1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // \file 11 // This file implements a TargetTransformInfo analysis pass specific to the 12 // AMDGPU target machine. It uses the target's detailed information to provide 13 // more precise answers to certain TTI queries, while letting the target 14 // independent and default TTI implementations handle the rest. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "AMDGPUTargetTransformInfo.h" 19 #include "AMDGPUSubtarget.h" 20 #include "Utils/AMDGPUBaseInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/ISDOpcodes.h" 26 #include "llvm/CodeGen/MachineValueType.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/MC/SubtargetFeature.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <limits> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "AMDGPUtti" 57 58 static cl::opt<unsigned> UnrollThresholdPrivate( 59 "amdgpu-unroll-threshold-private", 60 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 61 cl::init(2500), cl::Hidden); 62 63 static cl::opt<unsigned> UnrollThresholdLocal( 64 "amdgpu-unroll-threshold-local", 65 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 66 cl::init(1000), cl::Hidden); 67 68 static cl::opt<unsigned> UnrollThresholdIf( 69 "amdgpu-unroll-threshold-if", 70 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 71 cl::init(150), cl::Hidden); 72 73 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 74 unsigned Depth = 0) { 75 const Instruction *I = dyn_cast<Instruction>(Cond); 76 if (!I) 77 return false; 78 79 for (const Value *V : I->operand_values()) { 80 if (!L->contains(I)) 81 continue; 82 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 83 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 84 return SubLoop->contains(PHI); })) 85 return true; 86 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 87 return true; 88 } 89 return false; 90 } 91 92 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 93 TTI::UnrollingPreferences &UP) { 94 UP.Threshold = 300; // Twice the default. 95 UP.MaxCount = std::numeric_limits<unsigned>::max(); 96 UP.Partial = true; 97 98 // TODO: Do we want runtime unrolling? 99 100 // Maximum alloca size than can fit registers. Reserve 16 registers. 101 const unsigned MaxAlloca = (256 - 16) * 4; 102 unsigned ThresholdPrivate = UnrollThresholdPrivate; 103 unsigned ThresholdLocal = UnrollThresholdLocal; 104 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 105 AMDGPUAS ASST = ST->getAMDGPUAS(); 106 for (const BasicBlock *BB : L->getBlocks()) { 107 const DataLayout &DL = BB->getModule()->getDataLayout(); 108 unsigned LocalGEPsSeen = 0; 109 110 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 111 return SubLoop->contains(BB); })) 112 continue; // Block belongs to an inner loop. 113 114 for (const Instruction &I : *BB) { 115 // Unroll a loop which contains an "if" statement whose condition 116 // defined by a PHI belonging to the loop. This may help to eliminate 117 // if region and potentially even PHI itself, saving on both divergence 118 // and registers used for the PHI. 119 // Add a small bonus for each of such "if" statements. 120 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 121 if (UP.Threshold < MaxBoost && Br->isConditional()) { 122 if (L->isLoopExiting(Br->getSuccessor(0)) || 123 L->isLoopExiting(Br->getSuccessor(1))) 124 continue; 125 if (dependsOnLocalPhi(L, Br->getCondition())) { 126 UP.Threshold += UnrollThresholdIf; 127 DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 128 << " for loop:\n" << *L << " due to " << *Br << '\n'); 129 if (UP.Threshold >= MaxBoost) 130 return; 131 } 132 } 133 continue; 134 } 135 136 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 137 if (!GEP) 138 continue; 139 140 unsigned AS = GEP->getAddressSpace(); 141 unsigned Threshold = 0; 142 if (AS == ASST.PRIVATE_ADDRESS) 143 Threshold = ThresholdPrivate; 144 else if (AS == ASST.LOCAL_ADDRESS) 145 Threshold = ThresholdLocal; 146 else 147 continue; 148 149 if (UP.Threshold >= Threshold) 150 continue; 151 152 if (AS == ASST.PRIVATE_ADDRESS) { 153 const Value *Ptr = GEP->getPointerOperand(); 154 const AllocaInst *Alloca = 155 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 156 if (!Alloca || !Alloca->isStaticAlloca()) 157 continue; 158 Type *Ty = Alloca->getAllocatedType(); 159 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 160 if (AllocaSize > MaxAlloca) 161 continue; 162 } else if (AS == ASST.LOCAL_ADDRESS) { 163 LocalGEPsSeen++; 164 // Inhibit unroll for local memory if we have seen addressing not to 165 // a variable, most likely we will be unable to combine it. 166 // Do not unroll too deep inner loops for local memory to give a chance 167 // to unroll an outer loop for a more important reason. 