1d16eff81SEugene Zelenko //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
245bb48eaSTom Stellard //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
645bb48eaSTom Stellard //
745bb48eaSTom Stellard //===----------------------------------------------------------------------===//
845bb48eaSTom Stellard //
945bb48eaSTom Stellard // \file
1045bb48eaSTom Stellard // This file implements a TargetTransformInfo analysis pass specific to the
1145bb48eaSTom Stellard // AMDGPU target machine. It uses the target's detailed information to provide
1245bb48eaSTom Stellard // more precise answers to certain TTI queries, while letting the target
1345bb48eaSTom Stellard // independent and default TTI implementations handle the rest.
1445bb48eaSTom Stellard //
1545bb48eaSTom Stellard //===----------------------------------------------------------------------===//
1645bb48eaSTom Stellard
1745bb48eaSTom Stellard #include "AMDGPUTargetTransformInfo.h"
186a87e9b0Sdfukalov #include "AMDGPUTargetMachine.h"
1948958d02SDaniil Fukalov #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
2045bb48eaSTom Stellard #include "llvm/Analysis/LoopInfo.h"
2145bb48eaSTom Stellard #include "llvm/Analysis/ValueTracking.h"
2299142003SNikita Popov #include "llvm/IR/IRBuilder.h"
2348958d02SDaniil Fukalov #include "llvm/IR/IntrinsicsAMDGPU.h"
24376f1bd7SMatt Arsenault #include "llvm/IR/PatternMatch.h"
251673a080SSimon Pilgrim #include "llvm/Support/KnownBits.h"
26d16eff81SEugene Zelenko
2745bb48eaSTom Stellard using namespace llvm;
2845bb48eaSTom Stellard
2945bb48eaSTom Stellard #define DEBUG_TYPE "AMDGPUtti"
3045bb48eaSTom Stellard
31f29602dfSStanislav Mekhanoshin static cl::opt<unsigned> UnrollThresholdPrivate(
32f29602dfSStanislav Mekhanoshin "amdgpu-unroll-threshold-private",
33f29602dfSStanislav Mekhanoshin cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
346fd11b14Sdfukalov cl::init(2700), cl::Hidden);
359651813eSMatt Arsenault
36baf31ac7SStanislav Mekhanoshin static cl::opt<unsigned> UnrollThresholdLocal(
37baf31ac7SStanislav Mekhanoshin "amdgpu-unroll-threshold-local",
38baf31ac7SStanislav Mekhanoshin cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
39baf31ac7SStanislav Mekhanoshin cl::init(1000), cl::Hidden);
40baf31ac7SStanislav Mekhanoshin
41478b8198SStanislav Mekhanoshin static cl::opt<unsigned> UnrollThresholdIf(
42478b8198SStanislav Mekhanoshin "amdgpu-unroll-threshold-if",
43478b8198SStanislav Mekhanoshin cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
448f4b7e94Sdfukalov cl::init(200), cl::Hidden);
45478b8198SStanislav Mekhanoshin
466b813f27SStanislav Mekhanoshin static cl::opt<bool> UnrollRuntimeLocal(
476b813f27SStanislav Mekhanoshin "amdgpu-unroll-runtime-local",
486b813f27SStanislav Mekhanoshin cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
496b813f27SStanislav Mekhanoshin cl::init(true), cl::Hidden);
506b813f27SStanislav Mekhanoshin
51c2266463SAustin Kerbow static cl::opt<bool> UseLegacyDA(
52c2266463SAustin Kerbow "amdgpu-use-legacy-divergence-analysis",
53c2266463SAustin Kerbow cl::desc("Enable legacy divergence analysis for AMDGPU"),
54c2266463SAustin Kerbow cl::init(false), cl::Hidden);
55c2266463SAustin Kerbow
56c94d32a6Sdfukalov static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
57c94d32a6Sdfukalov "amdgpu-unroll-max-block-to-analyze",
58c94d32a6Sdfukalov cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
5933e2f69aSdfukalov cl::init(32), cl::Hidden);
60c94d32a6Sdfukalov
61a11bf9a7SArthur Eubanks static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
62a11bf9a7SArthur Eubanks cl::Hidden, cl::init(4000),
63a11bf9a7SArthur Eubanks cl::desc("Cost of alloca argument"));
64a11bf9a7SArthur Eubanks
65a11bf9a7SArthur Eubanks // If the amount of scratch memory to eliminate exceeds our ability to allocate
66a11bf9a7SArthur Eubanks // it into registers we gain nothing by aggressively inlining functions for that
67a11bf9a7SArthur Eubanks // heuristic.
68a11bf9a7SArthur Eubanks static cl::opt<unsigned>
69a11bf9a7SArthur Eubanks ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
70a11bf9a7SArthur Eubanks cl::init(256),
71a11bf9a7SArthur Eubanks cl::desc("Maximum alloca size to use for inline cost"));
72a11bf9a7SArthur Eubanks
73a11bf9a7SArthur Eubanks // Inliner constraint to achieve reasonable compilation time.
