1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUSubtarget.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/ISDOpcodes.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <limits> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "AMDGPUtti" 56 57 static cl::opt<unsigned> UnrollThresholdPrivate( 58 "amdgpu-unroll-threshold-private", 59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 60 cl::init(2700), cl::Hidden); 61 62 static cl::opt<unsigned> UnrollThresholdLocal( 63 "amdgpu-unroll-threshold-local", 64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 65 cl::init(1000), cl::Hidden); 66 67 static cl::opt<unsigned> UnrollThresholdIf( 68 "amdgpu-unroll-threshold-if", 69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 70 cl::init(150), cl::Hidden); 71 72 static cl::opt<bool> UnrollRuntimeLocal( 73 "amdgpu-unroll-runtime-local", 74 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<bool> UseLegacyDA( 78 "amdgpu-use-legacy-divergence-analysis", 79 cl::desc("Enable legacy divergence analysis for AMDGPU"), 80 cl::init(false), cl::Hidden); 81 82 static cl::opt<unsigned> UnrollMaxBlockToAnalyze( 83 "amdgpu-unroll-max-block-to-analyze", 84 cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"), 85 cl::init(20), cl::Hidden); 86 87 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 88 unsigned Depth = 0) { 89 const Instruction *I = dyn_cast<Instruction>(Cond); 90 if (!I) 91 return false; 92 93 for (const Value *V : I->operand_values()) { 94 if (!L->contains(I)) 95 continue; 96 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 97 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 98 return SubLoop->contains(PHI); })) 99 return true; 100 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 101 return true; 102 } 103 return false; 104 } 105 106 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 107 TTI::UnrollingPreferences &UP) { 108 const Function &F = *L->getHeader()->getParent(); 109 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 110 UP.MaxCount = std::numeric_limits<unsigned>::max(); 111 UP.Partial = true; 112 113 // TODO: Do we want runtime unrolling? 114 115 // Maximum alloca size than can fit registers. Reserve 16 registers. 116 const unsigned MaxAlloca = (256 - 16) * 4; 117 unsigned ThresholdPrivate = UnrollThresholdPrivate; 118 unsigned ThresholdLocal = UnrollThresholdLocal; 119 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 120 for (const BasicBlock *BB : L->getBlocks()) { 121 const DataLayout &DL = BB->getModule()->getDataLayout(); 122 unsigned LocalGEPsSeen = 0; 123 124 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 125 return SubLoop->contains(BB); })) 126 continue; // Block belongs to an inner loop. 127 128 for (const Instruction &I : *BB) { 129 // Unroll a loop which contains an "if" statement whose condition 130 // defined by a PHI belonging to the loop. This may help to eliminate 131 // if region and potentially even PHI itself, saving on both divergence 132 // and registers used for the PHI. 133 // Add a small bonus for each of such "if" statements. 134 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 135 if (UP.Threshold < MaxBoost && Br->isConditional()) { 136 BasicBlock *Succ0 = Br->getSuccessor(0); 137 BasicBlock *Succ1 = Br->getSuccessor(1); 138 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 139 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 140 continue; 141 if (dependsOnLocalPhi(L, Br->getCondition())) { 142 UP.Threshold += UnrollThresholdIf; 143 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 144 << " for loop:\n" 145 << *L << " due to " << *Br << '\n'); 146 if (UP.Threshold >= MaxBoost) 147 return; 148 } 149 } 150 continue; 151 } 152 153 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 154 if (!GEP) 155 continue; 156 157 unsigned AS = GEP->getAddressSpace(); 158 unsigned Threshold = 0; 159 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 160 Threshold = ThresholdPrivate; 161 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 162 Threshold = ThresholdLocal; 163 else 164 continue; 165 166 if (UP.Threshold >= Threshold) 167 continue; 168 169 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 170 const Value *Ptr = GEP->getPointerOperand(); 171 const AllocaInst *Alloca = 172 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 173 if (!Alloca || !Alloca->isStaticAlloca()) 174 continue; 175 Type *Ty = Alloca->getAllocatedType(); 176 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 177 if (AllocaSize > MaxAlloca) 178 continue; 179 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 180 AS == AMDGPUAS::REGION_ADDRESS) { 181 LocalGEPsSeen++; 182 // Inhibit unroll for local memory if we have seen addressing not to 183 // a variable, most likely we will be unable to combine it. 184 // Do not unroll too deep inner loops for local memory to give a chance 185 // to unroll an outer loop for a more important reason. 