168 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 169 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 170 !isa<Argument>(GEP->getPointerOperand()))) 171 continue; 172 } 173 174 // Check if GEP depends on a value defined by this loop itself. 175 bool HasLoopDef = false; 176 for (const Value *Op : GEP->operands()) { 177 const Instruction *Inst = dyn_cast<Instruction>(Op); 178 if (!Inst || L->isLoopInvariant(Op)) 179 continue; 180 181 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 182 return SubLoop->contains(Inst); })) 183 continue; 184 HasLoopDef = true; 185 break; 186 } 187 if (!HasLoopDef) 188 continue; 189 190 // We want to do whatever we can to limit the number of alloca 191 // instructions that make it through to the code generator. allocas 192 // require us to use indirect addressing, which is slow and prone to 193 // compiler bugs. If this loop does an address calculation on an 194 // alloca ptr, then we want to use a higher than normal loop unroll 195 // threshold. This will give SROA a better chance to eliminate these 196 // allocas. 197 // 198 // We also want to have more unrolling for local memory to let ds 199 // instructions with different offsets combine. 200 // 201 // Don't use the maximum allowed value here as it will make some 202 // programs way too big. 203 UP.Threshold = Threshold; 204 DEBUG(dbgs() << "Set unroll threshold " << Threshold << " for loop:\n" 205 << *L << " due to " << *GEP << '\n'); 206 if (UP.Threshold >= MaxBoost) 207 return; 208 } 209 } 210 } 211 212 unsigned AMDGPUTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 213 // The concept of vector registers doesn't really exist. Some packed vector 214 // operations operate on the normal 32-bit registers. 215 216 // Number of VGPRs on SI. 217 if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) 218 return 256; 219 220 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 221 } 222 223 unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) const { 224 // This is really the number of registers to fill when vectorizing / 225 // interleaving loops, so we lie to avoid trying to use all registers. 226 return getHardwareNumberOfRegisters(Vec) >> 3; 227 } 228 229 unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) const { 230 return 32; 231 } 232 233 unsigned AMDGPUTTIImpl::getMinVectorRegisterBitWidth() const { 234 return 32; 235 } 236 237 unsigned AMDGPUTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 238 unsigned ChainSizeInBytes, 239 VectorType *VecTy) const { 240 unsigned VecRegBitWidth = VF * LoadSize; 241 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 242 // TODO: Support element-size less than 32bit? 243 return 128 / LoadSize; 244 245 return VF; 246 } 247 248 unsigned AMDGPUTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 249 unsigned ChainSizeInBytes, 250 VectorType *VecTy) const { 251 unsigned VecRegBitWidth = VF * StoreSize; 252 if (VecRegBitWidth > 128) 253 return 128 / StoreSize; 254 255 return VF; 256 } 257 258 unsigned AMDGPUTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 259 AMDGPUAS AS = ST->getAMDGPUAS(); 260 if (AddrSpace == AS.GLOBAL_ADDRESS || 261 AddrSpace == AS.CONSTANT_ADDRESS || 262 AddrSpace == AS.CONSTANT_ADDRESS_32BIT) { 263 if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) 264 return 128; 265 return 512; 266 } 267 268 if (AddrSpace == AS.FLAT_ADDRESS) 269 return 128; 270 if (AddrSpace == AS.LOCAL_ADDRESS || 271 AddrSpace == AS.REGION_ADDRESS) 272 return 64; 273 if (AddrSpace == AS.PRIVATE_ADDRESS) 274 return 8 * ST->getMaxPrivateElementSize(); 275 276 if (ST->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS && 277 (AddrSpace == AS.PARAM_D_ADDRESS || 278 AddrSpace == AS.PARAM_I_ADDRESS || 279 (AddrSpace >= AS.CONSTANT_BUFFER_0 && 280 AddrSpace <= AS.CONSTANT_BUFFER_15))) 281 return 128; 282 llvm_unreachable("unhandled address space"); 283 } 284 285 bool AMDGPUTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 286 unsigned Alignment, 287 unsigned AddrSpace) const { 288 // We allow vectorization of flat stores, even though we may need to decompose 289 // them later if they may access private memory. We don't have enough context 290 // here, and legalization can handle it. 291 if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS) { 292 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 293 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 294 } 295 return true; 296 } 297 298 bool AMDGPUTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 299 unsigned Alignment, 300 unsigned AddrSpace) const { 301 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 302 } 303 304 bool AMDGPUTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 305 unsigned Alignment, 306 unsigned AddrSpace) const { 307 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 308 } 309 310 unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) { 311 // Disable unrolling if the loop is not vectorized. 