1d16eff81SEugene Zelenko //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
245bb48eaSTom Stellard //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
645bb48eaSTom Stellard //
745bb48eaSTom Stellard //===----------------------------------------------------------------------===//
845bb48eaSTom Stellard //
945bb48eaSTom Stellard // \file
1045bb48eaSTom Stellard // This file implements a TargetTransformInfo analysis pass specific to the
1145bb48eaSTom Stellard // AMDGPU target machine. It uses the target's detailed information to provide
1245bb48eaSTom Stellard // more precise answers to certain TTI queries, while letting the target
1345bb48eaSTom Stellard // independent and default TTI implementations handle the rest.
1445bb48eaSTom Stellard //
1545bb48eaSTom Stellard //===----------------------------------------------------------------------===//
1645bb48eaSTom Stellard 
1745bb48eaSTom Stellard #include "AMDGPUTargetTransformInfo.h"
186a87e9b0Sdfukalov #include "AMDGPUTargetMachine.h"
1948958d02SDaniil Fukalov #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
2045bb48eaSTom Stellard #include "llvm/Analysis/LoopInfo.h"
2145bb48eaSTom Stellard #include "llvm/Analysis/ValueTracking.h"
2299142003SNikita Popov #include "llvm/IR/IRBuilder.h"
2348958d02SDaniil Fukalov #include "llvm/IR/IntrinsicsAMDGPU.h"
24376f1bd7SMatt Arsenault #include "llvm/IR/PatternMatch.h"
251673a080SSimon Pilgrim #include "llvm/Support/KnownBits.h"
26d16eff81SEugene Zelenko 
2745bb48eaSTom Stellard using namespace llvm;
2845bb48eaSTom Stellard 
2945bb48eaSTom Stellard #define DEBUG_TYPE "AMDGPUtti"
3045bb48eaSTom Stellard 
31f29602dfSStanislav Mekhanoshin static cl::opt<unsigned> UnrollThresholdPrivate(
32f29602dfSStanislav Mekhanoshin   "amdgpu-unroll-threshold-private",
33f29602dfSStanislav Mekhanoshin   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
346fd11b14Sdfukalov   cl::init(2700), cl::Hidden);
359651813eSMatt Arsenault 
36baf31ac7SStanislav Mekhanoshin static cl::opt<unsigned> UnrollThresholdLocal(
37baf31ac7SStanislav Mekhanoshin   "amdgpu-unroll-threshold-local",
38baf31ac7SStanislav Mekhanoshin   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
39baf31ac7SStanislav Mekhanoshin   cl::init(1000), cl::Hidden);
40baf31ac7SStanislav Mekhanoshin 
41478b8198SStanislav Mekhanoshin static cl::opt<unsigned> UnrollThresholdIf(
42478b8198SStanislav Mekhanoshin   "amdgpu-unroll-threshold-if",
43478b8198SStanislav Mekhanoshin   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
448f4b7e94Sdfukalov   cl::init(200), cl::Hidden);
45478b8198SStanislav Mekhanoshin 
466b813f27SStanislav Mekhanoshin static cl::opt<bool> UnrollRuntimeLocal(
476b813f27SStanislav Mekhanoshin   "amdgpu-unroll-runtime-local",
486b813f27SStanislav Mekhanoshin   cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
496b813f27SStanislav Mekhanoshin   cl::init(true), cl::Hidden);
506b813f27SStanislav Mekhanoshin 
51c2266463SAustin Kerbow static cl::opt<bool> UseLegacyDA(
52c2266463SAustin Kerbow   "amdgpu-use-legacy-divergence-analysis",
53c2266463SAustin Kerbow   cl::desc("Enable legacy divergence analysis for AMDGPU"),
54c2266463SAustin Kerbow   cl::init(false), cl::Hidden);
55c2266463SAustin Kerbow 
56c94d32a6Sdfukalov static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
57c94d32a6Sdfukalov     "amdgpu-unroll-max-block-to-analyze",
58c94d32a6Sdfukalov     cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
5933e2f69aSdfukalov     cl::init(32), cl::Hidden);
60c94d32a6Sdfukalov 
61a11bf9a7SArthur Eubanks static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
62a11bf9a7SArthur Eubanks                                        cl::Hidden, cl::init(4000),
63a11bf9a7SArthur Eubanks                                        cl::desc("Cost of alloca argument"));
64a11bf9a7SArthur Eubanks 
65a11bf9a7SArthur Eubanks // If the amount of scratch memory to eliminate exceeds our ability to allocate
66a11bf9a7SArthur Eubanks // it into registers we gain nothing by aggressively inlining functions for that
67a11bf9a7SArthur Eubanks // heuristic.
68a11bf9a7SArthur Eubanks static cl::opt<unsigned>
69a11bf9a7SArthur Eubanks     ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
70a11bf9a7SArthur Eubanks                     cl::init(256),
71a11bf9a7SArthur Eubanks                     cl::desc("Maximum alloca size to use for inline cost"));
72a11bf9a7SArthur Eubanks 
73a11bf9a7SArthur Eubanks // Inliner constraint to achieve reasonable compilation time.
74a11bf9a7SArthur Eubanks static cl::opt<size_t> InlineMaxBB(
75a11bf9a7SArthur Eubanks     "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
76a11bf9a7SArthur Eubanks     cl::desc("Maximum number of BBs allowed in a function after inlining"
77a11bf9a7SArthur Eubanks              " (compile time constraint)"));
78a11bf9a7SArthur Eubanks 
dependsOnLocalPhi(const Loop * L,const Value * Cond,unsigned Depth=0)79478b8198SStanislav Mekhanoshin static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
80478b8198SStanislav Mekhanoshin                               unsigned Depth = 0) {
81478b8198SStanislav Mekhanoshin   const Instruction *I = dyn_cast<Instruction>(Cond);
82478b8198SStanislav Mekhanoshin   if (!I)
83478b8198SStanislav Mekhanoshin     return false;
84478b8198SStanislav Mekhanoshin 
85478b8198SStanislav Mekhanoshin   for (const Value *V : I->operand_values()) {
86478b8198SStanislav Mekhanoshin     if (!L->contains(I))
87478b8198SStanislav Mekhanoshin       continue;
88478b8198SStanislav Mekhanoshin     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
89d16eff81SEugene Zelenko       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
90478b8198SStanislav Mekhanoshin                   return SubLoop->contains(PHI); }))
91478b8198SStanislav Mekhanoshin         return true;
92478b8198SStanislav Mekhanoshin     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
93478b8198SStanislav Mekhanoshin       return true;
94478b8198SStanislav Mekhanoshin   }
95478b8198SStanislav Mekhanoshin   return false;
96478b8198SStanislav Mekhanoshin }
97478b8198SStanislav Mekhanoshin 
AMDGPUTTIImpl(const AMDGPUTargetMachine * TM,const Function & F)986a87e9b0Sdfukalov AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
996a87e9b0Sdfukalov     : BaseT(TM, F.getParent()->getDataLayout()),
1006a87e9b0Sdfukalov       TargetTriple(TM->getTargetTriple()),
1016a87e9b0Sdfukalov       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
1026a87e9b0Sdfukalov       TLI(ST->getTargetLowering()) {}
1036a87e9b0Sdfukalov 
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP,OptimizationRemarkEmitter * ORE)10466d9bdbcSGeoff Berry void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1056f6e9a86SRoman Lebedev                                             TTI::UnrollingPreferences &UP,
1066f6e9a86SRoman Lebedev                                             OptimizationRemarkEmitter *ORE) {
1076821a3ccSTim Corringham   const Function &F = *L->getHeader()->getParent();
1086821a3ccSTim Corringham   UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
109d16eff81SEugene Zelenko   UP.MaxCount = std::numeric_limits<unsigned>::max();
11045bb48eaSTom Stellard   UP.Partial = true;
11145bb48eaSTom Stellard 
1128f4b7e94Sdfukalov   // Conditional branch in a loop back edge needs 3 additional exec
1138f4b7e94Sdfukalov   // manipulations in average.
1148f4b7e94Sdfukalov   UP.BEInsns += 3;
1158f4b7e94Sdfukalov 
11645bb48eaSTom Stellard   // TODO: Do we want runtime unrolling?
11745bb48eaSTom Stellard 
118f29602dfSStanislav Mekhanoshin   // Maximum alloca size than can fit registers. Reserve 16 registers.
119f29602dfSStanislav Mekhanoshin   const unsigned MaxAlloca = (256 - 16) * 4;
120baf31ac7SStanislav Mekhanoshin   unsigned ThresholdPrivate = UnrollThresholdPrivate;
121baf31ac7SStanislav Mekhanoshin   unsigned ThresholdLocal = UnrollThresholdLocal;
1223c1273d7STim Corringham 
1233c1273d7STim Corringham   // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
1243c1273d7STim Corringham   // provided threshold value as the default for Threshold
1253c1273d7STim Corringham   if (MDNode *LoopUnrollThreshold =
1263c1273d7STim Corringham           findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
1273c1273d7STim Corringham     if (LoopUnrollThreshold->getNumOperands() == 2) {
1283c1273d7STim Corringham       ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
1293c1273d7STim Corringham           LoopUnrollThreshold->getOperand(1));
1303c1273d7STim Corringham       if (MetaThresholdValue) {
1313c1273d7STim Corringham         // We will also use the supplied value for PartialThreshold for now.
1323c1273d7STim Corringham         // We may introduce additional metadata if it becomes necessary in the
1333c1273d7STim Corringham         // future.