74a11bf9a7SArthur Eubanks static cl::opt<size_t> InlineMaxBB(
75a11bf9a7SArthur Eubanks "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
76a11bf9a7SArthur Eubanks cl::desc("Maximum number of BBs allowed in a function after inlining"
77a11bf9a7SArthur Eubanks " (compile time constraint)"));
78a11bf9a7SArthur Eubanks
dependsOnLocalPhi(const Loop * L,const Value * Cond,unsigned Depth=0)79478b8198SStanislav Mekhanoshin static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
80478b8198SStanislav Mekhanoshin unsigned Depth = 0) {
81478b8198SStanislav Mekhanoshin const Instruction *I = dyn_cast<Instruction>(Cond);
82478b8198SStanislav Mekhanoshin if (!I)
83478b8198SStanislav Mekhanoshin return false;
84478b8198SStanislav Mekhanoshin
85478b8198SStanislav Mekhanoshin for (const Value *V : I->operand_values()) {
86478b8198SStanislav Mekhanoshin if (!L->contains(I))
87478b8198SStanislav Mekhanoshin continue;
88478b8198SStanislav Mekhanoshin if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
89d16eff81SEugene Zelenko if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
90478b8198SStanislav Mekhanoshin return SubLoop->contains(PHI); }))
91478b8198SStanislav Mekhanoshin return true;
92478b8198SStanislav Mekhanoshin } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
93478b8198SStanislav Mekhanoshin return true;
94478b8198SStanislav Mekhanoshin }
95478b8198SStanislav Mekhanoshin return false;
96478b8198SStanislav Mekhanoshin }
97478b8198SStanislav Mekhanoshin
AMDGPUTTIImpl(const AMDGPUTargetMachine * TM,const Function & F)986a87e9b0Sdfukalov AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
996a87e9b0Sdfukalov : BaseT(TM, F.getParent()->getDataLayout()),
1006a87e9b0Sdfukalov TargetTriple(TM->getTargetTriple()),
1016a87e9b0Sdfukalov ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
1026a87e9b0Sdfukalov TLI(ST->getTargetLowering()) {}
1036a87e9b0Sdfukalov
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP,OptimizationRemarkEmitter * ORE)10466d9bdbcSGeoff Berry void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1056f6e9a86SRoman Lebedev TTI::UnrollingPreferences &UP,
1066f6e9a86SRoman Lebedev OptimizationRemarkEmitter *ORE) {
1076821a3ccSTim Corringham const Function &F = *L->getHeader()->getParent();
1086821a3ccSTim Corringham UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
109d16eff81SEugene Zelenko UP.MaxCount = std::numeric_limits<unsigned>::max();
11045bb48eaSTom Stellard UP.Partial = true;
11145bb48eaSTom Stellard
1128f4b7e94Sdfukalov // Conditional branch in a loop back edge needs 3 additional exec
1138f4b7e94Sdfukalov // manipulations in average.
1148f4b7e94Sdfukalov UP.BEInsns += 3;
1158f4b7e94Sdfukalov
11645bb48eaSTom Stellard // TODO: Do we want runtime unrolling?
11745bb48eaSTom Stellard
118f29602dfSStanislav Mekhanoshin // Maximum alloca size than can fit registers. Reserve 16 registers.
119f29602dfSStanislav Mekhanoshin const unsigned MaxAlloca = (256 - 16) * 4;
120baf31ac7SStanislav Mekhanoshin unsigned ThresholdPrivate = UnrollThresholdPrivate;
121baf31ac7SStanislav Mekhanoshin unsigned ThresholdLocal = UnrollThresholdLocal;
1223c1273d7STim Corringham
1233c1273d7STim Corringham // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
1243c1273d7STim Corringham // provided threshold value as the default for Threshold
1253c1273d7STim Corringham if (MDNode *LoopUnrollThreshold =
1263c1273d7STim Corringham findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
1273c1273d7STim Corringham if (LoopUnrollThreshold->getNumOperands() == 2) {
1283c1273d7STim Corringham ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
1293c1273d7STim Corringham LoopUnrollThreshold->getOperand(1));
1303c1273d7STim Corringham if (MetaThresholdValue) {
1313c1273d7STim Corringham // We will also use the supplied value for PartialThreshold for now.
1323c1273d7STim Corringham // We may introduce additional metadata if it becomes necessary in the
1333c1273d7STim Corringham // future.
1343c1273d7STim Corringham UP.Threshold = MetaThresholdValue->getSExtValue();
1353c1273d7STim Corringham UP.PartialThreshold = UP.Threshold;
1363c1273d7STim Corringham ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
1373c1273d7STim Corringham ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
1383c1273d7STim Corringham }
1393c1273d7STim Corringham }
1403c1273d7STim Corringham }
1413c1273d7STim Corringham
142baf31ac7SStanislav Mekhanoshin unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
14345bb48eaSTom Stellard for (const BasicBlock *BB : L->getBlocks()) {
14445bb48eaSTom Stellard const DataLayout &DL = BB->getModule()->getDataLayout();
145baf31ac7SStanislav Mekhanoshin unsigned LocalGEPsSeen = 0;
146baf31ac7SStanislav Mekhanoshin
147d16eff81SEugene Zelenko if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
148478b8198SStanislav Mekhanoshin return SubLoop->contains(BB); }))
149478b8198SStanislav Mekhanoshin continue; // Block belongs to an inner loop.
150478b8198SStanislav Mekhanoshin
15145bb48eaSTom Stellard for (const Instruction &I : *BB) {
152478b8198SStanislav Mekhanoshin // Unroll a loop which contains an "if" statement whose condition
153478b8198SStanislav Mekhanoshin // defined by a PHI belonging to the loop. This may help to eliminate
154478b8198SStanislav Mekhanoshin // if region and potentially even PHI itself, saving on both divergence
155478b8198SStanislav Mekhanoshin // and registers used for the PHI.
