1 //===-- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // \file 11 // This file implements a TargetTransformInfo analysis pass specific to the 12 // AMDGPU target machine. It uses the target's detailed information to provide 13 // more precise answers to certain TTI queries, while letting the target 14 // independent and default TTI implementations handle the rest. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "AMDGPUTargetTransformInfo.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/BasicTTIImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Target/CostTable.h" 27 #include "llvm/Target/TargetLowering.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "AMDGPUtti" 31 32 static cl::opt<unsigned> UnrollThresholdPrivate( 33 "amdgpu-unroll-threshold-private", 34 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 35 cl::init(2500), cl::Hidden); 36 37 static cl::opt<unsigned> UnrollThresholdLocal( 38 "amdgpu-unroll-threshold-local", 39 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 40 cl::init(1000), cl::Hidden); 41 42 static cl::opt<unsigned> UnrollThresholdIf( 43 "amdgpu-unroll-threshold-if", 44 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 45 cl::init(150), cl::Hidden); 46 47 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 48 unsigned Depth = 0) { 49 const Instruction *I = dyn_cast<Instruction>(Cond); 50 if (!I) 51 return false; 52 53 for (const Value *V : I->operand_values()) { 54 if (!L->contains(I)) 55 continue; 56 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 57 if (none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 58 return SubLoop->contains(PHI); })) 59 return true; 60 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 61 return true; 62 } 63 return false; 64 } 65 66 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, 67 TTI::UnrollingPreferences &UP) { 68 UP.Threshold = 300; // Twice the default. 69 UP.MaxCount = UINT_MAX; 70 UP.Partial = true; 71 72 // TODO: Do we want runtime unrolling? 73 74 // Maximum alloca size than can fit registers. Reserve 16 registers. 75 const unsigned MaxAlloca = (256 - 16) * 4; 76 unsigned ThresholdPrivate = UnrollThresholdPrivate; 77 unsigned ThresholdLocal = UnrollThresholdLocal; 78 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 79 AMDGPUAS ASST = ST->getAMDGPUAS(); 80 for (const BasicBlock *BB : L->getBlocks()) { 81 const DataLayout &DL = BB->getModule()->getDataLayout(); 82 unsigned LocalGEPsSeen = 0; 83 84 if (any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 85 return SubLoop->contains(BB); })) 86 continue; // Block belongs to an inner loop. 87 88 for (const Instruction &I : *BB) { 89 90 // Unroll a loop which contains an "if" statement whose condition 91 // defined by a PHI belonging to the loop. This may help to eliminate 92 // if region and potentially even PHI itself, saving on both divergence 93 // and registers used for the PHI. 94 // Add a small bonus for each of such "if" statements. 95 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 96 if (UP.Threshold < MaxBoost && Br->isConditional()) { 97 if (L->isLoopExiting(Br->getSuccessor(0)) || 98 L->isLoopExiting(Br->getSuccessor(1))) 99 continue; 100 if (dependsOnLocalPhi(L, Br->getCondition())) { 101 UP.Threshold += UnrollThresholdIf; 102 DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 103 << " for loop:\n" << *L << " due to " << *Br << '\n'); 104 if (UP.Threshold >= MaxBoost) 105 return; 106 } 107 } 108 continue; 109 } 110 111 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 112 if (!GEP) 113 continue; 114 115 unsigned AS = GEP->getAddressSpace(); 116 unsigned Threshold = 0; 117 if (AS == ASST.PRIVATE_ADDRESS) 118 Threshold = ThresholdPrivate; 119 else if (AS == ASST.LOCAL_ADDRESS) 120 Threshold = ThresholdLocal; 121 else 122 continue; 123 124 if (UP.Threshold >= Threshold) 125 continue; 126 127 if (AS == ASST.PRIVATE_ADDRESS) { 128 const Value *Ptr = GEP->getPointerOperand(); 129 const AllocaInst *Alloca = 130 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 131 if (!Alloca || !Alloca->isStaticAlloca()) 132 continue; 133 Type *Ty = Alloca->getAllocatedType(); 134 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 135 if (AllocaSize > MaxAlloca) 136 continue; 137 } else if (AS == ASST.LOCAL_ADDRESS) { 138 LocalGEPsSeen++; 139 // Inhibit unroll for local memory if we have seen addressing not to 140 // a variable, most likely we will be unable to combine it. 141 // Do not unroll too deep inner loops for local memory to give a chance 142 // to unroll an outer loop for a more important reason. 