1343c1273d7STim Corringham         UP.Threshold = MetaThresholdValue->getSExtValue();
1353c1273d7STim Corringham         UP.PartialThreshold = UP.Threshold;
1363c1273d7STim Corringham         ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
1373c1273d7STim Corringham         ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
1383c1273d7STim Corringham       }
1393c1273d7STim Corringham     }
1403c1273d7STim Corringham   }
1413c1273d7STim Corringham 
142baf31ac7SStanislav Mekhanoshin   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
14345bb48eaSTom Stellard   for (const BasicBlock *BB : L->getBlocks()) {
14445bb48eaSTom Stellard     const DataLayout &DL = BB->getModule()->getDataLayout();
145baf31ac7SStanislav Mekhanoshin     unsigned LocalGEPsSeen = 0;
146baf31ac7SStanislav Mekhanoshin 
147d16eff81SEugene Zelenko     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
148478b8198SStanislav Mekhanoshin                return SubLoop->contains(BB); }))
149478b8198SStanislav Mekhanoshin         continue; // Block belongs to an inner loop.
150478b8198SStanislav Mekhanoshin 
15145bb48eaSTom Stellard     for (const Instruction &I : *BB) {
152478b8198SStanislav Mekhanoshin       // Unroll a loop which contains an "if" statement whose condition
153478b8198SStanislav Mekhanoshin       // defined by a PHI belonging to the loop. This may help to eliminate
154478b8198SStanislav Mekhanoshin       // if region and potentially even PHI itself, saving on both divergence
155478b8198SStanislav Mekhanoshin       // and registers used for the PHI.
156478b8198SStanislav Mekhanoshin       // Add a small bonus for each of such "if" statements.
157478b8198SStanislav Mekhanoshin       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
158478b8198SStanislav Mekhanoshin         if (UP.Threshold < MaxBoost && Br->isConditional()) {
15933c8c0eaSFlorian Hahn           BasicBlock *Succ0 = Br->getSuccessor(0);
16033c8c0eaSFlorian Hahn           BasicBlock *Succ1 = Br->getSuccessor(1);
16133c8c0eaSFlorian Hahn           if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
16233c8c0eaSFlorian Hahn               (L->contains(Succ1) && L->isLoopExiting(Succ1)))
163478b8198SStanislav Mekhanoshin             continue;
164478b8198SStanislav Mekhanoshin           if (dependsOnLocalPhi(L, Br->getCondition())) {
165478b8198SStanislav Mekhanoshin             UP.Threshold += UnrollThresholdIf;
166d34e60caSNicola Zaghen             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
167d34e60caSNicola Zaghen                               << " for loop:\n"
168d34e60caSNicola Zaghen                               << *L << " due to " << *Br << '\n');
169478b8198SStanislav Mekhanoshin             if (UP.Threshold >= MaxBoost)
170478b8198SStanislav Mekhanoshin               return;
171478b8198SStanislav Mekhanoshin           }
172478b8198SStanislav Mekhanoshin         }
173478b8198SStanislav Mekhanoshin         continue;
174478b8198SStanislav Mekhanoshin       }
175478b8198SStanislav Mekhanoshin 
17645bb48eaSTom Stellard       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
177baf31ac7SStanislav Mekhanoshin       if (!GEP)
17845bb48eaSTom Stellard         continue;
17945bb48eaSTom Stellard 
180baf31ac7SStanislav Mekhanoshin       unsigned AS = GEP->getAddressSpace();
181baf31ac7SStanislav Mekhanoshin       unsigned Threshold = 0;
1820da6350dSMatt Arsenault       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
183baf31ac7SStanislav Mekhanoshin         Threshold = ThresholdPrivate;
1844dc3b2bfSNicolai Haehnle       else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
185baf31ac7SStanislav Mekhanoshin         Threshold = ThresholdLocal;
186baf31ac7SStanislav Mekhanoshin       else
187baf31ac7SStanislav Mekhanoshin         continue;
188baf31ac7SStanislav Mekhanoshin 
189baf31ac7SStanislav Mekhanoshin       if (UP.Threshold >= Threshold)
190baf31ac7SStanislav Mekhanoshin         continue;
191baf31ac7SStanislav Mekhanoshin 
1920da6350dSMatt Arsenault       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
19345bb48eaSTom Stellard         const Value *Ptr = GEP->getPointerOperand();
19445bb48eaSTom Stellard         const AllocaInst *Alloca =
195b0eb40caSVitaly Buka             dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
196baf31ac7SStanislav Mekhanoshin         if (!Alloca || !Alloca->isStaticAlloca())
197baf31ac7SStanislav Mekhanoshin           continue;
198f29602dfSStanislav Mekhanoshin         Type *Ty = Alloca->getAllocatedType();
199f29602dfSStanislav Mekhanoshin         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
200f29602dfSStanislav Mekhanoshin         if (AllocaSize > MaxAlloca)
201f29602dfSStanislav Mekhanoshin           continue;
2024dc3b2bfSNicolai Haehnle       } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
2034dc3b2bfSNicolai Haehnle                  AS == AMDGPUAS::REGION_ADDRESS) {
204baf31ac7SStanislav Mekhanoshin         LocalGEPsSeen++;
205baf31ac7SStanislav Mekhanoshin         // Inhibit unroll for local memory if we have seen addressing not to
206baf31ac7SStanislav Mekhanoshin         // a variable, most likely we will be unable to combine it.
207baf31ac7SStanislav Mekhanoshin         // Do not unroll too deep inner loops for local memory to give a chance
208baf31ac7SStanislav Mekhanoshin         // to unroll an outer loop for a more important reason.
209baf31ac7SStanislav Mekhanoshin         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
210baf31ac7SStanislav Mekhanoshin             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
211baf31ac7SStanislav Mekhanoshin              !isa<Argument>(GEP->getPointerOperand())))
212baf31ac7SStanislav Mekhanoshin           continue;
2136b813f27SStanislav Mekhanoshin         LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
2146b813f27SStanislav Mekhanoshin                           << *L << " due to LDS use.\n");
2156b813f27SStanislav Mekhanoshin         UP.Runtime = UnrollRuntimeLocal;
216baf31ac7SStanislav Mekhanoshin       }
217f29602dfSStanislav Mekhanoshin 
218f29602dfSStanislav Mekhanoshin       // Check if GEP depends on a value defined by this loop itself.
219f29602dfSStanislav Mekhanoshin       bool HasLoopDef = false;
220f29602dfSStanislav Mekhanoshin       for (const Value *Op : GEP->operands()) {
221f29602dfSStanislav Mekhanoshin         const Instruction *Inst = dyn_cast<Instruction>(Op);
222f29602dfSStanislav Mekhanoshin         if (!Inst || L->isLoopInvariant(Op))
223f29602dfSStanislav Mekhanoshin           continue;
224baf31ac7SStanislav Mekhanoshin 
225d16eff81SEugene Zelenko         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
226f29602dfSStanislav Mekhanoshin              return SubLoop->contains(Inst); }))
227f29602dfSStanislav Mekhanoshin           continue;
228f29602dfSStanislav Mekhanoshin         HasLoopDef = true;
229f29602dfSStanislav Mekhanoshin         break;
230f29602dfSStanislav Mekhanoshin       }
231f29602dfSStanislav Mekhanoshin       if (!HasLoopDef)
232f29602dfSStanislav Mekhanoshin         continue;
233f29602dfSStanislav Mekhanoshin 
23445bb48eaSTom Stellard       // We want to do whatever we can to limit the number of alloca
23545bb48eaSTom Stellard       // instructions that make it through to the code generator.  allocas
23645bb48eaSTom Stellard       // require us to use indirect addressing, which is slow and prone to
23745bb48eaSTom Stellard       // compiler bugs.  If this loop does an address calculation on an
23845bb48eaSTom Stellard       // alloca ptr, then we want to use a higher than normal loop unroll
23945bb48eaSTom Stellard       // threshold. This will give SROA a better chance to eliminate these
24045bb48eaSTom Stellard       // allocas.
24145bb48eaSTom Stellard       //
242baf31ac7SStanislav Mekhanoshin       // We also want to have more unrolling for local memory to let ds
243baf31ac7SStanislav Mekhanoshin       // instructions with different offsets combine.
244baf31ac7SStanislav Mekhanoshin       //
24545bb48eaSTom Stellard       // Don't use the maximum allowed value here as it will make some
24645bb48eaSTom Stellard       // programs way too big.
247baf31ac7SStanislav Mekhanoshin       UP.Threshold = Threshold;
248d34e60caSNicola Zaghen       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
249d34e60caSNicola Zaghen                         << " for loop:\n"
250baf31ac7SStanislav Mekhanoshin                         << *L << " due to " << *GEP << '\n');
251478b8198SStanislav Mekhanoshin       if (UP.Threshold >= MaxBoost)
252f29602dfSStanislav Mekhanoshin         return;
25345bb48eaSTom Stellard     }
254c94d32a6Sdfukalov 
255c94d32a6Sdfukalov     // If we got a GEP in a small BB from inner loop then increase max trip
256c94d32a6Sdfukalov     // count to analyze for better estimation cost in unroll
25749f27449SFangrui Song     if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
258c94d32a6Sdfukalov       UP.MaxIterationsCountToAnalyze = 32;
25945bb48eaSTom Stellard   }
26045bb48eaSTom Stellard }
26145bb48eaSTom Stellard 
getPeelingPreferences(Loop * L,ScalarEvolution & SE,TTI::PeelingPreferences & PP)262e541e1b7SSidharth Baveja void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
263e541e1b7SSidharth Baveja                                           TTI::PeelingPreferences &PP) {
264e541e1b7SSidharth Baveja   BaseT::getPeelingPreferences(L, SE, PP);
265e541e1b7SSidharth Baveja }
2666a87e9b0Sdfukalov 
267560d7e04Sdfukalov const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
268560d7e04Sdfukalov     // Codegen control options which don't matter.
269560d7e04Sdfukalov     AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
270560d7e04Sdfukalov     AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
271560d7e04Sdfukalov     AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
272560d7e04Sdfukalov     AMDGPU::FeatureUnalignedAccessMode,
273560d7e04Sdfukalov 
274560d7e04Sdfukalov     AMDGPU::FeatureAutoWaitcntBeforeBarrier,
275560d7e04Sdfukalov 
276560d7e04Sdfukalov     // Property of the kernel/environment which can't actually differ.