156478b8198SStanislav Mekhanoshin // Add a small bonus for each of such "if" statements.
157478b8198SStanislav Mekhanoshin if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
158478b8198SStanislav Mekhanoshin if (UP.Threshold < MaxBoost && Br->isConditional()) {
15933c8c0eaSFlorian Hahn BasicBlock *Succ0 = Br->getSuccessor(0);
16033c8c0eaSFlorian Hahn BasicBlock *Succ1 = Br->getSuccessor(1);
16133c8c0eaSFlorian Hahn if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
16233c8c0eaSFlorian Hahn (L->contains(Succ1) && L->isLoopExiting(Succ1)))
163478b8198SStanislav Mekhanoshin continue;
164478b8198SStanislav Mekhanoshin if (dependsOnLocalPhi(L, Br->getCondition())) {
165478b8198SStanislav Mekhanoshin UP.Threshold += UnrollThresholdIf;
166d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
167d34e60caSNicola Zaghen << " for loop:\n"
168d34e60caSNicola Zaghen << *L << " due to " << *Br << '\n');
169478b8198SStanislav Mekhanoshin if (UP.Threshold >= MaxBoost)
170478b8198SStanislav Mekhanoshin return;
171478b8198SStanislav Mekhanoshin }
172478b8198SStanislav Mekhanoshin }
173478b8198SStanislav Mekhanoshin continue;
174478b8198SStanislav Mekhanoshin }
175478b8198SStanislav Mekhanoshin
17645bb48eaSTom Stellard const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
177baf31ac7SStanislav Mekhanoshin if (!GEP)
17845bb48eaSTom Stellard continue;
17945bb48eaSTom Stellard
180baf31ac7SStanislav Mekhanoshin unsigned AS = GEP->getAddressSpace();
181baf31ac7SStanislav Mekhanoshin unsigned Threshold = 0;
1820da6350dSMatt Arsenault if (AS == AMDGPUAS::PRIVATE_ADDRESS)
183baf31ac7SStanislav Mekhanoshin Threshold = ThresholdPrivate;
1844dc3b2bfSNicolai Haehnle else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
185baf31ac7SStanislav Mekhanoshin Threshold = ThresholdLocal;
186baf31ac7SStanislav Mekhanoshin else
187baf31ac7SStanislav Mekhanoshin continue;
188baf31ac7SStanislav Mekhanoshin
189baf31ac7SStanislav Mekhanoshin if (UP.Threshold >= Threshold)
190baf31ac7SStanislav Mekhanoshin continue;
191baf31ac7SStanislav Mekhanoshin
1920da6350dSMatt Arsenault if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
19345bb48eaSTom Stellard const Value *Ptr = GEP->getPointerOperand();
19445bb48eaSTom Stellard const AllocaInst *Alloca =
195b0eb40caSVitaly Buka dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
196baf31ac7SStanislav Mekhanoshin if (!Alloca || !Alloca->isStaticAlloca())
197baf31ac7SStanislav Mekhanoshin continue;
198f29602dfSStanislav Mekhanoshin Type *Ty = Alloca->getAllocatedType();
199f29602dfSStanislav Mekhanoshin unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
200f29602dfSStanislav Mekhanoshin if (AllocaSize > MaxAlloca)
201f29602dfSStanislav Mekhanoshin continue;
2024dc3b2bfSNicolai Haehnle } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
2034dc3b2bfSNicolai Haehnle AS == AMDGPUAS::REGION_ADDRESS) {
204baf31ac7SStanislav Mekhanoshin LocalGEPsSeen++;
205baf31ac7SStanislav Mekhanoshin // Inhibit unroll for local memory if we have seen addressing not to
206baf31ac7SStanislav Mekhanoshin // a variable, most likely we will be unable to combine it.
207baf31ac7SStanislav Mekhanoshin // Do not unroll too deep inner loops for local memory to give a chance
208baf31ac7SStanislav Mekhanoshin // to unroll an outer loop for a more important reason.
209baf31ac7SStanislav Mekhanoshin if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
210baf31ac7SStanislav Mekhanoshin (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
211baf31ac7SStanislav Mekhanoshin !isa<Argument>(GEP->getPointerOperand())))
212baf31ac7SStanislav Mekhanoshin continue;
2136b813f27SStanislav Mekhanoshin LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
2146b813f27SStanislav Mekhanoshin << *L << " due to LDS use.\n");
2156b813f27SStanislav Mekhanoshin UP.Runtime = UnrollRuntimeLocal;
216baf31ac7SStanislav Mekhanoshin }
217f29602dfSStanislav Mekhanoshin
218f29602dfSStanislav Mekhanoshin // Check if GEP depends on a value defined by this loop itself.