186 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 187 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 188 !isa<Argument>(GEP->getPointerOperand()))) 189 continue; 190 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 191 << *L << " due to LDS use.\n"); 192 UP.Runtime = UnrollRuntimeLocal; 193 } 194 195 // Check if GEP depends on a value defined by this loop itself. 196 bool HasLoopDef = false; 197 for (const Value *Op : GEP->operands()) { 198 const Instruction *Inst = dyn_cast<Instruction>(Op); 199 if (!Inst || L->isLoopInvariant(Op)) 200 continue; 201 202 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 203 return SubLoop->contains(Inst); })) 204 continue; 205 HasLoopDef = true; 206 break; 207 } 208 if (!HasLoopDef) 209 continue; 210 211 // We want to do whatever we can to limit the number of alloca 212 // instructions that make it through to the code generator. allocas 213 // require us to use indirect addressing, which is slow and prone to 214 // compiler bugs. If this loop does an address calculation on an 215 // alloca ptr, then we want to use a higher than normal loop unroll 216 // threshold. This will give SROA a better chance to eliminate these 217 // allocas. 218 // 219 // We also want to have more unrolling for local memory to let ds 220 // instructions with different offsets combine. 221 // 222 // Don't use the maximum allowed value here as it will make some 223 // programs way too big. 224 UP.Threshold = Threshold; 225 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 226 << " for loop:\n" 227 << *L << " due to " << *GEP << '\n'); 228 if (UP.Threshold >= MaxBoost) 229 return; 230 } 231 232 // If we got a GEP in a small BB from inner loop then increase max trip 233 // count to analyze for better estimation cost in unroll 234 if (L->empty() && BB->size() < UnrollMaxBlockToAnalyze) 235 UP.MaxIterationsCountToAnalyze = 32; 236 } 237 } 238 239 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 240 // The concept of vector registers doesn't really exist. Some packed vector 241 // operations operate on the normal 32-bit registers. 242 return MaxVGPRs; 243 } 244 245 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 246 // This is really the number of registers to fill when vectorizing / 247 // interleaving loops, so we lie to avoid trying to use all registers. 248 return getHardwareNumberOfRegisters(Vec) >> 3; 249 } 250 251 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const { 252 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 253 const TargetRegisterClass *RC = TRI->getRegClass(RCID); 254 unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32; 255 return getHardwareNumberOfRegisters(false) / NumVGPRs; 256 } 257 258 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { 259 return 32; 260 } 261 262 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 263 return 32; 264 } 265 266 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 267 unsigned ChainSizeInBytes, 268 VectorType *VecTy) const { 269 unsigned VecRegBitWidth = VF * LoadSize; 270 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 271 // TODO: Support element-size less than 32bit? 272 return 128 / LoadSize; 273 274 return VF; 275 } 276 277 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 278 unsigned ChainSizeInBytes, 279 VectorType *VecTy) const { 280 unsigned VecRegBitWidth = VF * StoreSize; 281 if (VecRegBitWidth > 128) 282 return 128 / StoreSize; 283 284 return VF; 285 } 286 287 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 288 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 289 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 290 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 291 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 292 return 512; 293 } 294 295 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 296 return 8 * ST->getMaxPrivateElementSize(); 297 298 // Common to flat, global, local and region. Assume for unknown addrspace. 