277560d7e04Sdfukalov     AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
278560d7e04Sdfukalov     AMDGPU::FeatureTrapHandler,
279560d7e04Sdfukalov 
280560d7e04Sdfukalov     // The default assumption needs to be ecc is enabled, but no directly
281560d7e04Sdfukalov     // exposed operations depend on it, so it can be safely inlined.
282560d7e04Sdfukalov     AMDGPU::FeatureSRAMECC,
283560d7e04Sdfukalov 
284560d7e04Sdfukalov     // Perf-tuning features
285560d7e04Sdfukalov     AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
286560d7e04Sdfukalov 
GCNTTIImpl(const AMDGPUTargetMachine * TM,const Function & F)2876a87e9b0Sdfukalov GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
2886a87e9b0Sdfukalov     : BaseT(TM, F.getParent()->getDataLayout()),
2896a87e9b0Sdfukalov       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
2906a87e9b0Sdfukalov       TLI(ST->getTargetLowering()), CommonTTI(TM, F),
291fced87d4SStanislav Mekhanoshin       IsGraphics(AMDGPU::isGraphics(F.getCallingConv())) {
2926a87e9b0Sdfukalov   AMDGPU::SIModeRegisterDefaults Mode(F);
2936a87e9b0Sdfukalov   HasFP32Denormals = Mode.allFP32Denormals();
2946a87e9b0Sdfukalov   HasFP64FP16Denormals = Mode.allFP64FP16Denormals();
2956a87e9b0Sdfukalov }
2966a87e9b0Sdfukalov 
getNumberOfRegisters(unsigned RCID) const297fced87d4SStanislav Mekhanoshin unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
298fced87d4SStanislav Mekhanoshin   // NB: RCID is not an RCID. In fact it is 0 or 1 for scalar or vector
299fced87d4SStanislav Mekhanoshin   // registers. See getRegisterClassForType for the implementation.
300fced87d4SStanislav Mekhanoshin   // In this case vector registers are not vector in terms of
301fced87d4SStanislav Mekhanoshin   // VGPRs, but those which can hold multiple values.
30245bb48eaSTom Stellard 
30367cd347eSMatt Arsenault   // This is really the number of registers to fill when vectorizing /
30467cd347eSMatt Arsenault   // interleaving loops, so we lie to avoid trying to use all registers.
305fced87d4SStanislav Mekhanoshin   return 4;
30677f8f813SStanislav Mekhanoshin }
30777f8f813SStanislav Mekhanoshin 
30855d18b3cSSander de Smalen TypeSize
getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const30955d18b3cSSander de Smalen GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
31055d18b3cSSander de Smalen   switch (K) {
31155d18b3cSSander de Smalen   case TargetTransformInfo::RGK_Scalar:
31255d18b3cSSander de Smalen     return TypeSize::getFixed(32);
31355d18b3cSSander de Smalen   case TargetTransformInfo::RGK_FixedWidthVector:
31455d18b3cSSander de Smalen     return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
31555d18b3cSSander de Smalen   case TargetTransformInfo::RGK_ScalableVector:
31655d18b3cSSander de Smalen     return TypeSize::getScalable(0);
31755d18b3cSSander de Smalen   }
31855d18b3cSSander de Smalen   llvm_unreachable("Unsupported register kind");
31967cd347eSMatt Arsenault }
32067cd347eSMatt Arsenault 
getMinVectorRegisterBitWidth() const321c7624317STom Stellard unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
32267cd347eSMatt Arsenault   return 32;
3234339b3ffSMatt Arsenault }
32445bb48eaSTom Stellard 
getMaximumVF(unsigned ElemWidth,unsigned Opcode) const32587d7757bSStanislav Mekhanoshin unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
32687d7757bSStanislav Mekhanoshin   if (Opcode == Instruction::Load || Opcode == Instruction::Store)
32787d7757bSStanislav Mekhanoshin     return 32 * 4 / ElemWidth;
328a8d9d507SStanislav Mekhanoshin   return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
329a8d9d507SStanislav Mekhanoshin        : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
330a8d9d507SStanislav Mekhanoshin        : 1;
33187d7757bSStanislav Mekhanoshin }
33287d7757bSStanislav Mekhanoshin 
getLoadVectorFactor(unsigned VF,unsigned LoadSize,unsigned ChainSizeInBytes,VectorType * VecTy) const333c7624317STom Stellard unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
33489196642SFarhana Aleen                                          unsigned ChainSizeInBytes,
33589196642SFarhana Aleen                                          VectorType *VecTy) const {
33689196642SFarhana Aleen   unsigned VecRegBitWidth = VF * LoadSize;
33789196642SFarhana Aleen   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
33889196642SFarhana Aleen     // TODO: Support element-size less than 32bit?
33989196642SFarhana Aleen     return 128 / LoadSize;
34089196642SFarhana Aleen 
34189196642SFarhana Aleen   return VF;
34289196642SFarhana Aleen }
34389196642SFarhana Aleen 
getStoreVectorFactor(unsigned VF,unsigned StoreSize,unsigned ChainSizeInBytes,VectorType * VecTy) const344c7624317STom Stellard unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
34589196642SFarhana Aleen                                              unsigned ChainSizeInBytes,
34689196642SFarhana Aleen                                              VectorType *VecTy) const {
34789196642SFarhana Aleen   unsigned VecRegBitWidth = VF * StoreSize;
34889196642SFarhana Aleen   if (VecRegBitWidth > 128)
34989196642SFarhana Aleen     return 128 / StoreSize;
35089196642SFarhana Aleen 
35189196642SFarhana Aleen   return VF;
35289196642SFarhana Aleen }
35389196642SFarhana Aleen 
getLoadStoreVecRegBitWidth(unsigned AddrSpace) const354c7624317STom Stellard unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
3550da6350dSMatt Arsenault   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
3560da6350dSMatt Arsenault       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
357523dab07SNeil Henning       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
358523dab07SNeil Henning       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
35989196642SFarhana Aleen     return 512;
36089196642SFarhana Aleen   }
36189196642SFarhana Aleen 
3620da6350dSMatt Arsenault   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
3630994bd57SMatt Arsenault     return 8 * ST->getMaxPrivateElementSize();
3641a14bfa0SYaxun Liu 
36578a43f10SMatt Arsenault   // Common to flat, global, local and region. Assume for unknown addrspace.
36678a43f10SMatt Arsenault   return 128;
3670994bd57SMatt Arsenault }
3680994bd57SMatt Arsenault 
isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace) const369c7624317STom Stellard bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
3701507fc15SGuillaume Chatelet                                             Align Alignment,
371f0a88dbaSMatt Arsenault                                             unsigned AddrSpace) const {
372f0a88dbaSMatt Arsenault   // We allow vectorization of flat stores, even though we may need to decompose
373f0a88dbaSMatt Arsenault   // them later if they may access private memory. We don't have enough context
374f0a88dbaSMatt Arsenault   // here, and legalization can handle it.
3750da6350dSMatt Arsenault   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
376f0a88dbaSMatt Arsenault     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
377f0a88dbaSMatt Arsenault       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
378f0a88dbaSMatt Arsenault   }
379f0a88dbaSMatt Arsenault   return true;
380f0a88dbaSMatt Arsenault }
381f0a88dbaSMatt Arsenault 
isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace) const382c7624317STom Stellard bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
3831507fc15SGuillaume Chatelet                                              Align Alignment,
384f0a88dbaSMatt Arsenault                                              unsigned AddrSpace) const {
385f0a88dbaSMatt Arsenault   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
386f0a88dbaSMatt Arsenault }
387f0a88dbaSMatt Arsenault 
isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace) const388c7624317STom Stellard bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
3891507fc15SGuillaume Chatelet                                               Align Alignment,
390f0a88dbaSMatt Arsenault                                               unsigned AddrSpace) const {
391f0a88dbaSMatt Arsenault   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
392f0a88dbaSMatt Arsenault }
393f0a88dbaSMatt Arsenault 
394cee65d51SJay Foad // FIXME: Really we would like to issue multiple 128-bit loads and stores per
395cee65d51SJay Foad // iteration. Should we report a larger size and let it legalize?
396cee65d51SJay Foad //
397cee65d51SJay Foad // FIXME: Should we use narrower types for local/region, or account for when
398cee65d51SJay Foad // unaligned access is legal?
399cee65d51SJay Foad //
400cee65d51SJay Foad // FIXME: This could use fine tuning and microbenchmarks.
getMemcpyLoopLoweringType(LLVMContext & Context,Value * Length,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign,Optional<uint32_t> AtomicElementSize) const401da41214dSEvgeniy Brevnov Type *GCNTTIImpl::getMemcpyLoopLoweringType(
402da41214dSEvgeniy Brevnov     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
403da41214dSEvgeniy Brevnov     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
404da41214dSEvgeniy Brevnov     Optional<uint32_t> AtomicElementSize) const {
405da41214dSEvgeniy Brevnov 
406da41214dSEvgeniy Brevnov   if (AtomicElementSize)
407da41214dSEvgeniy Brevnov     return Type::getIntNTy(Context, *AtomicElementSize * 8);
408da41214dSEvgeniy Brevnov 
409cee65d51SJay Foad   unsigned MinAlign = std::min(SrcAlign, DestAlign);
410cee65d51SJay Foad 
411cee65d51SJay Foad   // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
412cee65d51SJay Foad   // hardware into byte accesses. If you assume all alignments are equally
413cee65d51SJay Foad   // probable, it's more efficient on average to use short accesses for this
414cee65d51SJay Foad   // case.
415cee65d51SJay Foad   if (MinAlign == 2)
416cee65d51SJay Foad     return Type::getInt16Ty(Context);
417cee65d51SJay Foad 
418cee65d51SJay Foad   // Not all subtargets have 128-bit DS instructions, and we currently don't
419cee65d51SJay Foad   // form them by default.