219f29602dfSStanislav Mekhanoshin bool HasLoopDef = false;
220f29602dfSStanislav Mekhanoshin for (const Value *Op : GEP->operands()) {
221f29602dfSStanislav Mekhanoshin const Instruction *Inst = dyn_cast<Instruction>(Op);
222f29602dfSStanislav Mekhanoshin if (!Inst || L->isLoopInvariant(Op))
223f29602dfSStanislav Mekhanoshin continue;
224baf31ac7SStanislav Mekhanoshin
225d16eff81SEugene Zelenko if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
226f29602dfSStanislav Mekhanoshin return SubLoop->contains(Inst); }))
227f29602dfSStanislav Mekhanoshin continue;
228f29602dfSStanislav Mekhanoshin HasLoopDef = true;
229f29602dfSStanislav Mekhanoshin break;
230f29602dfSStanislav Mekhanoshin }
231f29602dfSStanislav Mekhanoshin if (!HasLoopDef)
232f29602dfSStanislav Mekhanoshin continue;
233f29602dfSStanislav Mekhanoshin
23445bb48eaSTom Stellard // We want to do whatever we can to limit the number of alloca
23545bb48eaSTom Stellard // instructions that make it through to the code generator. allocas
23645bb48eaSTom Stellard // require us to use indirect addressing, which is slow and prone to
23745bb48eaSTom Stellard // compiler bugs. If this loop does an address calculation on an
23845bb48eaSTom Stellard // alloca ptr, then we want to use a higher than normal loop unroll
23945bb48eaSTom Stellard // threshold. This will give SROA a better chance to eliminate these
24045bb48eaSTom Stellard // allocas.
24145bb48eaSTom Stellard //
242baf31ac7SStanislav Mekhanoshin // We also want to have more unrolling for local memory to let ds
243baf31ac7SStanislav Mekhanoshin // instructions with different offsets combine.
244baf31ac7SStanislav Mekhanoshin //
24545bb48eaSTom Stellard // Don't use the maximum allowed value here as it will make some
24645bb48eaSTom Stellard // programs way too big.
247baf31ac7SStanislav Mekhanoshin UP.Threshold = Threshold;
248d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
249d34e60caSNicola Zaghen << " for loop:\n"
250baf31ac7SStanislav Mekhanoshin << *L << " due to " << *GEP << '\n');
251478b8198SStanislav Mekhanoshin if (UP.Threshold >= MaxBoost)
252f29602dfSStanislav Mekhanoshin return;
25345bb48eaSTom Stellard }
254c94d32a6Sdfukalov
255c94d32a6Sdfukalov // If we got a GEP in a small BB from inner loop then increase max trip
256c94d32a6Sdfukalov // count to analyze for better estimation cost in unroll
25749f27449SFangrui Song if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
258c94d32a6Sdfukalov UP.MaxIterationsCountToAnalyze = 32;
25945bb48eaSTom Stellard }
26045bb48eaSTom Stellard }
26145bb48eaSTom Stellard
getPeelingPreferences(Loop * L,ScalarEvolution & SE,TTI::PeelingPreferences & PP)262e541e1b7SSidharth Baveja void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
263e541e1b7SSidharth Baveja TTI::PeelingPreferences &PP) {
264e541e1b7SSidharth Baveja BaseT::getPeelingPreferences(L, SE, PP);
265e541e1b7SSidharth Baveja }
2666a87e9b0Sdfukalov
267560d7e04Sdfukalov const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
268560d7e04Sdfukalov // Codegen control options which don't matter.
269560d7e04Sdfukalov AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
270560d7e04Sdfukalov AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
271560d7e04Sdfukalov AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
272560d7e04Sdfukalov AMDGPU::FeatureUnalignedAccessMode,
273560d7e04Sdfukalov
274560d7e04Sdfukalov AMDGPU::FeatureAutoWaitcntBeforeBarrier,
275560d7e04Sdfukalov
276560d7e04Sdfukalov // Property of the kernel/environment which can't actually differ.
277560d7e04Sdfukalov AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
278560d7e04Sdfukalov AMDGPU::FeatureTrapHandler,
279560d7e04Sdfukalov
280560d7e04Sdfukalov // The default assumption needs to be ecc is enabled, but no directly
281560d7e04Sdfukalov // exposed operations depend on it, so it can be safely inlined.
282560d7e04Sdfukalov AMDGPU::FeatureSRAMECC,
283560d7e04Sdfukalov
284560d7e04Sdfukalov // Perf-tuning features
285560d7e04Sdfukalov AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
286560d7e04Sdfukalov
GCNTTIImpl(const AMDGPUTargetMachine * TM,const Function & F)2876a87e9b0Sdfukalov GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
2886a87e9b0Sdfukalov : BaseT(TM, F.getParent()->getDataLayout()),
2896a87e9b0Sdfukalov ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
2906a87e9b0Sdfukalov TLI(ST->getTargetLowering()), CommonTTI(TM, F),
291fced87d4SStanislav Mekhanoshin IsGraphics(AMDGPU::isGraphics(F.getCallingConv())) {
2926a87e9b0Sdfukalov AMDGPU::SIModeRegisterDefaults Mode(F);
2936a87e9b0Sdfukalov HasFP32Denormals = Mode.allFP32Denormals();
2946a87e9b0Sdfukalov HasFP64FP16Denormals = Mode.allFP64FP16Denormals();
2956a87e9b0Sdfukalov }
2966a87e9b0Sdfukalov
getNumberOfRegisters(unsigned RCID) const297fced87d4SStanislav Mekhanoshin unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
298fced87d4SStanislav Mekhanoshin // NB: RCID is not an RCID. In fact it is 0 or 1 for scalar or vector
299fced87d4SStanislav Mekhanoshin // registers. See getRegisterClassForType for the implementation.
300fced87d4SStanislav Mekhanoshin // In this case vector registers are not vector in terms of
301fced87d4SStanislav Mekhanoshin // VGPRs, but those which can hold multiple values.
30245bb48eaSTom Stellard
30367cd347eSMatt Arsenault // This is really the number of registers to fill when vectorizing /
30467cd347eSMatt Arsenault // interleaving loops, so we lie to avoid trying to use all registers.