143 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 144 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 145 !isa<Argument>(GEP->getPointerOperand()))) 146 continue; 147 } 148 149 // Check if GEP depends on a value defined by this loop itself. 150 bool HasLoopDef = false; 151 for (const Value *Op : GEP->operands()) { 152 const Instruction *Inst = dyn_cast<Instruction>(Op); 153 if (!Inst || L->isLoopInvariant(Op)) 154 continue; 155 156 if (any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 157 return SubLoop->contains(Inst); })) 158 continue; 159 HasLoopDef = true; 160 break; 161 } 162 if (!HasLoopDef) 163 continue; 164 165 // We want to do whatever we can to limit the number of alloca 166 // instructions that make it through to the code generator. allocas 167 // require us to use indirect addressing, which is slow and prone to 168 // compiler bugs. If this loop does an address calculation on an 169 // alloca ptr, then we want to use a higher than normal loop unroll 170 // threshold. This will give SROA a better chance to eliminate these 171 // allocas. 172 // 173 // We also want to have more unrolling for local memory to let ds 174 // instructions with different offsets combine. 175 // 176 // Don't use the maximum allowed value here as it will make some 177 // programs way too big. 178 UP.Threshold = Threshold; 179 DEBUG(dbgs() << "Set unroll threshold " << Threshold << " for loop:\n" 180 << *L << " due to " << *GEP << '\n'); 181 if (UP.Threshold >= MaxBoost) 182 return; 183 } 184 } 185 } 186 187 unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) { 188 if (Vec) 189 return 0; 190 191 // Number of VGPRs on SI. 192 if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) 193 return 256; 194 195 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 196 } 197 198 unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) { 199 return Vector ? 0 : 32; 200 } 201 202 unsigned AMDGPUTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 203 AMDGPUAS AS = ST->getAMDGPUAS(); 204 if (AddrSpace == AS.GLOBAL_ADDRESS || 205 AddrSpace == AS.CONSTANT_ADDRESS || 206 AddrSpace == AS.FLAT_ADDRESS) 207 return 128; 208 if (AddrSpace == AS.LOCAL_ADDRESS || 209 AddrSpace == AS.REGION_ADDRESS) 210 return 64; 211 if (AddrSpace == AS.PRIVATE_ADDRESS) 212 return 8 * ST->getMaxPrivateElementSize(); 213 214 if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS && 215 (AddrSpace == AS.PARAM_D_ADDRESS || 216 AddrSpace == AS.PARAM_I_ADDRESS || 217 (AddrSpace >= AS.CONSTANT_BUFFER_0 && 218 AddrSpace <= AS.CONSTANT_BUFFER_15))) 219 return 128; 220 llvm_unreachable("unhandled address space"); 221 } 222 223 bool AMDGPUTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 224 unsigned Alignment, 225 unsigned AddrSpace) const { 226 // We allow vectorization of flat stores, even though we may need to decompose 227 // them later if they may access private memory. We don't have enough context 228 // here, and legalization can handle it. 229 if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS) { 230 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 231 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 232 } 233 return true; 234 } 235 236 bool AMDGPUTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 237 unsigned Alignment, 238 unsigned AddrSpace) const { 239 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 240 } 241 242 bool AMDGPUTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 243 unsigned Alignment, 244 unsigned AddrSpace) const { 245 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 246 } 247 248 unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) { 249 // Disable unrolling if the loop is not vectorized. 250 if (VF == 1) 251 return 1; 252 253 // Semi-arbitrary large amount. 