299 return 128; 300 } 301 302 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 303 Align Alignment, 304 unsigned AddrSpace) const { 305 // We allow vectorization of flat stores, even though we may need to decompose 306 // them later if they may access private memory. We don't have enough context 307 // here, and legalization can handle it. 308 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 309 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 310 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 311 } 312 return true; 313 } 314 315 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 316 Align Alignment, 317 unsigned AddrSpace) const { 318 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 319 } 320 321 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 322 Align Alignment, 323 unsigned AddrSpace) const { 324 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 325 } 326 327 // FIXME: Really we would like to issue multiple 128-bit loads and stores per 328 // iteration. Should we report a larger size and let it legalize? 329 // 330 // FIXME: Should we use narrower types for local/region, or account for when 331 // unaligned access is legal? 332 // 333 // FIXME: This could use fine tuning and microbenchmarks. 334 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, 335 unsigned SrcAddrSpace, 336 unsigned DestAddrSpace, 337 unsigned SrcAlign, 338 unsigned DestAlign) const { 339 unsigned MinAlign = std::min(SrcAlign, DestAlign); 340 341 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 342 // hardware into byte accesses. If you assume all alignments are equally 343 // probable, it's more efficient on average to use short accesses for this 344 // case. 345 if (MinAlign == 2) 346 return Type::getInt16Ty(Context); 347 348 // Not all subtargets have 128-bit DS instructions, and we currently don't 349 // form them by default. 350 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 351 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 352 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 353 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 354 return FixedVectorType::get(Type::getInt32Ty(Context), 2); 355 } 356 357 // Global memory works best with 16-byte accesses. Private memory will also 358 // hit this, although they'll be decomposed. 359 return FixedVectorType::get(Type::getInt32Ty(Context), 4); 360 } 361 362 void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 363 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 364 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 365 unsigned SrcAlign, unsigned DestAlign) const { 366 assert(RemainingBytes < 16); 367 368 unsigned MinAlign = std::min(SrcAlign, DestAlign); 369 370 if (MinAlign != 2) { 371 Type *I64Ty = Type::getInt64Ty(Context); 372 while (RemainingBytes >= 8) { 373 OpsOut.push_back(I64Ty); 374 RemainingBytes -= 8; 375 } 376 377 Type *I32Ty = Type::getInt32Ty(Context); 378 while (RemainingBytes >= 4) { 379 OpsOut.push_back(I32Ty); 380 RemainingBytes -= 4; 381 } 382 } 383 384 Type *I16Ty = Type::getInt16Ty(Context); 385 while (RemainingBytes >= 2) { 386 OpsOut.push_back(I16Ty); 387 RemainingBytes -= 2; 388 } 389 390 Type *I8Ty = Type::getInt8Ty(Context); 391 while (RemainingBytes) { 392 OpsOut.push_back(I8Ty); 393 --RemainingBytes; 394 } 395 } 396 397 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 398 // Disable unrolling if the loop is not vectorized. 399 // TODO: Enable this again. 400 if (VF == 1) 401 return 1; 402 403 return 8; 404 } 405 406 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 407 MemIntrinsicInfo &Info) const { 408 switch (Inst->getIntrinsicID()) { 409 case Intrinsic::amdgcn_atomic_inc: 410 case Intrinsic::amdgcn_atomic_dec: 411 case Intrinsic::amdgcn_ds_ordered_add: 412 case Intrinsic::amdgcn_ds_ordered_swap: 413 case Intrinsic::amdgcn_ds_fadd: 414 case Intrinsic::amdgcn_ds_fmin: 415 case Intrinsic::amdgcn_ds_fmax: { 416 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 417 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 418 if (!Ordering || !Volatile) 419 return false; // Invalid. 