305fced87d4SStanislav Mekhanoshin return 4;
30677f8f813SStanislav Mekhanoshin }
30777f8f813SStanislav Mekhanoshin
30855d18b3cSSander de Smalen TypeSize
getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const30955d18b3cSSander de Smalen GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
31055d18b3cSSander de Smalen switch (K) {
31155d18b3cSSander de Smalen case TargetTransformInfo::RGK_Scalar:
31255d18b3cSSander de Smalen return TypeSize::getFixed(32);
31355d18b3cSSander de Smalen case TargetTransformInfo::RGK_FixedWidthVector:
31455d18b3cSSander de Smalen return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
31555d18b3cSSander de Smalen case TargetTransformInfo::RGK_ScalableVector:
31655d18b3cSSander de Smalen return TypeSize::getScalable(0);
31755d18b3cSSander de Smalen }
31855d18b3cSSander de Smalen llvm_unreachable("Unsupported register kind");
31967cd347eSMatt Arsenault }
32067cd347eSMatt Arsenault
getMinVectorRegisterBitWidth() const321c7624317STom Stellard unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
32267cd347eSMatt Arsenault return 32;
3234339b3ffSMatt Arsenault }
32445bb48eaSTom Stellard
getMaximumVF(unsigned ElemWidth,unsigned Opcode) const32587d7757bSStanislav Mekhanoshin unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
32687d7757bSStanislav Mekhanoshin if (Opcode == Instruction::Load || Opcode == Instruction::Store)
32787d7757bSStanislav Mekhanoshin return 32 * 4 / ElemWidth;
328a8d9d507SStanislav Mekhanoshin return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
329a8d9d507SStanislav Mekhanoshin : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
330a8d9d507SStanislav Mekhanoshin : 1;
33187d7757bSStanislav Mekhanoshin }
33287d7757bSStanislav Mekhanoshin
getLoadVectorFactor(unsigned VF,unsigned LoadSize,unsigned ChainSizeInBytes,VectorType * VecTy) const333c7624317STom Stellard unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
33489196642SFarhana Aleen unsigned ChainSizeInBytes,
33589196642SFarhana Aleen VectorType *VecTy) const {
33689196642SFarhana Aleen unsigned VecRegBitWidth = VF * LoadSize;
33789196642SFarhana Aleen if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
33889196642SFarhana Aleen // TODO: Support element-size less than 32bit?
33989196642SFarhana Aleen return 128 / LoadSize;
34089196642SFarhana Aleen
34189196642SFarhana Aleen return VF;
34289196642SFarhana Aleen }
34389196642SFarhana Aleen
getStoreVectorFactor(unsigned VF,unsigned StoreSize,unsigned ChainSizeInBytes,VectorType * VecTy) const344c7624317STom Stellard unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
34589196642SFarhana Aleen unsigned ChainSizeInBytes,
34689196642SFarhana Aleen VectorType *VecTy) const {
34789196642SFarhana Aleen unsigned VecRegBitWidth = VF * StoreSize;
34889196642SFarhana Aleen if (VecRegBitWidth > 128)
34989196642SFarhana Aleen return 128 / StoreSize;
35089196642SFarhana Aleen
35189196642SFarhana Aleen return VF;
35289196642SFarhana Aleen }
35389196642SFarhana Aleen
getLoadStoreVecRegBitWidth(unsigned AddrSpace) const354c7624317STom Stellard unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
3550da6350dSMatt Arsenault if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
3560da6350dSMatt Arsenault AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
357523dab07SNeil Henning AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
358523dab07SNeil Henning AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
35989196642SFarhana Aleen return 512;
36089196642SFarhana Aleen }
36189196642SFarhana Aleen
3620da6350dSMatt Arsenault if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
3630994bd57SMatt Arsenault return 8 * ST->getMaxPrivateElementSize();
3641a14bfa0SYaxun Liu
36578a43f10SMatt Arsenault // Common to flat, global, local and region. Assume for unknown addrspace.
36678a43f10SMatt Arsenault return 128;
3670994bd57SMatt Arsenault }
3680994bd57SMatt Arsenault
isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace) const369c7624317STom Stellard bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
3701507fc15SGuillaume Chatelet Align Alignment,
371f0a88dbaSMatt Arsenault unsigned AddrSpace) const {
372f0a88dbaSMatt Arsenault // We allow vectorization of flat stores, even though we may need to decompose
373f0a88dbaSMatt Arsenault // them later if they may access private memory. We don't have enough context
374f0a88dbaSMatt Arsenault // here, and legalization can handle it.
3750da6350dSMatt Arsenault if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
376f0a88dbaSMatt Arsenault return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
377f0a88dbaSMatt Arsenault ChainSizeInBytes <= ST->getMaxPrivateElementSize();
378f0a88dbaSMatt Arsenault }
379f0a88dbaSMatt Arsenault return true;
380f0a88dbaSMatt Arsenault }
381f0a88dbaSMatt Arsenault
isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace) const382c7624317STom Stellard bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
3831507fc15SGuillaume Chatelet Align Alignment,
384f0a88dbaSMatt Arsenault unsigned AddrSpace) const {
385f0a88dbaSMatt Arsenault return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
386f0a88dbaSMatt Arsenault }
387f0a88dbaSMatt Arsenault
isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace) const388c7624317STom Stellard bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
3891507fc15SGuillaume Chatelet Align Alignment,
390f0a88dbaSMatt Arsenault unsigned AddrSpace) const {
391f0a88dbaSMatt Arsenault return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
392f0a88dbaSMatt Arsenault }
393f0a88dbaSMatt Arsenault
394cee65d51SJay Foad // FIXME: Really we would like to issue multiple 128-bit loads and stores per
395cee65d51SJay Foad // iteration. Should we report a larger size and let it legalize?