312 // TODO: Enable this again. 313 if (VF == 1) 314 return 1; 315 316 return 8; 317 } 318 319 bool AMDGPUTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 320 MemIntrinsicInfo &Info) const { 321 switch (Inst->getIntrinsicID()) { 322 case Intrinsic::amdgcn_atomic_inc: 323 case Intrinsic::amdgcn_atomic_dec: 324 case Intrinsic::amdgcn_ds_fadd: 325 case Intrinsic::amdgcn_ds_fmin: 326 case Intrinsic::amdgcn_ds_fmax: { 327 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 328 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 329 if (!Ordering || !Volatile) 330 return false; // Invalid. 331 332 unsigned OrderingVal = Ordering->getZExtValue(); 333 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 334 return false; 335 336 Info.PtrVal = Inst->getArgOperand(0); 337 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 338 Info.ReadMem = true; 339 Info.WriteMem = true; 340 Info.IsVolatile = !Volatile->isNullValue(); 341 return true; 342 } 343 default: 344 return false; 345 } 346 } 347 348 int AMDGPUTTIImpl::getArithmeticInstrCost( 349 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, 350 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 351 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) { 352 EVT OrigTy = TLI->getValueType(DL, Ty); 353 if (!OrigTy.isSimple()) { 354 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 355 Opd1PropInfo, Opd2PropInfo); 356 } 357 358 // Legalize the type. 359 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 360 int ISD = TLI->InstructionOpcodeToISD(Opcode); 361 362 // Because we don't have any legal vector operations, but the legal types, we 363 // need to account for split vectors. 364 unsigned NElts = LT.second.isVector() ? 365 LT.second.getVectorNumElements() : 1; 366 367 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 368 369 switch (ISD) { 370 case ISD::SHL: 371 case ISD::SRL: 372 case ISD::SRA: 373 if (SLT == MVT::i64) 374 return get64BitInstrCost() * LT.first * NElts; 375 376 // i32 377 return getFullRateInstrCost() * LT.first * NElts; 378 case ISD::ADD: 379 case ISD::SUB: 380 case ISD::AND: 381 case ISD::OR: 382 case ISD::XOR: 383 if (SLT == MVT::i64){ 384 // and, or and xor are typically split into 2 VALU instructions. 385 return 2 * getFullRateInstrCost() * LT.first * NElts; 386 } 387 388 return LT.first * NElts * getFullRateInstrCost(); 389 case ISD::MUL: { 390 const int QuarterRateCost = getQuarterRateInstrCost(); 391 if (SLT == MVT::i64) { 392 const int FullRateCost = getFullRateInstrCost(); 393 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 394 } 395 396 // i32 397 return QuarterRateCost * NElts * LT.first; 398 } 399 case ISD::FADD: 400 case ISD::FSUB: 401 case ISD::FMUL: 402 if (SLT == MVT::f64) 403 return LT.first * NElts * get64BitInstrCost(); 404 405 if (SLT == MVT::f32 || SLT == MVT::f16) 406 return LT.first * NElts * getFullRateInstrCost(); 407 break; 408 case ISD::FDIV: 409 case ISD::FREM: 410 // FIXME: frem should be handled separately. The fdiv in it is most of it, 411 // but the current lowering is also not entirely correct. 412 if (SLT == MVT::f64) { 413 int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost(); 414 // Add cost of workaround. 415 if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) 416 Cost += 3 * getFullRateInstrCost(); 417 418 return LT.first * Cost * NElts; 419 } 420 421 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 422 // TODO: This is more complicated, unsafe flags etc. 423 if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) || 424 (SLT == MVT::f16 && ST->has16BitInsts())) { 425 return LT.first * getQuarterRateInstrCost() * NElts; 426 } 427 } 428 429 if (SLT == MVT::f16 && ST->has16BitInsts()) { 430 // 2 x v_cvt_f32_f16 431 // f32 rcp 432 // f32 fmul 433 // v_cvt_f16_f32 434 // f16 div_fixup 435 int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(); 436 return LT.first * Cost * NElts; 437 } 438 439 if (SLT == MVT::f32 || SLT == MVT::f16) { 440 int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost(); 441 442 if (!ST->hasFP32Denormals()) { 443 // FP mode switches. 444 Cost += 2 * getFullRateInstrCost(); 445 } 446 447 return LT.first * NElts * Cost; 448 } 449 break; 450 default: 451 break; 452 } 453 454 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 455 Opd1PropInfo, Opd2PropInfo); 456 } 457 458 unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) { 459 // XXX - For some reason this isn't called for switch. 