420cee65d51SJay Foad   if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
421cee65d51SJay Foad       SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
422cee65d51SJay Foad       DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
423cee65d51SJay Foad       DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
424aad93654SChristopher Tetreault     return FixedVectorType::get(Type::getInt32Ty(Context), 2);
425cee65d51SJay Foad   }
426cee65d51SJay Foad 
427cee65d51SJay Foad   // Global memory works best with 16-byte accesses. Private memory will also
428cee65d51SJay Foad   // hit this, although they'll be decomposed.
429aad93654SChristopher Tetreault   return FixedVectorType::get(Type::getInt32Ty(Context), 4);
430cee65d51SJay Foad }
431cee65d51SJay Foad 
getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type * > & OpsOut,LLVMContext & Context,unsigned RemainingBytes,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign,Optional<uint32_t> AtomicCpySize) const432cee65d51SJay Foad void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
433cee65d51SJay Foad     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
434cee65d51SJay Foad     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
435da41214dSEvgeniy Brevnov     unsigned SrcAlign, unsigned DestAlign,
436da41214dSEvgeniy Brevnov     Optional<uint32_t> AtomicCpySize) const {
437cee65d51SJay Foad   assert(RemainingBytes < 16);
438cee65d51SJay Foad 
439da41214dSEvgeniy Brevnov   if (AtomicCpySize)
440da41214dSEvgeniy Brevnov     BaseT::getMemcpyLoopResidualLoweringType(
441da41214dSEvgeniy Brevnov         OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
442da41214dSEvgeniy Brevnov         DestAlign, AtomicCpySize);
443da41214dSEvgeniy Brevnov 
444cee65d51SJay Foad   unsigned MinAlign = std::min(SrcAlign, DestAlign);
445cee65d51SJay Foad 
446cee65d51SJay Foad   if (MinAlign != 2) {
447cee65d51SJay Foad     Type *I64Ty = Type::getInt64Ty(Context);
448cee65d51SJay Foad     while (RemainingBytes >= 8) {
449cee65d51SJay Foad       OpsOut.push_back(I64Ty);
450cee65d51SJay Foad       RemainingBytes -= 8;
451cee65d51SJay Foad     }
452cee65d51SJay Foad 
453cee65d51SJay Foad     Type *I32Ty = Type::getInt32Ty(Context);
454cee65d51SJay Foad     while (RemainingBytes >= 4) {
455cee65d51SJay Foad       OpsOut.push_back(I32Ty);
456cee65d51SJay Foad       RemainingBytes -= 4;
457cee65d51SJay Foad     }
458cee65d51SJay Foad   }
459cee65d51SJay Foad 
460cee65d51SJay Foad   Type *I16Ty = Type::getInt16Ty(Context);
461cee65d51SJay Foad   while (RemainingBytes >= 2) {
462cee65d51SJay Foad     OpsOut.push_back(I16Ty);
463cee65d51SJay Foad     RemainingBytes -= 2;
464cee65d51SJay Foad   }
465cee65d51SJay Foad 
466cee65d51SJay Foad   Type *I8Ty = Type::getInt8Ty(Context);
467cee65d51SJay Foad   while (RemainingBytes) {
468cee65d51SJay Foad     OpsOut.push_back(I8Ty);
469cee65d51SJay Foad     --RemainingBytes;
470cee65d51SJay Foad   }
471cee65d51SJay Foad }
472cee65d51SJay Foad 
getMaxInterleaveFactor(unsigned VF)473c7624317STom Stellard unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
4741be9b9f8SChangpeng Fang   // Disable unrolling if the loop is not vectorized.
47567cd347eSMatt Arsenault   // TODO: Enable this again.
4761be9b9f8SChangpeng Fang   if (VF == 1)
4771be9b9f8SChangpeng Fang     return 1;
4781be9b9f8SChangpeng Fang 
47967cd347eSMatt Arsenault   return 8;
48045bb48eaSTom Stellard }
481e830f542SMatt Arsenault 
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info) const482c7624317STom Stellard bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
4833e268cc0SMatt Arsenault                                        MemIntrinsicInfo &Info) const {
4843e268cc0SMatt Arsenault   switch (Inst->getIntrinsicID()) {
4853e268cc0SMatt Arsenault   case Intrinsic::amdgcn_atomic_inc:
4866e1dc681SDaniil Fukalov   case Intrinsic::amdgcn_atomic_dec:
487c5cec5e1SMarek Olsak   case Intrinsic::amdgcn_ds_ordered_add:
488c5cec5e1SMarek Olsak   case Intrinsic::amdgcn_ds_ordered_swap:
4896e1dc681SDaniil Fukalov   case Intrinsic::amdgcn_ds_fadd:
4906e1dc681SDaniil Fukalov   case Intrinsic::amdgcn_ds_fmin:
4916e1dc681SDaniil Fukalov   case Intrinsic::amdgcn_ds_fmax: {
4923e268cc0SMatt Arsenault     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
4933e268cc0SMatt Arsenault     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
4943e268cc0SMatt Arsenault     if (!Ordering || !Volatile)
4953e268cc0SMatt Arsenault       return false; // Invalid.
4963e268cc0SMatt Arsenault 
4973e268cc0SMatt Arsenault     unsigned OrderingVal = Ordering->getZExtValue();
4983e268cc0SMatt Arsenault     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
4993e268cc0SMatt Arsenault       return false;
5003e268cc0SMatt Arsenault 
5013e268cc0SMatt Arsenault     Info.PtrVal = Inst->getArgOperand(0);
5023e268cc0SMatt Arsenault     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
5033e268cc0SMatt Arsenault     Info.ReadMem = true;
5043e268cc0SMatt Arsenault     Info.WriteMem = true;
505477b9bc9SJay Foad     Info.IsVolatile = !Volatile->isZero();
5063e268cc0SMatt Arsenault     return true;
5073e268cc0SMatt Arsenault   }
5083e268cc0SMatt Arsenault   default:
5093e268cc0SMatt Arsenault     return false;
5103e268cc0SMatt Arsenault   }
5113e268cc0SMatt Arsenault }
5123e268cc0SMatt Arsenault 
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::TargetCostKind CostKind,TTI::OperandValueKind Opd1Info,TTI::OperandValueKind Opd2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args,const Instruction * CxtI)5134f42d873SSander de Smalen InstructionCost GCNTTIImpl::getArithmeticInstrCost(
5144f42d873SSander de Smalen     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
5154f42d873SSander de Smalen     TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
516be7a1070SDavid Green     TTI::OperandValueProperties Opd1PropInfo,
5174f42d873SSander de Smalen     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
518be7a1070SDavid Green     const Instruction *CxtI) {
5199651813eSMatt Arsenault 
5209651813eSMatt Arsenault   // Legalize the type.
5213489c2d7SDaniil Fukalov   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
5229651813eSMatt Arsenault   int ISD = TLI->InstructionOpcodeToISD(Opcode);
5239651813eSMatt Arsenault 
5249651813eSMatt Arsenault   // Because we don't have any legal vector operations, but the legal types, we
5259651813eSMatt Arsenault   // need to account for split vectors.
5269651813eSMatt Arsenault   unsigned NElts = LT.second.isVector() ?
5279651813eSMatt Arsenault     LT.second.getVectorNumElements() : 1;
5289651813eSMatt Arsenault 
5299651813eSMatt Arsenault   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
5309651813eSMatt Arsenault 
5319651813eSMatt Arsenault   switch (ISD) {
5328c8fcb25SMatt Arsenault   case ISD::SHL:
5338c8fcb25SMatt Arsenault   case ISD::SRL:
534d16eff81SEugene Zelenko   case ISD::SRA:
5358c8fcb25SMatt Arsenault     if (SLT == MVT::i64)
5369068c209Sdfukalov       return get64BitInstrCost(CostKind) * LT.first * NElts;
5378c8fcb25SMatt Arsenault 
538b8ac5894SStanislav Mekhanoshin     if (ST->has16BitInsts() && SLT == MVT::i16)
539b8ac5894SStanislav Mekhanoshin       NElts = (NElts + 1) / 2;
540b8ac5894SStanislav Mekhanoshin 
5418c8fcb25SMatt Arsenault     // i32
5428c8fcb25SMatt Arsenault     return getFullRateInstrCost() * LT.first * NElts;
5438c8fcb25SMatt Arsenault   case ISD::ADD:
5448c8fcb25SMatt Arsenault   case ISD::SUB:
5458c8fcb25SMatt Arsenault   case ISD::AND:
5468c8fcb25SMatt Arsenault   case ISD::OR:
547d16eff81SEugene Zelenko   case ISD::XOR:
5488c8fcb25SMatt Arsenault     if (SLT == MVT::i64) {
5498c8fcb25SMatt Arsenault       // and, or and xor are typically split into 2 VALU instructions.
5508c8fcb25SMatt Arsenault       return 2 * getFullRateInstrCost() * LT.first * NElts;
5518c8fcb25SMatt Arsenault     }
5528c8fcb25SMatt Arsenault 
553b8ac5894SStanislav Mekhanoshin     if (ST->has16BitInsts() && SLT == MVT::i16)
554b8ac5894SStanislav Mekhanoshin       NElts = (NElts + 1) / 2;
555b8ac5894SStanislav Mekhanoshin 
5568c8fcb25SMatt Arsenault     return LT.first * NElts * getFullRateInstrCost();
5578c8fcb25SMatt Arsenault   case ISD::MUL: {
5589068c209Sdfukalov     const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
5598c8fcb25SMatt Arsenault     if (SLT == MVT::i64) {
5608c8fcb25SMatt Arsenault       const int FullRateCost = getFullRateInstrCost();
5618c8fcb25SMatt Arsenault       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
5628c8fcb25SMatt Arsenault     }
5638c8fcb25SMatt Arsenault 
564b8ac5894SStanislav Mekhanoshin     if (ST->has16BitInsts() && SLT == MVT::i16)
565b8ac5894SStanislav Mekhanoshin       NElts = (NElts + 1) / 2;
566b8ac5894SStanislav Mekhanoshin 
5678c8fcb25SMatt Arsenault     // i32
5688c8fcb25SMatt Arsenault     return QuarterRateCost * NElts * LT.first;
5698c8fcb25SMatt Arsenault   }
57076a0c0eeSdfukalov   case ISD::FMUL:
57176a0c0eeSdfukalov     // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
57276a0c0eeSdfukalov     // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
57376a0c0eeSdfukalov     // fused operation.