396cee65d51SJay Foad //
397cee65d51SJay Foad // FIXME: Should we use narrower types for local/region, or account for when
398cee65d51SJay Foad // unaligned access is legal?
399cee65d51SJay Foad //
400cee65d51SJay Foad // FIXME: This could use fine tuning and microbenchmarks.
getMemcpyLoopLoweringType(LLVMContext & Context,Value * Length,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign,Optional<uint32_t> AtomicElementSize) const401da41214dSEvgeniy Brevnov Type *GCNTTIImpl::getMemcpyLoopLoweringType(
402da41214dSEvgeniy Brevnov LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
403da41214dSEvgeniy Brevnov unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
404da41214dSEvgeniy Brevnov Optional<uint32_t> AtomicElementSize) const {
405da41214dSEvgeniy Brevnov
406da41214dSEvgeniy Brevnov if (AtomicElementSize)
407da41214dSEvgeniy Brevnov return Type::getIntNTy(Context, *AtomicElementSize * 8);
408da41214dSEvgeniy Brevnov
409cee65d51SJay Foad unsigned MinAlign = std::min(SrcAlign, DestAlign);
410cee65d51SJay Foad
411cee65d51SJay Foad // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
412cee65d51SJay Foad // hardware into byte accesses. If you assume all alignments are equally
413cee65d51SJay Foad // probable, it's more efficient on average to use short accesses for this
414cee65d51SJay Foad // case.
415cee65d51SJay Foad if (MinAlign == 2)
416cee65d51SJay Foad return Type::getInt16Ty(Context);
417cee65d51SJay Foad
418cee65d51SJay Foad // Not all subtargets have 128-bit DS instructions, and we currently don't
419cee65d51SJay Foad // form them by default.
420cee65d51SJay Foad if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
421cee65d51SJay Foad SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
422cee65d51SJay Foad DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
423cee65d51SJay Foad DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
424aad93654SChristopher Tetreault return FixedVectorType::get(Type::getInt32Ty(Context), 2);
425cee65d51SJay Foad }
426cee65d51SJay Foad
427cee65d51SJay Foad // Global memory works best with 16-byte accesses. Private memory will also
428cee65d51SJay Foad // hit this, although they'll be decomposed.
429aad93654SChristopher Tetreault return FixedVectorType::get(Type::getInt32Ty(Context), 4);
430cee65d51SJay Foad }
431cee65d51SJay Foad
getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type * > & OpsOut,LLVMContext & Context,unsigned RemainingBytes,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign,Optional<uint32_t> AtomicCpySize) const432cee65d51SJay Foad void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
433cee65d51SJay Foad SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
434cee65d51SJay Foad unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
435da41214dSEvgeniy Brevnov unsigned SrcAlign, unsigned DestAlign,
436da41214dSEvgeniy Brevnov Optional<uint32_t> AtomicCpySize) const {
437cee65d51SJay Foad assert(RemainingBytes < 16);
438cee65d51SJay Foad
439da41214dSEvgeniy Brevnov if (AtomicCpySize)
440da41214dSEvgeniy Brevnov BaseT::getMemcpyLoopResidualLoweringType(
441da41214dSEvgeniy Brevnov OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
442da41214dSEvgeniy Brevnov DestAlign, AtomicCpySize);
443da41214dSEvgeniy Brevnov
444cee65d51SJay Foad unsigned MinAlign = std::min(SrcAlign, DestAlign);
445cee65d51SJay Foad
446cee65d51SJay Foad if (MinAlign != 2) {
447cee65d51SJay Foad Type *I64Ty = Type::getInt64Ty(Context);
448cee65d51SJay Foad while (RemainingBytes >= 8) {
449cee65d51SJay Foad OpsOut.push_back(I64Ty);
450cee65d51SJay Foad RemainingBytes -= 8;
451cee65d51SJay Foad }
452cee65d51SJay Foad
453cee65d51SJay Foad Type *I32Ty = Type::getInt32Ty(Context);
454cee65d51SJay Foad while (RemainingBytes >= 4) {
455cee65d51SJay Foad OpsOut.push_back(I32Ty);
456cee65d51SJay Foad RemainingBytes -= 4;
457cee65d51SJay Foad }
458cee65d51SJay Foad }
459cee65d51SJay Foad
460cee65d51SJay Foad Type *I16Ty = Type::getInt16Ty(Context);
461cee65d51SJay Foad while (RemainingBytes >= 2) {
462cee65d51SJay Foad OpsOut.push_back(I16Ty);
463cee65d51SJay Foad RemainingBytes -= 2;
464cee65d51SJay Foad }
465cee65d51SJay Foad
466cee65d51SJay Foad Type *I8Ty = Type::getInt8Ty(Context);
467cee65d51SJay Foad while (RemainingBytes) {
468cee65d51SJay Foad OpsOut.push_back(I8Ty);
469cee65d51SJay Foad --RemainingBytes;
470cee65d51SJay Foad }
471cee65d51SJay Foad }
472cee65d51SJay Foad
getMaxInterleaveFactor(unsigned VF)473c7624317STom Stellard unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
4741be9b9f8SChangpeng Fang // Disable unrolling if the loop is not vectorized.