254 return 64; 255 } 256 257 int AMDGPUTTIImpl::getArithmeticInstrCost( 258 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, 259 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 260 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) { 261 262 EVT OrigTy = TLI->getValueType(DL, Ty); 263 if (!OrigTy.isSimple()) { 264 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 265 Opd1PropInfo, Opd2PropInfo); 266 } 267 268 // Legalize the type. 269 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 270 int ISD = TLI->InstructionOpcodeToISD(Opcode); 271 272 // Because we don't have any legal vector operations, but the legal types, we 273 // need to account for split vectors. 274 unsigned NElts = LT.second.isVector() ? 275 LT.second.getVectorNumElements() : 1; 276 277 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 278 279 switch (ISD) { 280 case ISD::SHL: 281 case ISD::SRL: 282 case ISD::SRA: { 283 if (SLT == MVT::i64) 284 return get64BitInstrCost() * LT.first * NElts; 285 286 // i32 287 return getFullRateInstrCost() * LT.first * NElts; 288 } 289 case ISD::ADD: 290 case ISD::SUB: 291 case ISD::AND: 292 case ISD::OR: 293 case ISD::XOR: { 294 if (SLT == MVT::i64){ 295 // and, or and xor are typically split into 2 VALU instructions. 296 return 2 * getFullRateInstrCost() * LT.first * NElts; 297 } 298 299 return LT.first * NElts * getFullRateInstrCost(); 300 } 301 case ISD::MUL: { 302 const int QuarterRateCost = getQuarterRateInstrCost(); 303 if (SLT == MVT::i64) { 304 const int FullRateCost = getFullRateInstrCost(); 305 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 306 } 307 308 // i32 309 return QuarterRateCost * NElts * LT.first; 310 } 311 case ISD::FADD: 312 case ISD::FSUB: 313 case ISD::FMUL: 314 if (SLT == MVT::f64) 315 return LT.first * NElts * get64BitInstrCost(); 316 317 if (SLT == MVT::f32 || SLT == MVT::f16) 318 return LT.first * NElts * getFullRateInstrCost(); 319 break; 320 321 case ISD::FDIV: 322 case ISD::FREM: 323 // FIXME: frem should be handled separately. The fdiv in it is most of it, 324 // but the current lowering is also not entirely correct. 325 if (SLT == MVT::f64) { 326 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 327 328 // Add cost of workaround. 329 if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) 330 Cost += 3 * getFullRateInstrCost(); 331 332 return LT.first * Cost * NElts; 333 } 334 335 // Assuming no fp32 denormals lowering. 336 if (SLT == MVT::f32 || SLT == MVT::f16) { 337 assert(!ST->hasFP32Denormals() && "will change when supported"); 338 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 339 return LT.first * NElts * Cost; 340 } 341 342 break; 343 default: 344 break; 345 } 346 347 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 348 Opd1PropInfo, Opd2PropInfo); 349 } 350 351 unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) { 352 // XXX - For some reason this isn't called for switch. 353 switch (Opcode) { 354 case Instruction::Br: 355 case Instruction::Ret: 356 return 10; 357 default: 358 return BaseT::getCFInstrCost(Opcode); 359 } 360 } 361 362 int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 363 unsigned Index) { 364 switch (Opcode) { 365 case Instruction::ExtractElement: 366 case Instruction::InsertElement: { 367 unsigned EltSize 368 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 369 if (EltSize < 32) { 370 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 371 return 0; 372 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 373 } 374 375 // Extracts are just reads of a subregister, so are free. Inserts are 376 // considered free because we don't want to have any cost for scalarizing 377 // operations, and we don't have to copy into a different register class. 378 379 // Dynamic indexing isn't free and is best avoided. 380 return Index == ~0u ? 