5744ccc3881Sdfukalov     if (CxtI && CxtI->hasOneUse())
57576a0c0eeSdfukalov       if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
57676a0c0eeSdfukalov         const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
57776a0c0eeSdfukalov         if (OPC == ISD::FADD || OPC == ISD::FSUB) {
5784ccc3881Sdfukalov           if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
5794ccc3881Sdfukalov             return TargetTransformInfo::TCC_Free;
5804ccc3881Sdfukalov           if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
5814ccc3881Sdfukalov             return TargetTransformInfo::TCC_Free;
5824ccc3881Sdfukalov 
5834ccc3881Sdfukalov           // Estimate all types may be fused with contract/unsafe flags
5844ccc3881Sdfukalov           const TargetOptions &Options = TLI->getTargetMachine().Options;
5854ccc3881Sdfukalov           if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
5864ccc3881Sdfukalov               Options.UnsafeFPMath ||
5874ccc3881Sdfukalov               (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
58876a0c0eeSdfukalov             return TargetTransformInfo::TCC_Free;
58976a0c0eeSdfukalov         }
59076a0c0eeSdfukalov       }
59176a0c0eeSdfukalov     LLVM_FALLTHROUGH;
5929651813eSMatt Arsenault   case ISD::FADD:
5939651813eSMatt Arsenault   case ISD::FSUB:
594a8d9d507SStanislav Mekhanoshin     if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
595a8d9d507SStanislav Mekhanoshin       NElts = (NElts + 1) / 2;
5969651813eSMatt Arsenault     if (SLT == MVT::f64)
5979068c209Sdfukalov       return LT.first * NElts * get64BitInstrCost(CostKind);
5989651813eSMatt Arsenault 
599b8ac5894SStanislav Mekhanoshin     if (ST->has16BitInsts() && SLT == MVT::f16)
600b8ac5894SStanislav Mekhanoshin       NElts = (NElts + 1) / 2;
601b8ac5894SStanislav Mekhanoshin 
6029651813eSMatt Arsenault     if (SLT == MVT::f32 || SLT == MVT::f16)
6039651813eSMatt Arsenault       return LT.first * NElts * getFullRateInstrCost();
6049651813eSMatt Arsenault     break;
6059651813eSMatt Arsenault   case ISD::FDIV:
6069651813eSMatt Arsenault   case ISD::FREM:
6079651813eSMatt Arsenault     // FIXME: frem should be handled separately. The fdiv in it is most of it,
6089651813eSMatt Arsenault     // but the current lowering is also not entirely correct.
6099651813eSMatt Arsenault     if (SLT == MVT::f64) {
6109068c209Sdfukalov       int Cost = 7 * get64BitInstrCost(CostKind) +
6119068c209Sdfukalov                  getQuarterRateInstrCost(CostKind) +
6129068c209Sdfukalov                  3 * getHalfRateInstrCost(CostKind);
6139651813eSMatt Arsenault       // Add cost of workaround.
614e4c2e9b0SMatt Arsenault       if (!ST->hasUsableDivScaleConditionOutput())
6159651813eSMatt Arsenault         Cost += 3 * getFullRateInstrCost();
6169651813eSMatt Arsenault 
6179651813eSMatt Arsenault       return LT.first * Cost * NElts;
6189651813eSMatt Arsenault     }
6199651813eSMatt Arsenault 
620376f1bd7SMatt Arsenault     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
621376f1bd7SMatt Arsenault       // TODO: This is more complicated, unsafe flags etc.
622db0ed3e4SMatt Arsenault       if ((SLT == MVT::f32 && !HasFP32Denormals) ||
623376f1bd7SMatt Arsenault           (SLT == MVT::f16 && ST->has16BitInsts())) {
6249068c209Sdfukalov         return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
625376f1bd7SMatt Arsenault       }
626376f1bd7SMatt Arsenault     }
627376f1bd7SMatt Arsenault 
628376f1bd7SMatt Arsenault     if (SLT == MVT::f16 && ST->has16BitInsts()) {
629376f1bd7SMatt Arsenault       // 2 x v_cvt_f32_f16
630376f1bd7SMatt Arsenault       // f32 rcp
631376f1bd7SMatt Arsenault       // f32 fmul
632376f1bd7SMatt Arsenault       // v_cvt_f16_f32
633376f1bd7SMatt Arsenault       // f16 div_fixup
6349068c209Sdfukalov       int Cost =
6359068c209Sdfukalov           4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
636376f1bd7SMatt Arsenault       return LT.first * Cost * NElts;
637376f1bd7SMatt Arsenault     }
638376f1bd7SMatt Arsenault 
6399651813eSMatt Arsenault     if (SLT == MVT::f32 || SLT == MVT::f16) {
6409068c209Sdfukalov       // 4 more v_cvt_* insts without f16 insts support
6419068c209Sdfukalov       int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
6429068c209Sdfukalov                  1 * getQuarterRateInstrCost(CostKind);
643376f1bd7SMatt Arsenault 
644db0ed3e4SMatt Arsenault       if (!HasFP32Denormals) {
645376f1bd7SMatt Arsenault         // FP mode switches.
646376f1bd7SMatt Arsenault         Cost += 2 * getFullRateInstrCost();
647376f1bd7SMatt Arsenault       }
648376f1bd7SMatt Arsenault 
6499651813eSMatt Arsenault       return LT.first * NElts * Cost;
6509651813eSMatt Arsenault     }
6519651813eSMatt Arsenault     break;
652129388ddSdfukalov   case ISD::FNEG:
653129388ddSdfukalov     // Use the backend' estimation. If fneg is not free each element will cost
654129388ddSdfukalov     // one additional instruction.
655129388ddSdfukalov     return TLI->isFNegFree(SLT) ? 0 : NElts;
6569651813eSMatt Arsenault   default:
6579651813eSMatt Arsenault     break;
6589651813eSMatt Arsenault   }
6599651813eSMatt Arsenault 
66076a0c0eeSdfukalov   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
66176a0c0eeSdfukalov                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
6629651813eSMatt Arsenault }
6639651813eSMatt Arsenault 
664c230965cSMatt Arsenault // Return true if there's a potential benefit from using v2f16/v2i16
665c230965cSMatt Arsenault // instructions for an intrinsic, even if it requires nontrivial legalization.
intrinsicHasPackedVectorBenefit(Intrinsic::ID ID)66666073953SMatt Arsenault static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
66766073953SMatt Arsenault   switch (ID) {
66866073953SMatt Arsenault   case Intrinsic::fma: // TODO: fmuladd
66966073953SMatt Arsenault   // There's a small benefit to using vector ops in the legalized code.
67066073953SMatt Arsenault   case Intrinsic::round:
671c230965cSMatt Arsenault   case Intrinsic::uadd_sat:
672c230965cSMatt Arsenault   case Intrinsic::usub_sat:
673c230965cSMatt Arsenault   case Intrinsic::sadd_sat:
674c230965cSMatt Arsenault   case Intrinsic::ssub_sat:
67566073953SMatt Arsenault     return true;
67666073953SMatt Arsenault   default:
67766073953SMatt Arsenault     return false;
67866073953SMatt Arsenault   }
67966073953SMatt Arsenault }
68066073953SMatt Arsenault 
6812f6f249aSSander de Smalen InstructionCost
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)6822f6f249aSSander de Smalen GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
6838cc911faSSam Parker                                   TTI::TargetCostKind CostKind) {
684871556a4SSam Parker   if (ICA.getID() == Intrinsic::fabs)
685871556a4SSam Parker     return 0;
686871556a4SSam Parker 
6878cc911faSSam Parker   if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
6888cc911faSSam Parker     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
68958578f70SStanislav Mekhanoshin 
6908cc911faSSam Parker   Type *RetTy = ICA.getReturnType();
69158578f70SStanislav Mekhanoshin 
69258578f70SStanislav Mekhanoshin   // Legalize the type.
6933489c2d7SDaniil Fukalov   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
69458578f70SStanislav Mekhanoshin 
69558578f70SStanislav Mekhanoshin   unsigned NElts = LT.second.isVector() ?
69658578f70SStanislav Mekhanoshin     LT.second.getVectorNumElements() : 1;
69758578f70SStanislav Mekhanoshin 
69858578f70SStanislav Mekhanoshin   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
69958578f70SStanislav Mekhanoshin 
70058578f70SStanislav Mekhanoshin   if (SLT == MVT::f64)
7019068c209Sdfukalov     return LT.first * NElts * get64BitInstrCost(CostKind);
70258578f70SStanislav Mekhanoshin 
703a8d9d507SStanislav Mekhanoshin   if ((ST->has16BitInsts() && SLT == MVT::f16) ||
704a8d9d507SStanislav Mekhanoshin       (ST->hasPackedFP32Ops() && SLT == MVT::f32))
70558578f70SStanislav Mekhanoshin     NElts = (NElts + 1) / 2;
70658578f70SStanislav Mekhanoshin 
70766073953SMatt Arsenault   // TODO: Get more refined intrinsic costs?