47567cd347eSMatt Arsenault // TODO: Enable this again.
4761be9b9f8SChangpeng Fang if (VF == 1)
4771be9b9f8SChangpeng Fang return 1;
4781be9b9f8SChangpeng Fang
47967cd347eSMatt Arsenault return 8;
48045bb48eaSTom Stellard }
481e830f542SMatt Arsenault
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info) const482c7624317STom Stellard bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
4833e268cc0SMatt Arsenault MemIntrinsicInfo &Info) const {
4843e268cc0SMatt Arsenault switch (Inst->getIntrinsicID()) {
4853e268cc0SMatt Arsenault case Intrinsic::amdgcn_atomic_inc:
4866e1dc681SDaniil Fukalov case Intrinsic::amdgcn_atomic_dec:
487c5cec5e1SMarek Olsak case Intrinsic::amdgcn_ds_ordered_add:
488c5cec5e1SMarek Olsak case Intrinsic::amdgcn_ds_ordered_swap:
4896e1dc681SDaniil Fukalov case Intrinsic::amdgcn_ds_fadd:
4906e1dc681SDaniil Fukalov case Intrinsic::amdgcn_ds_fmin:
4916e1dc681SDaniil Fukalov case Intrinsic::amdgcn_ds_fmax: {
4923e268cc0SMatt Arsenault auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
4933e268cc0SMatt Arsenault auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
4943e268cc0SMatt Arsenault if (!Ordering || !Volatile)
4953e268cc0SMatt Arsenault return false; // Invalid.
4963e268cc0SMatt Arsenault
4973e268cc0SMatt Arsenault unsigned OrderingVal = Ordering->getZExtValue();
4983e268cc0SMatt Arsenault if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
4993e268cc0SMatt Arsenault return false;
5003e268cc0SMatt Arsenault
5013e268cc0SMatt Arsenault Info.PtrVal = Inst->getArgOperand(0);
5023e268cc0SMatt Arsenault Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
5033e268cc0SMatt Arsenault Info.ReadMem = true;
5043e268cc0SMatt Arsenault Info.WriteMem = true;
505477b9bc9SJay Foad Info.IsVolatile = !Volatile->isZero();
5063e268cc0SMatt Arsenault return true;
5073e268cc0SMatt Arsenault }
5083e268cc0SMatt Arsenault default:
5093e268cc0SMatt Arsenault return false;
5103e268cc0SMatt Arsenault }
5113e268cc0SMatt Arsenault }
5123e268cc0SMatt Arsenault
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::TargetCostKind CostKind,TTI::OperandValueKind Opd1Info,TTI::OperandValueKind Opd2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args,const Instruction * CxtI)5134f42d873SSander de Smalen InstructionCost GCNTTIImpl::getArithmeticInstrCost(
5144f42d873SSander de Smalen unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
5154f42d873SSander de Smalen TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
516be7a1070SDavid Green TTI::OperandValueProperties Opd1PropInfo,
5174f42d873SSander de Smalen TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
518be7a1070SDavid Green const Instruction *CxtI) {
5199651813eSMatt Arsenault
5209651813eSMatt Arsenault // Legalize the type.
5213489c2d7SDaniil Fukalov std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
5229651813eSMatt Arsenault int ISD = TLI->InstructionOpcodeToISD(Opcode);
5239651813eSMatt Arsenault
5249651813eSMatt Arsenault // Because we don't have any legal vector operations, but the legal types, we
5259651813eSMatt Arsenault // need to account for split vectors.
5269651813eSMatt Arsenault unsigned NElts = LT.second.isVector() ?
5279651813eSMatt Arsenault LT.second.getVectorNumElements() : 1;
5289651813eSMatt Arsenault
5299651813eSMatt Arsenault MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
5309651813eSMatt Arsenault
5319651813eSMatt Arsenault switch (ISD) {
5328c8fcb25SMatt Arsenault case ISD::SHL:
5338c8fcb25SMatt Arsenault case ISD::SRL:
534d16eff81SEugene Zelenko case ISD::SRA:
5358c8fcb25SMatt Arsenault if (SLT == MVT::i64)
5369068c209Sdfukalov return get64BitInstrCost(CostKind) * LT.first * NElts;
5378c8fcb25SMatt Arsenault
538b8ac5894SStanislav Mekhanoshin if (ST->has16BitInsts() && SLT == MVT::i16)
539b8ac5894SStanislav Mekhanoshin NElts = (NElts + 1) / 2;
540b8ac5894SStanislav Mekhanoshin
5418c8fcb25SMatt Arsenault // i32
5428c8fcb25SMatt Arsenault return getFullRateInstrCost() * LT.first * NElts;
5438c8fcb25SMatt Arsenault case ISD::ADD:
5448c8fcb25SMatt Arsenault case ISD::SUB:
5458c8fcb25SMatt Arsenault case ISD::AND:
5468c8fcb25SMatt Arsenault case ISD::OR:
547d16eff81SEugene Zelenko case ISD::XOR:
5488c8fcb25SMatt Arsenault if (SLT == MVT::i64) {
5498c8fcb25SMatt Arsenault // and, or and xor are typically split into 2 VALU instructions.