420 421 unsigned OrderingVal = Ordering->getZExtValue(); 422 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 423 return false; 424 425 Info.PtrVal = Inst->getArgOperand(0); 426 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 427 Info.ReadMem = true; 428 Info.WriteMem = true; 429 Info.IsVolatile = !Volatile->isNullValue(); 430 return true; 431 } 432 default: 433 return false; 434 } 435 } 436 437 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 438 TTI::TargetCostKind CostKind, 439 TTI::OperandValueKind Opd1Info, 440 TTI::OperandValueKind Opd2Info, 441 TTI::OperandValueProperties Opd1PropInfo, 442 TTI::OperandValueProperties Opd2PropInfo, 443 ArrayRef<const Value *> Args, 444 const Instruction *CxtI) { 445 EVT OrigTy = TLI->getValueType(DL, Ty); 446 if (!OrigTy.isSimple()) { 447 // FIXME: We're having to query the throughput cost so that the basic 448 // implementation tries to generate legalize and scalarization costs. Maybe 449 // we could hoist the scalarization code here? 450 return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput, 451 Opd1Info, Opd2Info, 452 Opd1PropInfo, Opd2PropInfo); 453 } 454 455 // Legalize the type. 456 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 457 int ISD = TLI->InstructionOpcodeToISD(Opcode); 458 459 // Because we don't have any legal vector operations, but the legal types, we 460 // need to account for split vectors. 461 unsigned NElts = LT.second.isVector() ? 462 LT.second.getVectorNumElements() : 1; 463 464 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 465 466 switch (ISD) { 467 case ISD::SHL: 468 case ISD::SRL: 469 case ISD::SRA: 470 if (SLT == MVT::i64) 471 return get64BitInstrCost() * LT.first * NElts; 472 473 if (ST->has16BitInsts() && SLT == MVT::i16) 474 NElts = (NElts + 1) / 2; 475 476 // i32 477 return getFullRateInstrCost() * LT.first * NElts; 478 case ISD::ADD: 479 case ISD::SUB: 480 case ISD::AND: 481 case ISD::OR: 482 case ISD::XOR: 483 if (SLT == MVT::i64) { 484 // and, or and xor are typically split into 2 VALU instructions. 485 return 2 * getFullRateInstrCost() * LT.first * NElts; 486 } 487 488 if (ST->has16BitInsts() && SLT == MVT::i16) 489 NElts = (NElts + 1) / 2; 490 491 return LT.first * NElts * getFullRateInstrCost(); 492 case ISD::MUL: { 493 const int QuarterRateCost = getQuarterRateInstrCost(); 494 if (SLT == MVT::i64) { 495 const int FullRateCost = getFullRateInstrCost(); 496 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 497 } 498 499 if (ST->has16BitInsts() && SLT == MVT::i16) 500 NElts = (NElts + 1) / 2; 501 502 // i32 503 return QuarterRateCost * NElts * LT.first; 504 } 505 case ISD::FADD: 506 case ISD::FSUB: 507 case ISD::FMUL: 508 if (SLT == MVT::f64) 509 return LT.first * NElts * get64BitInstrCost(); 510 511 if (ST->has16BitInsts() && SLT == MVT::f16) 512 NElts = (NElts + 1) / 2; 513 514 if (SLT == MVT::f32 || SLT == MVT::f16) 515 return LT.first * NElts * getFullRateInstrCost(); 516 break; 517 case ISD::FDIV: 518 case ISD::FREM: 519 // FIXME: frem should be handled separately. The fdiv in it is most of it, 520 // but the current lowering is also not entirely correct. 521 if (SLT == MVT::f64) { 522 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 523 // Add cost of workaround. 524 if (!ST->hasUsableDivScaleConditionOutput()) 525 Cost += 3 * getFullRateInstrCost(); 526 527 return LT.first * Cost * NElts; 528 } 529 530 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 531 // TODO: This is more complicated, unsafe flags etc. 532 if ((SLT == MVT::f32 && !HasFP32Denormals) || 533 (SLT == MVT::f16 && ST->has16BitInsts())) { 534 return LT.first * getQuarterRateInstrCost() * NElts; 535 } 536 } 537 538 if (SLT == MVT::f16 && ST->has16BitInsts()) { 539 // 2 x v_cvt_f32_f16 540 // f32 rcp 541 // f32 fmul 542 // v_cvt_f16_f32 543 // f16 div_fixup 544 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 545 return LT.first * Cost * NElts; 546 } 547 548 if (SLT == MVT::f32 || SLT == MVT::f16) { 549 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 550 551 if (!HasFP32Denormals) { 552 // FP mode switches. 553 Cost += 2 * getFullRateInstrCost(); 554 } 555 556 return LT.first * NElts * Cost; 557 } 558 break; 559 case ISD::FNEG: 560 // Use the backend' estimation. If fneg is not free each element will cost 561 // one additional instruction. 562 return TLI->isFNegFree(SLT) ? 0 : NElts; 563 default: 564 break; 565 } 566 567 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 568 Opd2Info, 569 Opd1PropInfo, Opd2PropInfo); 570 } 571 572 // Return true if there's a potential benefit from using v2f16 instructions for 573 // an intrinsic, even if it requires nontrivial legalization. 