7089068c209Sdfukalov   unsigned InstRate = getQuarterRateInstrCost(CostKind);
709bd4b61efSDavid Green 
710bd4b61efSDavid Green   switch (ICA.getID()) {
711bd4b61efSDavid Green   case Intrinsic::fma:
7129068c209Sdfukalov     InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
7139068c209Sdfukalov                                    : getQuarterRateInstrCost(CostKind);
714bd4b61efSDavid Green     break;
715bd4b61efSDavid Green   case Intrinsic::uadd_sat:
716bd4b61efSDavid Green   case Intrinsic::usub_sat:
717bd4b61efSDavid Green   case Intrinsic::sadd_sat:
718bd4b61efSDavid Green   case Intrinsic::ssub_sat:
719bd4b61efSDavid Green     static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
720bd4b61efSDavid Green     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
721bd4b61efSDavid Green       NElts = 1;
722bd4b61efSDavid Green     break;
72366073953SMatt Arsenault   }
72466073953SMatt Arsenault 
72566073953SMatt Arsenault   return LT.first * NElts * InstRate;
72658578f70SStanislav Mekhanoshin }
72758578f70SStanislav Mekhanoshin 
getCFInstrCost(unsigned Opcode,TTI::TargetCostKind CostKind,const Instruction * I)72814b934f8SSander de Smalen InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode,
7298f4b7e94Sdfukalov                                            TTI::TargetCostKind CostKind,
7308f4b7e94Sdfukalov                                            const Instruction *I) {
7318f4b7e94Sdfukalov   assert((I == nullptr || I->getOpcode() == Opcode) &&
7328f4b7e94Sdfukalov          "Opcode should reflect passed instruction.");
7338f4b7e94Sdfukalov   const bool SCost =
7348f4b7e94Sdfukalov       (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency);
7358f4b7e94Sdfukalov   const int CBrCost = SCost ? 5 : 7;
736e05ff151SMatt Arsenault   switch (Opcode) {
7378f4b7e94Sdfukalov   case Instruction::Br: {
7388f4b7e94Sdfukalov     // Branch instruction takes about 4 slots on gfx900.
7398f4b7e94Sdfukalov     auto BI = dyn_cast_or_null<BranchInst>(I);
7408f4b7e94Sdfukalov     if (BI && BI->isUnconditional())
7418f4b7e94Sdfukalov       return SCost ? 1 : 4;
7428f4b7e94Sdfukalov     // Suppose conditional branch takes additional 3 exec manipulations
7438f4b7e94Sdfukalov     // instructions in average.
7448f4b7e94Sdfukalov     return CBrCost;
745e05ff151SMatt Arsenault   }
7468f4b7e94Sdfukalov   case Instruction::Switch: {
7478f4b7e94Sdfukalov     auto SI = dyn_cast_or_null<SwitchInst>(I);
7488f4b7e94Sdfukalov     // Each case (including default) takes 1 cmp + 1 cbr instructions in
7498f4b7e94Sdfukalov     // average.
7508f4b7e94Sdfukalov     return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1);
7518f4b7e94Sdfukalov   }
7528f4b7e94Sdfukalov   case Instruction::Ret:
7538f4b7e94Sdfukalov     return SCost ? 1 : 10;
7548f4b7e94Sdfukalov   }
7558f4b7e94Sdfukalov   return BaseT::getCFInstrCost(Opcode, CostKind, I);
756e05ff151SMatt Arsenault }
757e05ff151SMatt Arsenault 
758bd86824dSSander de Smalen InstructionCost
getArithmeticReductionCost(unsigned Opcode,VectorType * Ty,Optional<FastMathFlags> FMF,TTI::TargetCostKind CostKind)759bd86824dSSander de Smalen GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
7600aff1798SDavid Sherwood                                        Optional<FastMathFlags> FMF,
76140574fefSSam Parker                                        TTI::TargetCostKind CostKind) {
7620aff1798SDavid Sherwood   if (TTI::requiresOrderedReduction(FMF))
7630aff1798SDavid Sherwood     return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
7640aff1798SDavid Sherwood 
765e2dfe8a8SFarhana Aleen   EVT OrigTy = TLI->getValueType(DL, Ty);
766e2dfe8a8SFarhana Aleen 
767e2dfe8a8SFarhana Aleen   // Computes cost on targets that have packed math instructions(which support
768e2dfe8a8SFarhana Aleen   // 16-bit types only).
76938c9a406SDavid Green   if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
7700aff1798SDavid Sherwood     return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
771e2dfe8a8SFarhana Aleen 
7723489c2d7SDaniil Fukalov   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
773e2dfe8a8SFarhana Aleen   return LT.first * getFullRateInstrCost();
774e2dfe8a8SFarhana Aleen }
775e2dfe8a8SFarhana Aleen 
7762285dfb7SSander de Smalen InstructionCost
getMinMaxReductionCost(VectorType * Ty,VectorType * CondTy,bool IsUnsigned,TTI::TargetCostKind CostKind)7772285dfb7SSander de Smalen GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
77838c9a406SDavid Green                                    bool IsUnsigned,
77940574fefSSam Parker                                    TTI::TargetCostKind CostKind) {
780e24f3ff8SFarhana Aleen   EVT OrigTy = TLI->getValueType(DL, Ty);
781e24f3ff8SFarhana Aleen 
782e24f3ff8SFarhana Aleen   // Computes cost on targets that have packed math instructions(which support
783e24f3ff8SFarhana Aleen   // 16-bit types only).
78438c9a406SDavid Green   if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
78538c9a406SDavid Green     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
786e24f3ff8SFarhana Aleen 
7873489c2d7SDaniil Fukalov   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
7889068c209Sdfukalov   return LT.first * getHalfRateInstrCost(CostKind);
789e24f3ff8SFarhana Aleen }
790e24f3ff8SFarhana Aleen 
getVectorInstrCost(unsigned Opcode,Type * ValTy,unsigned Index)7911af35e77SSander de Smalen InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
792e830f542SMatt Arsenault                                                unsigned Index) {
793e830f542SMatt Arsenault   switch (Opcode) {
794e830f542SMatt Arsenault   case Instruction::ExtractElement:
7953c5e4237SMatt Arsenault   case Instruction::InsertElement: {
7963c5e4237SMatt Arsenault     unsigned EltSize
7973c5e4237SMatt Arsenault       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
7983c5e4237SMatt Arsenault     if (EltSize < 32) {
7993c5e4237SMatt Arsenault       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
8003c5e4237SMatt Arsenault         return 0;
8013c5e4237SMatt Arsenault       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
8023c5e4237SMatt Arsenault     }
8033c5e4237SMatt Arsenault 
80459767ceaSMatt Arsenault     // Extracts are just reads of a subregister, so are free. Inserts are
80559767ceaSMatt Arsenault     // considered free because we don't want to have any cost for scalarizing
80659767ceaSMatt Arsenault     // operations, and we don't have to copy into a different register class.
80759767ceaSMatt Arsenault 
808e830f542SMatt Arsenault     // Dynamic indexing isn't free and is best avoided.
809e830f542SMatt Arsenault     return Index == ~0u ? 2 : 0;
8103c5e4237SMatt Arsenault   }
811e830f542SMatt Arsenault   default:
812e830f542SMatt Arsenault     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
813e830f542SMatt Arsenault   }
814e830f542SMatt Arsenault }
815dbe374b2STom Stellard 
816cb7b661dSMatt Arsenault /// Analyze if the results of inline asm are divergent. If \p Indices is empty,
817cb7b661dSMatt Arsenault /// this is analyzing the collective result of all output registers. Otherwise,
818cb7b661dSMatt Arsenault /// this is only querying a specific result index if this returns multiple
819cb7b661dSMatt Arsenault /// registers in a struct.
isInlineAsmSourceOfDivergence(const CallInst * CI,ArrayRef<unsigned> Indices) const820cb7b661dSMatt Arsenault bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
821cb7b661dSMatt Arsenault   const CallInst *CI, ArrayRef<unsigned> Indices) const {
822cb7b661dSMatt Arsenault   // TODO: Handle complex extract indices
823cb7b661dSMatt Arsenault   if (Indices.size() > 1)
824cb7b661dSMatt Arsenault     return true;
825cb7b661dSMatt Arsenault 
826cb7b661dSMatt Arsenault   const DataLayout &DL = CI->getModule()->getDataLayout();
827cb7b661dSMatt Arsenault   const SIRegisterInfo *TRI = ST->getRegisterInfo();
82895192f54SCraig Topper   TargetLowering::AsmOperandInfoVector TargetConstraints =
82995192f54SCraig Topper       TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
830cb7b661dSMatt Arsenault 
831cb7b661dSMatt Arsenault   const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
832cb7b661dSMatt Arsenault 
833cb7b661dSMatt Arsenault   int OutputIdx = 0;
834cb7b661dSMatt Arsenault   for (auto &TC : TargetConstraints) {
835cb7b661dSMatt Arsenault     if (TC.Type != InlineAsm::isOutput)
836cb7b661dSMatt Arsenault       continue;
837cb7b661dSMatt Arsenault 
838cb7b661dSMatt Arsenault     // Skip outputs we don't care about.
839cb7b661dSMatt Arsenault     if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
840cb7b661dSMatt Arsenault       continue;
841cb7b661dSMatt Arsenault 
842cb7b661dSMatt Arsenault     TLI->ComputeConstraintToUse(TC, SDValue());
843cb7b661dSMatt Arsenault 
844d043822dSStanislav Mekhanoshin     const TargetRegisterClass *RC = TLI->getRegForInlineAsmConstraint(
845d043822dSStanislav Mekhanoshin         TRI, TC.ConstraintCode, TC.ConstraintVT).second;
846cb7b661dSMatt Arsenault 
847cb7b661dSMatt Arsenault     // For AGPR constraints null is returned on subtargets without AGPRs, so
848cb7b661dSMatt Arsenault     // assume divergent for null.
849cb7b661dSMatt Arsenault     if (!RC || !TRI->isSGPRClass(RC))
850cb7b661dSMatt Arsenault       return true;
851cb7b661dSMatt Arsenault   }
852cb7b661dSMatt Arsenault 
853cb7b661dSMatt Arsenault   return false;
854cb7b661dSMatt Arsenault }
855cb7b661dSMatt Arsenault 
856c2266463SAustin Kerbow /// \returns true if the new GPU divergence analysis is enabled.
useGPUDivergenceAnalysis() const857c2266463SAustin Kerbow bool GCNTTIImpl::useGPUDivergenceAnalysis() const {
858c2266463SAustin Kerbow   return !UseLegacyDA;
859c2266463SAustin Kerbow }
860c2266463SAustin Kerbow 
861dbe374b2STom Stellard /// \returns true if the result of the value could potentially be
862dbe374b2STom Stellard /// different across workitems in a wavefront.
isSourceOfDivergence(const Value * V) const863c7624317STom Stellard bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
864dbe374b2STom Stellard   if (const Argument *A = dyn_cast<Argument>(V))
865a022b1ccSSebastian Neubauer     return !AMDGPU::isArgPassedInSGPR(A);
866dbe374b2STom Stellard 
86772855e36SScott Linder   // Loads from the private and flat address spaces are divergent, because
86872855e36SScott Linder   // threads can execute the load instruction with the same inputs and get
86972855e36SScott Linder   // different results.