460 switch (Opcode) { 461 case Instruction::Br: 462 case Instruction::Ret: 463 return 10; 464 default: 465 return BaseT::getCFInstrCost(Opcode); 466 } 467 } 468 469 int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 470 unsigned Index) { 471 switch (Opcode) { 472 case Instruction::ExtractElement: 473 case Instruction::InsertElement: { 474 unsigned EltSize 475 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 476 if (EltSize < 32) { 477 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 478 return 0; 479 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 480 } 481 482 // Extracts are just reads of a subregister, so are free. Inserts are 483 // considered free because we don't want to have any cost for scalarizing 484 // operations, and we don't have to copy into a different register class. 485 486 // Dynamic indexing isn't free and is best avoided. 487 return Index == ~0u ? 2 : 0; 488 } 489 default: 490 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 491 } 492 } 493 494 495 496 static bool isArgPassedInSGPR(const Argument *A) { 497 const Function *F = A->getParent(); 498 499 // Arguments to compute shaders are never a source of divergence. 500 CallingConv::ID CC = F->getCallingConv(); 501 switch (CC) { 502 case CallingConv::AMDGPU_KERNEL: 503 case CallingConv::SPIR_KERNEL: 504 return true; 505 case CallingConv::AMDGPU_VS: 506 case CallingConv::AMDGPU_LS: 507 case CallingConv::AMDGPU_HS: 508 case CallingConv::AMDGPU_ES: 509 case CallingConv::AMDGPU_GS: 510 case CallingConv::AMDGPU_PS: 511 case CallingConv::AMDGPU_CS: 512 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 513 // Everything else is in VGPRs. 514 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 515 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 516 default: 517 // TODO: Should calls support inreg for SGPR inputs? 518 return false; 519 } 520 } 521 522 /// \returns true if the result of the value could potentially be 523 /// different across workitems in a wavefront. 524 bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const { 525 if (const Argument *A = dyn_cast<Argument>(V)) 526 return !isArgPassedInSGPR(A); 527 528 // Loads from the private address space are divergent, because threads 529 // can execute the load instruction with the same inputs and get different 530 // results. 531 // 532 // All other loads are not divergent, because if threads issue loads with the 533 // same arguments, they will always get the same result. 534 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 535 return Load->getPointerAddressSpace() == ST->getAMDGPUAS().PRIVATE_ADDRESS; 536 537 // Atomics are divergent because they are executed sequentially: when an 538 // atomic operation refers to the same address in each thread, then each 539 // thread after the first sees the value written by the previous thread as 540 // original value. 541 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 542 return true; 543 544 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 545 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 546 547 // Assume all function calls are a source of divergence. 548 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 549 return true; 550 551 return false; 552 } 553 554 bool AMDGPUTTIImpl::isAlwaysUniform(const Value *V) const { 555 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 556 switch (Intrinsic->getIntrinsicID()) { 557 default: 558 return false; 559 case Intrinsic::amdgcn_readfirstlane: 560 case Intrinsic::amdgcn_readlane: 561 return true; 562 } 563 } 564 return false; 565 } 566 567 unsigned AMDGPUTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 568 Type *SubTp) { 569 if (ST->hasVOP3PInsts()) { 570 VectorType *VT = cast<VectorType>(Tp); 571 if (VT->getNumElements() == 2 && 572 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 573 // With op_sel VOP3P instructions freely can access the low half or high 574 // half of a register, so any swizzle is free. 575 576 switch (Kind) { 577 case TTI::SK_Broadcast: 578 case TTI::SK_Reverse: 579 case TTI::SK_PermuteSingleSrc: 580 return 0; 581 default: 582 break; 583 } 584 } 585 } 586 587 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 588 } 589 590 bool AMDGPUTTIImpl::areInlineCompatible(const Function *Caller, 591 const Function *Callee) const { 592 const TargetMachine &TM = getTLI()->getTargetMachine(); 593 const FeatureBitset &CallerBits = 594 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 595 const FeatureBitset &CalleeBits = 596 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 597 598 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 599 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 600 return ((RealCallerBits & RealCalleeBits) == RealCalleeBits); 601 } 602