574 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 575 switch (ID) { 576 case Intrinsic::fma: // TODO: fmuladd 577 // There's a small benefit to using vector ops in the legalized code. 578 case Intrinsic::round: 579 return true; 580 default: 581 return false; 582 } 583 } 584 585 int GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 586 TTI::TargetCostKind CostKind) { 587 if (ICA.getID() == Intrinsic::fabs) 588 return 0; 589 590 if (!intrinsicHasPackedVectorBenefit(ICA.getID())) 591 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 592 593 Type *RetTy = ICA.getReturnType(); 594 EVT OrigTy = TLI->getValueType(DL, RetTy); 595 if (!OrigTy.isSimple()) { 596 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 597 } 598 599 // Legalize the type. 600 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 601 602 unsigned NElts = LT.second.isVector() ? 603 LT.second.getVectorNumElements() : 1; 604 605 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 606 607 if (SLT == MVT::f64) 608 return LT.first * NElts * get64BitInstrCost(); 609 610 if (ST->has16BitInsts() && SLT == MVT::f16) 611 NElts = (NElts + 1) / 2; 612 613 // TODO: Get more refined intrinsic costs? 614 unsigned InstRate = getQuarterRateInstrCost(); 615 if (ICA.getID() == Intrinsic::fma) { 616 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost() 617 : getQuarterRateInstrCost(); 618 } 619 620 return LT.first * NElts * InstRate; 621 } 622 623 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode, 624 TTI::TargetCostKind CostKind) { 625 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 626 return Opcode == Instruction::PHI ? 0 : 1; 627 628 // XXX - For some reason this isn't called for switch. 629 switch (Opcode) { 630 case Instruction::Br: 631 case Instruction::Ret: 632 return 10; 633 default: 634 return BaseT::getCFInstrCost(Opcode, CostKind); 635 } 636 } 637 638 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 639 bool IsPairwise, 640 TTI::TargetCostKind CostKind) { 641 EVT OrigTy = TLI->getValueType(DL, Ty); 642 643 // Computes cost on targets that have packed math instructions(which support 644 // 16-bit types only). 645 if (IsPairwise || 646 !ST->hasVOP3PInsts() || 647 OrigTy.getScalarSizeInBits() != 16) 648 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind); 649 650 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 651 return LT.first * getFullRateInstrCost(); 652 } 653 654 int GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 655 bool IsPairwise, bool IsUnsigned, 656 TTI::TargetCostKind CostKind) { 657 EVT OrigTy = TLI->getValueType(DL, Ty); 658 659 // Computes cost on targets that have packed math instructions(which support 660 // 16-bit types only). 661 if (IsPairwise || 662 !ST->hasVOP3PInsts() || 663 OrigTy.getScalarSizeInBits() != 16) 664 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned, 665 CostKind); 666 667 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 668 return LT.first * getHalfRateInstrCost(); 669 } 670 671 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 672 unsigned Index) { 673 switch (Opcode) { 674 case Instruction::ExtractElement: 675 case Instruction::InsertElement: { 676 unsigned EltSize 677 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 678 if (EltSize < 32) { 679 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 680 return 0; 681 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 682 } 683 684 // Extracts are just reads of a subregister, so are free. Inserts are 685 // considered free because we don't want to have any cost for scalarizing 686 // operations, and we don't have to copy into a different register class. 687 688 // Dynamic indexing isn't free and is best avoided. 689 return Index == ~0u ? 2 : 0; 690 } 691 default: 692 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 693 } 694 } 695 696 static bool isArgPassedInSGPR(const Argument *A) { 697 const Function *F = A->getParent(); 698 699 // Arguments to compute shaders are never a source of divergence. 700 CallingConv::ID CC = F->getCallingConv(); 701 switch (CC) { 702 case CallingConv::AMDGPU_KERNEL: 703 case CallingConv::SPIR_KERNEL: 704 return true; 705 case CallingConv::AMDGPU_VS: 706 case CallingConv::AMDGPU_LS: 707 case CallingConv::AMDGPU_HS: 708 case CallingConv::AMDGPU_ES: 709 case CallingConv::AMDGPU_GS: 710 case CallingConv::AMDGPU_PS: 711 case CallingConv::AMDGPU_CS: 712 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 713 // Everything else is in VGPRs. 