870dbe374b2STom Stellard   //
871dbe374b2STom Stellard   // All other loads are not divergent, because if threads issue loads with the
872dbe374b2STom Stellard   // same arguments, they will always get the same result.
873dbe374b2STom Stellard   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
8740da6350dSMatt Arsenault     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
8750da6350dSMatt Arsenault            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
876dbe374b2STom Stellard 
87779cad857SNicolai Haehnle   // Atomics are divergent because they are executed sequentially: when an
87879cad857SNicolai Haehnle   // atomic operation refers to the same address in each thread, then each
87979cad857SNicolai Haehnle   // thread after the first sees the value written by the previous thread as
88079cad857SNicolai Haehnle   // original value.
88179cad857SNicolai Haehnle   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
88279cad857SNicolai Haehnle     return true;
88379cad857SNicolai Haehnle 
884d2c8a337SMatt Arsenault   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
8852e5eeceeSAlexander Timofeev     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
886dbe374b2STom Stellard 
887dbe374b2STom Stellard   // Assume all function calls are a source of divergence.
888cb7b661dSMatt Arsenault   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
889a58b62b4SCraig Topper     if (CI->isInlineAsm())
890cb7b661dSMatt Arsenault       return isInlineAsmSourceOfDivergence(CI);
891cb7b661dSMatt Arsenault     return true;
892cb7b661dSMatt Arsenault   }
893cb7b661dSMatt Arsenault 
894cb7b661dSMatt Arsenault   // Assume all function calls are a source of divergence.
895cb7b661dSMatt Arsenault   if (isa<InvokeInst>(V))
896dbe374b2STom Stellard     return true;
897dbe374b2STom Stellard 
898dbe374b2STom Stellard   return false;
899dbe374b2STom Stellard }
9003c5e4237SMatt Arsenault 
isAlwaysUniform(const Value * V) const901c7624317STom Stellard bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
9020f9c84cdSAlexander Timofeev   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
9030f9c84cdSAlexander Timofeev     switch (Intrinsic->getIntrinsicID()) {
9040f9c84cdSAlexander Timofeev     default:
9050f9c84cdSAlexander Timofeev       return false;
9060f9c84cdSAlexander Timofeev     case Intrinsic::amdgcn_readfirstlane:
9070f9c84cdSAlexander Timofeev     case Intrinsic::amdgcn_readlane:
9083ed09f8eSNeil Henning     case Intrinsic::amdgcn_icmp:
9093ed09f8eSNeil Henning     case Intrinsic::amdgcn_fcmp:
9105d3a69feSSebastian Neubauer     case Intrinsic::amdgcn_ballot:
911096cd991SMatt Arsenault     case Intrinsic::amdgcn_if_break:
9120f9c84cdSAlexander Timofeev       return true;
9130f9c84cdSAlexander Timofeev     }
9140f9c84cdSAlexander Timofeev   }
915cb7b661dSMatt Arsenault 
9164f9f5d09SMatt Arsenault   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
917a58b62b4SCraig Topper     if (CI->isInlineAsm())
9184f9f5d09SMatt Arsenault       return !isInlineAsmSourceOfDivergence(CI);
9194f9f5d09SMatt Arsenault     return false;
9204f9f5d09SMatt Arsenault   }
9214f9f5d09SMatt Arsenault 
922cb7b661dSMatt Arsenault   const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
923cb7b661dSMatt Arsenault   if (!ExtValue)
924cb7b661dSMatt Arsenault     return false;
925cb7b661dSMatt Arsenault 
926096cd991SMatt Arsenault   const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
927096cd991SMatt Arsenault   if (!CI)
928096cd991SMatt Arsenault     return false;
929096cd991SMatt Arsenault 
930096cd991SMatt Arsenault   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
931096cd991SMatt Arsenault     switch (Intrinsic->getIntrinsicID()) {
932096cd991SMatt Arsenault     default:
933096cd991SMatt Arsenault       return false;
934096cd991SMatt Arsenault     case Intrinsic::amdgcn_if:
935096cd991SMatt Arsenault     case Intrinsic::amdgcn_else: {
936096cd991SMatt Arsenault       ArrayRef<unsigned> Indices = ExtValue->getIndices();
937096cd991SMatt Arsenault       return Indices.size() == 1 && Indices[0] == 1;
938096cd991SMatt Arsenault     }
939096cd991SMatt Arsenault     }
940096cd991SMatt Arsenault   }
941096cd991SMatt Arsenault 
942cb7b661dSMatt Arsenault   // If we have inline asm returning mixed SGPR and VGPR results, we inferred
943cb7b661dSMatt Arsenault   // divergent for the overall struct return. We need to override it in the
944cb7b661dSMatt Arsenault   // case we're extracting an SGPR component here.
945a58b62b4SCraig Topper   if (CI->isInlineAsm())
946cb7b661dSMatt Arsenault     return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
947cb7b661dSMatt Arsenault 
9480f9c84cdSAlexander Timofeev   return false;
9490f9c84cdSAlexander Timofeev }
9500f9c84cdSAlexander Timofeev 
collectFlatAddressOperands(SmallVectorImpl<int> & OpIndexes,Intrinsic::ID IID) const951dbc1f207SMatt Arsenault bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
952dbc1f207SMatt Arsenault                                             Intrinsic::ID IID) const {
953dbc1f207SMatt Arsenault   switch (IID) {
954dbc1f207SMatt Arsenault   case Intrinsic::amdgcn_atomic_inc:
955dbc1f207SMatt Arsenault   case Intrinsic::amdgcn_atomic_dec:
956dbc1f207SMatt Arsenault   case Intrinsic::amdgcn_ds_fadd:
957dbc1f207SMatt Arsenault   case Intrinsic::amdgcn_ds_fmin:
958dbc1f207SMatt Arsenault   case Intrinsic::amdgcn_ds_fmax:
959f581d575SMatt Arsenault   case Intrinsic::amdgcn_is_shared:
960f581d575SMatt Arsenault   case Intrinsic::amdgcn_is_private:
961dbc1f207SMatt Arsenault     OpIndexes.push_back(0);
962dbc1f207SMatt Arsenault     return true;
963dbc1f207SMatt Arsenault   default:
964dbc1f207SMatt Arsenault     return false;
965dbc1f207SMatt Arsenault   }
966dbc1f207SMatt Arsenault }
967dbc1f207SMatt Arsenault 
rewriteIntrinsicWithAddressSpace(IntrinsicInst * II,Value * OldV,Value * NewV) const968d6671ee9SMatt Arsenault Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
969d6671ee9SMatt Arsenault                                                     Value *OldV,
970d6671ee9SMatt Arsenault                                                     Value *NewV) const {
971f581d575SMatt Arsenault   auto IntrID = II->getIntrinsicID();
972f581d575SMatt Arsenault   switch (IntrID) {
973dbc1f207SMatt Arsenault   case Intrinsic::amdgcn_atomic_inc:
974dbc1f207SMatt Arsenault   case Intrinsic::amdgcn_atomic_dec:
975dbc1f207SMatt Arsenault   case Intrinsic::amdgcn_ds_fadd:
976dbc1f207SMatt Arsenault   case Intrinsic::amdgcn_ds_fmin:
977dbc1f207SMatt Arsenault   case Intrinsic::amdgcn_ds_fmax: {
978dbc1f207SMatt Arsenault     const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
979dbc1f207SMatt Arsenault     if (!IsVolatile->isZero())
980d6671ee9SMatt Arsenault       return nullptr;
981dbc1f207SMatt Arsenault     Module *M = II->getParent()->getParent()->getParent();
982dbc1f207SMatt Arsenault     Type *DestTy = II->getType();
983dbc1f207SMatt Arsenault     Type *SrcTy = NewV->getType();
984dbc1f207SMatt Arsenault     Function *NewDecl =
985dbc1f207SMatt Arsenault         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
986dbc1f207SMatt Arsenault     II->setArgOperand(0, NewV);
987dbc1f207SMatt Arsenault     II->setCalledFunction(NewDecl);
988d6671ee9SMatt Arsenault     return II;
989dbc1f207SMatt Arsenault   }
990f581d575SMatt Arsenault   case Intrinsic::amdgcn_is_shared:
991f581d575SMatt Arsenault   case Intrinsic::amdgcn_is_private: {
992f581d575SMatt Arsenault     unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
993f581d575SMatt Arsenault       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
994f581d575SMatt Arsenault     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
995f581d575SMatt Arsenault     LLVMContext &Ctx = NewV->getType()->getContext();
996f581d575SMatt Arsenault     ConstantInt *NewVal = (TrueAS == NewAS) ?
997f581d575SMatt Arsenault       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
998d6671ee9SMatt Arsenault     return NewVal;
999d6671ee9SMatt Arsenault   }
1000d6671ee9SMatt Arsenault   case Intrinsic::ptrmask: {
1001d6671ee9SMatt Arsenault     unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1002d6671ee9SMatt Arsenault     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1003d6671ee9SMatt Arsenault     Value *MaskOp = II->getArgOperand(1);
1004d6671ee9SMatt Arsenault     Type *MaskTy = MaskOp->getType();
10054859dd41SMatt Arsenault 
10064859dd41SMatt Arsenault     bool DoTruncate = false;
100757bd64ffSMatt Arsenault 
100857bd64ffSMatt Arsenault     const GCNTargetMachine &TM =
100957bd64ffSMatt Arsenault         static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
101057bd64ffSMatt Arsenault     if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
10114859dd41SMatt Arsenault       // All valid 64-bit to 32-bit casts work by chopping off the high
10124859dd41SMatt Arsenault       // bits. Any masking only clearing the low bits will also apply in the new
10134859dd41SMatt Arsenault       // address space.