2 : 0; 381 } 382 default: 383 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 384 } 385 } 386 387 static bool isIntrinsicSourceOfDivergence(const IntrinsicInst *I) { 388 switch (I->getIntrinsicID()) { 389 case Intrinsic::amdgcn_workitem_id_x: 390 case Intrinsic::amdgcn_workitem_id_y: 391 case Intrinsic::amdgcn_workitem_id_z: 392 case Intrinsic::amdgcn_interp_mov: 393 case Intrinsic::amdgcn_interp_p1: 394 case Intrinsic::amdgcn_interp_p2: 395 case Intrinsic::amdgcn_mbcnt_hi: 396 case Intrinsic::amdgcn_mbcnt_lo: 397 case Intrinsic::r600_read_tidig_x: 398 case Intrinsic::r600_read_tidig_y: 399 case Intrinsic::r600_read_tidig_z: 400 case Intrinsic::amdgcn_atomic_inc: 401 case Intrinsic::amdgcn_atomic_dec: 402 case Intrinsic::amdgcn_image_atomic_swap: 403 case Intrinsic::amdgcn_image_atomic_add: 404 case Intrinsic::amdgcn_image_atomic_sub: 405 case Intrinsic::amdgcn_image_atomic_smin: 406 case Intrinsic::amdgcn_image_atomic_umin: 407 case Intrinsic::amdgcn_image_atomic_smax: 408 case Intrinsic::amdgcn_image_atomic_umax: 409 case Intrinsic::amdgcn_image_atomic_and: 410 case Intrinsic::amdgcn_image_atomic_or: 411 case Intrinsic::amdgcn_image_atomic_xor: 412 case Intrinsic::amdgcn_image_atomic_inc: 413 case Intrinsic::amdgcn_image_atomic_dec: 414 case Intrinsic::amdgcn_image_atomic_cmpswap: 415 case Intrinsic::amdgcn_buffer_atomic_swap: 416 case Intrinsic::amdgcn_buffer_atomic_add: 417 case Intrinsic::amdgcn_buffer_atomic_sub: 418 case Intrinsic::amdgcn_buffer_atomic_smin: 419 case Intrinsic::amdgcn_buffer_atomic_umin: 420 case Intrinsic::amdgcn_buffer_atomic_smax: 421 case Intrinsic::amdgcn_buffer_atomic_umax: 422 case Intrinsic::amdgcn_buffer_atomic_and: 423 case Intrinsic::amdgcn_buffer_atomic_or: 424 case Intrinsic::amdgcn_buffer_atomic_xor: 425 case Intrinsic::amdgcn_buffer_atomic_cmpswap: 426 case Intrinsic::amdgcn_ps_live: 427 case Intrinsic::amdgcn_ds_swizzle: 428 return true; 429 default: 430 return false; 431 } 432 } 433 434 static bool isArgPassedInSGPR(const Argument *A) { 435 const Function *F = A->getParent(); 436 437 // Arguments to compute shaders are never a source of divergence. 438 CallingConv::ID CC = F->getCallingConv(); 439 switch (CC) { 440 case CallingConv::AMDGPU_KERNEL: 441 case CallingConv::SPIR_KERNEL: 442 return true; 443 case CallingConv::AMDGPU_VS: 444 case CallingConv::AMDGPU_HS: 445 case CallingConv::AMDGPU_GS: 446 case CallingConv::AMDGPU_PS: 447 case CallingConv::AMDGPU_CS: 448 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 449 // Everything else is in VGPRs. 450 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 451 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 452 default: 453 // TODO: Should calls support inreg for SGPR inputs? 454 return false; 455 } 456 } 457 458 /// 459 /// \returns true if the result of the value could potentially be 460 /// different across workitems in a wavefront. 461 bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const { 462 463 if (const Argument *A = dyn_cast<Argument>(V)) 464 return !isArgPassedInSGPR(A); 465 466 // Loads from the private address space are divergent, because threads 467 // can execute the load instruction with the same inputs and get different 468 // results. 469 // 470 // All other loads are not divergent, because if threads issue loads with the 471 // same arguments, they will always get the same result. 472 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 473 return Load->getPointerAddressSpace() == ST->getAMDGPUAS().PRIVATE_ADDRESS; 474 475 // Atomics are divergent because they are executed sequentially: when an 476 // atomic operation refers to the same address in each thread, then each 477 // thread after the first sees the value written by the previous thread as 478 // original value. 479 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 480 return true; 481 482 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 483 return isIntrinsicSourceOfDivergence(Intrinsic); 484 485 // Assume all function calls are a source of divergence. 486 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 487 return true; 488 489 return false; 490 } 491 492 unsigned AMDGPUTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 493 Type *SubTp) { 494 if (ST->hasVOP3PInsts()) { 495 VectorType *VT = cast<VectorType>(Tp); 496 if (VT->getNumElements() == 2 && 497 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 498 // With op_sel VOP3P instructions freely can access the low half or high 499 // half of a register, so any swizzle is free. 500 501 switch (Kind) { 502 case TTI::SK_Broadcast: 503 case TTI::SK_Reverse: 504 case TTI::SK_PermuteSingleSrc: 505 return 0; 506 default: 507 break; 508 } 509 } 510 } 511 512 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 513 } 514