714 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 715 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 716 default: 717 // TODO: Should calls support inreg for SGPR inputs? 718 return false; 719 } 720 } 721 722 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 723 /// this is analyzing the collective result of all output registers. Otherwise, 724 /// this is only querying a specific result index if this returns multiple 725 /// registers in a struct. 726 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 727 const CallInst *CI, ArrayRef<unsigned> Indices) const { 728 // TODO: Handle complex extract indices 729 if (Indices.size() > 1) 730 return true; 731 732 const DataLayout &DL = CI->getModule()->getDataLayout(); 733 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 734 TargetLowering::AsmOperandInfoVector TargetConstraints = 735 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 736 737 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 738 739 int OutputIdx = 0; 740 for (auto &TC : TargetConstraints) { 741 if (TC.Type != InlineAsm::isOutput) 742 continue; 743 744 // Skip outputs we don't care about. 745 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 746 continue; 747 748 TLI->ComputeConstraintToUse(TC, SDValue()); 749 750 Register AssignedReg; 751 const TargetRegisterClass *RC; 752 std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( 753 TRI, TC.ConstraintCode, TC.ConstraintVT); 754 if (AssignedReg) { 755 // FIXME: This is a workaround for getRegForInlineAsmConstraint 756 // returning VS_32 757 RC = TRI->getPhysRegClass(AssignedReg); 758 } 759 760 // For AGPR constraints null is returned on subtargets without AGPRs, so 761 // assume divergent for null. 762 if (!RC || !TRI->isSGPRClass(RC)) 763 return true; 764 } 765 766 return false; 767 } 768 769 /// \returns true if the new GPU divergence analysis is enabled. 770 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 771 return !UseLegacyDA; 772 } 773 774 /// \returns true if the result of the value could potentially be 775 /// different across workitems in a wavefront. 776 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 777 if (const Argument *A = dyn_cast<Argument>(V)) 778 return !isArgPassedInSGPR(A); 779 780 // Loads from the private and flat address spaces are divergent, because 781 // threads can execute the load instruction with the same inputs and get 782 // different results. 783 // 784 // All other loads are not divergent, because if threads issue loads with the 785 // same arguments, they will always get the same result. 786 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 787 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 788 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 789 790 // Atomics are divergent because they are executed sequentially: when an 791 // atomic operation refers to the same address in each thread, then each 792 // thread after the first sees the value written by the previous thread as 793 // original value. 794 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 795 return true; 796 797 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 798 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 799 800 // Assume all function calls are a source of divergence. 801 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 802 if (CI->isInlineAsm()) 803 return isInlineAsmSourceOfDivergence(CI); 804 return true; 805 } 806 807 // Assume all function calls are a source of divergence. 808 if (isa<InvokeInst>(V)) 809 return true; 810 811 return false; 812 } 813 814 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 815 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 816 switch (Intrinsic->getIntrinsicID()) { 817 default: 818 return false; 819 case Intrinsic::amdgcn_readfirstlane: 820 case Intrinsic::amdgcn_readlane: 821 case Intrinsic::amdgcn_icmp: 822 case Intrinsic::amdgcn_fcmp: 823 case Intrinsic::amdgcn_ballot: 824 case Intrinsic::amdgcn_if_break: 825 return true; 826 } 827 } 828 829 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 830 if (CI->isInlineAsm()) 831 return !isInlineAsmSourceOfDivergence(CI); 832 return false; 833 } 834 835 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 