely can access the low half or high 596 // half of a register, so any swizzle is free. 597 598 switch (Kind) { 599 case TTI::SK_Broadcast: 600 case TTI::SK_Reverse: 601 case TTI::SK_PermuteSingleSrc: 602 return 0; 603 default: 604 break; 605 } 606 } 607 } 608 609 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 610 } 611 612 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 613 const Function *Callee) const { 614 const TargetMachine &TM = getTLI()->getTargetMachine(); 615 const FeatureBitset &CallerBits = 616 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 617 const FeatureBitset &CalleeBits = 618 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 619 620 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 621 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 622 return ((RealCallerBits & RealCalleeBits) == RealCalleeBits); 623 } 624 625 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 626 TTI::UnrollingPreferences &UP) { 627 CommonTTI.getUnrollingPreferences(L, SE, UP); 628 } 629 630 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 631 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 632 } 633 634 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 635 return getHardwareNumberOfRegisters(Vec); 636 } 637 638 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { 639 return 32; 640 } 641 642 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 643 return 32; 644 } 645 646 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 647 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 648 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 649 return 128; 650 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 651 AddrSpace == AMDGPUAS::REGION_ADDRESS) 652 return 64; 653 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 654 return 32; 655 656 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 657 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 658 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 659 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 660 return 128; 661 llvm_unreachable("unhandled address space"); 662 } 663 664 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 665 unsigned Alignment, 666 unsigned AddrSpace) const { 667 // We allow vectorization of flat stores, even though we may need to decompose 668 // them later if they may access private memory. We don't have enough context 669 // here, and legalization can handle it. 670 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 671 } 672 673 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 674 unsigned Alignment, 675 unsigned AddrSpace) const { 676 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 677 } 678 679 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 680 unsigned Alignment, 681 unsigned AddrSpace) const { 682 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 683 } 684 685 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 686 // Disable unrolling if the loop is not vectorized. 687 // TODO: Enable this again. 688 if (VF == 1) 689 return 1; 690 691 return 8; 692 } 693 694 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) { 695 // XXX - For some reason this isn't called for switch. 696 switch (Opcode) { 697 case Instruction::Br: 698 case Instruction::Ret: 699 return 10; 700 default: 701 return BaseT::getCFInstrCost(Opcode); 702 } 703 } 704 705 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 706 unsigned Index) { 707 switch (Opcode) { 708 case Instruction::ExtractElement: 709 case Instruction::InsertElement: { 710 unsigned EltSize 711 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 712 if (EltSize < 32) { 713 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 714 } 715 716 // Extracts are just reads of a subregister, so are free. Inserts are 717 // considered free because we don't want to have any cost for scalarizing 718 // operations, and we don't have to copy into a different register class. 719 720 // Dynamic indexing isn't free and is best avoided. 721 return Index == ~0u ? 2 : 0; 722 } 723 default: 724 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 725 } 726 } 727 728 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 729 TTI::UnrollingPreferences &UP) { 730 CommonTTI.getUnrollingPreferences(L, SE, UP); 731 } 732