10144859dd41SMatt Arsenault       if (DL.getPointerSizeInBits(OldAS) != 64 ||
10154859dd41SMatt Arsenault           DL.getPointerSizeInBits(NewAS) != 32)
10164859dd41SMatt Arsenault         return nullptr;
10174859dd41SMatt Arsenault 
10184859dd41SMatt Arsenault       // TODO: Do we need to thread more context in here?
10194859dd41SMatt Arsenault       KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
10204859dd41SMatt Arsenault       if (Known.countMinLeadingOnes() < 32)
10214859dd41SMatt Arsenault         return nullptr;
10224859dd41SMatt Arsenault 
10234859dd41SMatt Arsenault       DoTruncate = true;
10244859dd41SMatt Arsenault     }
10254859dd41SMatt Arsenault 
10264859dd41SMatt Arsenault     IRBuilder<> B(II);
10274859dd41SMatt Arsenault     if (DoTruncate) {
10284859dd41SMatt Arsenault       MaskTy = B.getInt32Ty();
10294859dd41SMatt Arsenault       MaskOp = B.CreateTrunc(MaskOp, MaskTy);
10304859dd41SMatt Arsenault     }
10314859dd41SMatt Arsenault 
10324859dd41SMatt Arsenault     return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
10334859dd41SMatt Arsenault                              {NewV, MaskOp});
1034f581d575SMatt Arsenault   }
1035dbc1f207SMatt Arsenault   default:
1036d6671ee9SMatt Arsenault     return nullptr;
1037dbc1f207SMatt Arsenault   }
1038dbc1f207SMatt Arsenault }
1039dbc1f207SMatt Arsenault 
getShuffleCost(TTI::ShuffleKind Kind,VectorType * VT,ArrayRef<int> Mask,int Index,VectorType * SubTp,ArrayRef<const Value * > Args)1040174e8f6cSSander de Smalen InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1041174e8f6cSSander de Smalen                                            VectorType *VT, ArrayRef<int> Mask,
104239aa202aSVasileios Porpodas                                            int Index, VectorType *SubTp,
1043*fa8a9feaSVasileios Porpodas                                            ArrayRef<const Value *> Args) {
104412c51f23SAlexey Bataev   Kind = improveShuffleKindFromMask(Kind, Mask);
10453c5e4237SMatt Arsenault   if (ST->hasVOP3PInsts()) {
10463254a001SChristopher Tetreault     if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
10473c5e4237SMatt Arsenault         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
10483c5e4237SMatt Arsenault       // With op_sel VOP3P instructions freely can access the low half or high
10493c5e4237SMatt Arsenault       // half of a register, so any swizzle is free.
10503c5e4237SMatt Arsenault 
10513c5e4237SMatt Arsenault       switch (Kind) {
10523c5e4237SMatt Arsenault       case TTI::SK_Broadcast:
10533c5e4237SMatt Arsenault       case TTI::SK_Reverse:
10543c5e4237SMatt Arsenault       case TTI::SK_PermuteSingleSrc:
10553c5e4237SMatt Arsenault         return 0;
10563c5e4237SMatt Arsenault       default:
10573c5e4237SMatt Arsenault         break;
10583c5e4237SMatt Arsenault       }
10593c5e4237SMatt Arsenault     }
10603c5e4237SMatt Arsenault   }
10613c5e4237SMatt Arsenault 
1062e2935dcfSDavid Green   return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp);
10633c5e4237SMatt Arsenault }
1064aac47c1cSMatt Arsenault 
areInlineCompatible(const Function * Caller,const Function * Callee) const1065c7624317STom Stellard bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
1066aac47c1cSMatt Arsenault                                      const Function *Callee) const {
1067aac47c1cSMatt Arsenault   const TargetMachine &TM = getTLI()->getTargetMachine();
1068db0ed3e4SMatt Arsenault   const GCNSubtarget *CallerST
1069db0ed3e4SMatt Arsenault     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1070db0ed3e4SMatt Arsenault   const GCNSubtarget *CalleeST
1071db0ed3e4SMatt Arsenault     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1072db0ed3e4SMatt Arsenault 
1073db0ed3e4SMatt Arsenault   const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1074db0ed3e4SMatt Arsenault   const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1075aac47c1cSMatt Arsenault 
1076aac47c1cSMatt Arsenault   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1077aac47c1cSMatt Arsenault   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1078055e4dceSMatt Arsenault   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1079055e4dceSMatt Arsenault     return false;
1080055e4dceSMatt Arsenault 
1081055e4dceSMatt Arsenault   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1082055e4dceSMatt Arsenault   // no way to support merge for backend defined attributes.
10835660bb6bSMatt Arsenault   AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
10845660bb6bSMatt Arsenault   AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
1085a11bf9a7SArthur Eubanks   if (!CallerMode.isInlineCompatible(CalleeMode))
1086a11bf9a7SArthur Eubanks     return false;
1087a11bf9a7SArthur Eubanks 
1088b70c483eSStanislav Mekhanoshin   if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
1089b70c483eSStanislav Mekhanoshin       Callee->hasFnAttribute(Attribute::InlineHint))
1090b70c483eSStanislav Mekhanoshin     return true;
1091b70c483eSStanislav Mekhanoshin 
1092a11bf9a7SArthur Eubanks   // Hack to make compile times reasonable.
1093b70c483eSStanislav Mekhanoshin   if (InlineMaxBB) {
10947c724a89SStanislav Mekhanoshin     // Single BB does not increase total BB amount.
10957c724a89SStanislav Mekhanoshin     if (Callee->size() == 1)
10967c724a89SStanislav Mekhanoshin       return true;
1097a11bf9a7SArthur Eubanks     size_t BBSize = Caller->size() + Callee->size() - 1;
1098a11bf9a7SArthur Eubanks     return BBSize <= InlineMaxBB;
1099a11bf9a7SArthur Eubanks   }
1100a11bf9a7SArthur Eubanks 
1101a11bf9a7SArthur Eubanks   return true;
1102a11bf9a7SArthur Eubanks }
1103a11bf9a7SArthur Eubanks 
adjustInliningThreshold(const CallBase * CB) const1104a11bf9a7SArthur Eubanks unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
1105a11bf9a7SArthur Eubanks   // If we have a pointer to private array passed into a function
1106a11bf9a7SArthur Eubanks   // it will not be optimized out, leaving scratch usage.
1107a11bf9a7SArthur Eubanks   // Increase the inline threshold to allow inlining in this case.
1108a11bf9a7SArthur Eubanks   uint64_t AllocaSize = 0;
1109a11bf9a7SArthur Eubanks   SmallPtrSet<const AllocaInst *, 8> AIVisited;
1110a11bf9a7SArthur Eubanks   for (Value *PtrArg : CB->args()) {
1111a11bf9a7SArthur Eubanks     PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
1112a11bf9a7SArthur Eubanks     if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS &&
1113a11bf9a7SArthur Eubanks                 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS))
1114a11bf9a7SArthur Eubanks       continue;
1115a11bf9a7SArthur Eubanks 
1116a11bf9a7SArthur Eubanks     PtrArg = getUnderlyingObject(PtrArg);
1117a11bf9a7SArthur Eubanks     if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) {
1118a11bf9a7SArthur Eubanks       if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second)
1119a11bf9a7SArthur Eubanks         continue;
1120a11bf9a7SArthur Eubanks       AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
1121a11bf9a7SArthur Eubanks       // If the amount of stack memory is excessive we will not be able
1122a11bf9a7SArthur Eubanks       // to get rid of the scratch anyway, bail out.
1123a11bf9a7SArthur Eubanks       if (AllocaSize > ArgAllocaCutoff) {
1124a11bf9a7SArthur Eubanks         AllocaSize = 0;
1125a11bf9a7SArthur Eubanks         break;
1126a11bf9a7SArthur Eubanks       }
1127a11bf9a7SArthur Eubanks     }
1128a11bf9a7SArthur Eubanks   }
1129a11bf9a7SArthur Eubanks   if (AllocaSize)
1130a11bf9a7SArthur Eubanks     return ArgAllocaCost;
1131a11bf9a7SArthur Eubanks   return 0;
1132aac47c1cSMatt Arsenault }
1133c7624317STom Stellard 
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP,OptimizationRemarkEmitter * ORE)1134c7624317STom Stellard void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
11356f6e9a86SRoman Lebedev                                          TTI::UnrollingPreferences &UP,
11366f6e9a86SRoman Lebedev                                          OptimizationRemarkEmitter *ORE) {
11376f6e9a86SRoman Lebedev   CommonTTI.getUnrollingPreferences(L, SE, UP, ORE);
1138c7624317STom Stellard }
1139c7624317STom Stellard 
getPeelingPreferences(Loop * L,ScalarEvolution & SE,TTI::PeelingPreferences & PP)1140e541e1b7SSidharth Baveja void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1141e541e1b7SSidharth Baveja                                        TTI::PeelingPreferences &PP) {
1142e541e1b7SSidharth Baveja   CommonTTI.getPeelingPreferences(L, SE, PP);
1143e541e1b7SSidharth Baveja }
1144e541e1b7SSidharth Baveja 
get64BitInstrCost(TTI::TargetCostKind CostKind) const1145560d7e04Sdfukalov int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
1146a8d9d507SStanislav Mekhanoshin   return ST->hasFullRate64Ops()
1147a8d9d507SStanislav Mekhanoshin              ? getFullRateInstrCost()
1148a8d9d507SStanislav Mekhanoshin              : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
1149560d7e04Sdfukalov                                       : getQuarterRateInstrCost(CostKind);
1150560d7e04Sdfukalov }
1151