836 if (!ExtValue) 837 return false; 838 839 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 840 if (!CI) 841 return false; 842 843 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 844 switch (Intrinsic->getIntrinsicID()) { 845 default: 846 return false; 847 case Intrinsic::amdgcn_if: 848 case Intrinsic::amdgcn_else: { 849 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 850 return Indices.size() == 1 && Indices[0] == 1; 851 } 852 } 853 } 854 855 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 856 // divergent for the overall struct return. We need to override it in the 857 // case we're extracting an SGPR component here. 858 if (CI->isInlineAsm()) 859 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 860 861 return false; 862 } 863 864 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 865 Intrinsic::ID IID) const { 866 switch (IID) { 867 case Intrinsic::amdgcn_atomic_inc: 868 case Intrinsic::amdgcn_atomic_dec: 869 case Intrinsic::amdgcn_ds_fadd: 870 case Intrinsic::amdgcn_ds_fmin: 871 case Intrinsic::amdgcn_ds_fmax: 872 case Intrinsic::amdgcn_is_shared: 873 case Intrinsic::amdgcn_is_private: 874 OpIndexes.push_back(0); 875 return true; 876 default: 877 return false; 878 } 879 } 880 881 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 882 Value *OldV, 883 Value *NewV) const { 884 auto IntrID = II->getIntrinsicID(); 885 switch (IntrID) { 886 case Intrinsic::amdgcn_atomic_inc: 887 case Intrinsic::amdgcn_atomic_dec: 888 case Intrinsic::amdgcn_ds_fadd: 889 case Intrinsic::amdgcn_ds_fmin: 890 case Intrinsic::amdgcn_ds_fmax: { 891 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 892 if (!IsVolatile->isZero()) 893 return nullptr; 894 Module *M = II->getParent()->getParent()->getParent(); 895 Type *DestTy = II->getType(); 896 Type *SrcTy = NewV->getType(); 897 Function *NewDecl = 898 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 899 II->setArgOperand(0, NewV); 900 II->setCalledFunction(NewDecl); 901 return II; 902 } 903 case Intrinsic::amdgcn_is_shared: 904 case Intrinsic::amdgcn_is_private: { 905 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 906 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 907 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 908 LLVMContext &Ctx = NewV->getType()->getContext(); 909 ConstantInt *NewVal = (TrueAS == NewAS) ? 910 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 911 return NewVal; 912 } 913 case Intrinsic::ptrmask: { 914 unsigned OldAS = OldV->getType()->getPointerAddressSpace(); 915 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 916 Value *MaskOp = II->getArgOperand(1); 917 Type *MaskTy = MaskOp->getType(); 918 919 bool DoTruncate = false; 920 if (!getTLI()->isNoopAddrSpaceCast(OldAS, NewAS)) { 921 // All valid 64-bit to 32-bit casts work by chopping off the high 922 // bits. Any masking only clearing the low bits will also apply in the new 923 // address space. 924 if (DL.getPointerSizeInBits(OldAS) != 64 || 925 DL.getPointerSizeInBits(NewAS) != 32) 926 return nullptr; 927 928 // TODO: Do we need to thread more context in here? 929 KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II); 930 if (Known.countMinLeadingOnes() < 32) 931 return nullptr; 932 933 DoTruncate = true; 934 } 935 936 IRBuilder<> B(II); 937 if (DoTruncate) { 938 MaskTy = B.getInt32Ty(); 939 MaskOp = B.CreateTrunc(MaskOp, MaskTy); 940 } 941 942 return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy}, 943 {NewV, MaskOp}); 944 } 945 default: 946 return nullptr; 947 } 948 } 949 950 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT, 951 int Index, VectorType *SubTp) { 952 if (ST->hasVOP3PInsts()) { 953 if (cast<FixedVectorType>(VT)->getNumElements() == 2 && 954 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 955 // With op_sel VOP3P instructions freely can access the low half or high 956 // half of a register, so any swizzle is free. 957 958 switch (Kind) { 959 case TTI::SK_Broadcast: 960 case TTI::SK_Reverse: 961 case TTI::SK_PermuteSingleSrc: 962 return 0; 963 default: 964 break; 965 } 966 } 967 } 968 969 return BaseT::getShuffleCost(Kind, VT, Index, SubTp); 970 } 971 972 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 973 const Function *Callee) const { 974 const TargetMachine &TM = getTLI()->getTargetMachine(); 975 const GCNSubtarget *CallerST 976 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 977 const GCNSubtarget *CalleeST 978 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 979 980 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 981 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 982 983 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 984 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 985 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 986 return false; 987 988 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 989 // no way to support merge for backend defined attributes. 990 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); 991 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); 992 return CallerMode.isInlineCompatible(CalleeMode); 993 } 994 995 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 996 TTI::UnrollingPreferences &UP) { 997 CommonTTI.getUnrollingPreferences(L, SE, UP); 998 } 999 1000 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 1001 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 1002 } 1003 1004 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 1005 return getHardwareNumberOfRegisters(Vec); 1006 } 1007 1008 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { 1009 return 32; 1010 } 1011 1012 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 1013 return 32; 1014 } 1015 1016 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 1017 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 1018 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 1019 return 128; 1020 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1021 AddrSpace == AMDGPUAS::REGION_ADDRESS) 1022 return 64; 1023 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 1024 return 32; 1025 1026 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 1027 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 1028 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 1029 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 1030 return 128; 1031 llvm_unreachable("unhandled address space"); 1032 } 1033 1034 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 1035 Align Alignment, 1036 unsigned AddrSpace) const { 1037 // We allow vectorization of flat stores, even though we may need to decompose 1038 // them later if they may access private memory. We don't have enough context 1039 // here, and legalization can handle it. 1040 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 1041 } 1042 1043 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 1044 Align Alignment, 1045 unsigned AddrSpace) const { 1046 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1047 } 1048 1049 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 1050 Align Alignment, 1051 unsigned AddrSpace) const { 1052 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1053 } 1054 1055 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1056 // Disable unrolling if the loop is not vectorized. 1057 // TODO: Enable this again. 1058 if (VF == 1) 1059 return 1; 1060 1061 return 8; 1062 } 1063 1064 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode, 1065 TTI::TargetCostKind CostKind) { 1066 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 1067 return Opcode == Instruction::PHI ? 0 : 1; 1068 1069 // XXX - For some reason this isn't called for switch. 1070 switch (Opcode) { 1071 case Instruction::Br: 1072 case Instruction::Ret: 1073 return 10; 1074 default: 1075 return BaseT::getCFInstrCost(Opcode, CostKind); 1076 } 1077 } 1078 1079 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 1080 unsigned Index) { 1081 switch (Opcode) { 1082 case Instruction::ExtractElement: 1083 case Instruction::InsertElement: { 1084 unsigned EltSize 1085 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 1086 if (EltSize < 32) { 1087 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1088 } 1089 1090 // Extracts are just reads of a subregister, so are free. Inserts are 1091 // considered free because we don't want to have any cost for scalarizing 1092 // operations, and we don't have to copy into a different register class. 1093 1094 // Dynamic indexing isn't free and is best avoided. 1095 return Index == ~0u ? 2 : 0; 1096 } 1097 default: 1098 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1099 } 1100 } 1101 1102 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1103 TTI::UnrollingPreferences &UP) { 1104 CommonTTI.getUnrollingPreferences(L, SE, UP); 1105 } 1106