5508c8fcb25SMatt Arsenault return 2 * getFullRateInstrCost() * LT.first * NElts;
5518c8fcb25SMatt Arsenault }
5528c8fcb25SMatt Arsenault
553b8ac5894SStanislav Mekhanoshin if (ST->has16BitInsts() && SLT == MVT::i16)
554b8ac5894SStanislav Mekhanoshin NElts = (NElts + 1) / 2;
555b8ac5894SStanislav Mekhanoshin
5568c8fcb25SMatt Arsenault return LT.first * NElts * getFullRateInstrCost();
5578c8fcb25SMatt Arsenault case ISD::MUL: {
5589068c209Sdfukalov const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
5598c8fcb25SMatt Arsenault if (SLT == MVT::i64) {
5608c8fcb25SMatt Arsenault const int FullRateCost = getFullRateInstrCost();
5618c8fcb25SMatt Arsenault return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
5628c8fcb25SMatt Arsenault }
5638c8fcb25SMatt Arsenault
564b8ac5894SStanislav Mekhanoshin if (ST->has16BitInsts() && SLT == MVT::i16)
565b8ac5894SStanislav Mekhanoshin NElts = (NElts + 1) / 2;
566b8ac5894SStanislav Mekhanoshin
5678c8fcb25SMatt Arsenault // i32
5688c8fcb25SMatt Arsenault return QuarterRateCost * NElts * LT.first;
5698c8fcb25SMatt Arsenault }
57076a0c0eeSdfukalov case ISD::FMUL:
57176a0c0eeSdfukalov // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
57276a0c0eeSdfukalov // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
57376a0c0eeSdfukalov // fused operation.
5744ccc3881Sdfukalov if (CxtI && CxtI->hasOneUse())
57576a0c0eeSdfukalov if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
57676a0c0eeSdfukalov const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
57776a0c0eeSdfukalov if (OPC == ISD::FADD || OPC == ISD::FSUB) {
5784ccc3881Sdfukalov if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
5794ccc3881Sdfukalov return TargetTransformInfo::TCC_Free;
5804ccc3881Sdfukalov if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
5814ccc3881Sdfukalov return TargetTransformInfo::TCC_Free;
5824ccc3881Sdfukalov
5834ccc3881Sdfukalov // Estimate all types may be fused with contract/unsafe flags
5844ccc3881Sdfukalov const TargetOptions &Options = TLI->getTargetMachine().Options;
5854ccc3881Sdfukalov if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
5864ccc3881Sdfukalov Options.UnsafeFPMath ||
5874ccc3881Sdfukalov (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
58876a0c0eeSdfukalov return TargetTransformInfo::TCC_Free;
58976a0c0eeSdfukalov }
59076a0c0eeSdfukalov }
59176a0c0eeSdfukalov LLVM_FALLTHROUGH;
5929651813eSMatt Arsenault case ISD::FADD:
5939651813eSMatt Arsenault case ISD::FSUB:
594a8d9d507SStanislav Mekhanoshin if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
595a8d9d507SStanislav Mekhanoshin NElts = (NElts + 1) / 2;
5969651813eSMatt Arsenault if (SLT == MVT::f64)
5979068c209Sdfukalov return LT.first * NElts * get64BitInstrCost(CostKind);
5989651813eSMatt Arsenault
599b8ac5894SStanislav Mekhanoshin if (ST->has16BitInsts() && SLT == MVT::f16)
600b8ac5894SStanislav Mekhanoshin NElts = (NElts + 1) / 2;
601b8ac5894SStanislav Mekhanoshin
6029651813eSMatt Arsenault if (SLT == MVT::f32 || SLT == MVT::f16)
6039651813eSMatt Arsenault return LT.first * NElts * getFullRateInstrCost();
6049651813eSMatt Arsenault break;
6059651813eSMatt Arsenault case ISD::FDIV:
6069651813eSMatt Arsenault case ISD::FREM:
6079651813eSMatt Arsenault // FIXME: frem should be handled separately. The fdiv in it is most of it,
6089651813eSMatt Arsenault // but the current lowering is also not entirely correct.
6099651813eSMatt Arsenault if (SLT == MVT::f64) {
6109068c209Sdfukalov int Cost = 7 * get64BitInstrCost(CostKind) +
6119068c209Sdfukalov getQuarterRateInstrCost(CostKind) +
6129068c209Sdfukalov 3 * getHalfRateInstrCost(CostKind);
6139651813eSMatt Arsenault // Add cost of workaround.
614e4c2e9b0SMatt Arsenault if (!ST->hasUsableDivScaleConditionOutput())
6159651813eSMatt Arsenault Cost += 3 * getFullRateInstrCost();
6169651813eSMatt Arsenault
6179651813eSMatt Arsenault return LT.first * Cost * NElts;
6189651813eSMatt Arsenault }
6199651813eSMatt Arsenault
620376f1bd7SMatt Arsenault if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
621376f1bd7SMatt Arsenault // TODO: This is more complicated, unsafe flags etc.
622db0ed3e4SMatt Arsenault if ((SLT == MVT::f32 && !HasFP32Denormals) ||
623376f1bd7SMatt Arsenault (SLT == MVT::f16 && ST->has16BitInsts())) {
6249068c209Sdfukalov return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
625376f1bd7SMatt Arsenault }
626376f1bd7SMatt Arsenault }
627376f1bd7SMatt Arsenault
628376f1bd7SMatt Arsenault if (SLT == MVT::f16 && ST->has16BitInsts()) {
629376f1bd7SMatt Arsenault // 2 x v_cvt_f32_f16
630376f1bd7SMatt Arsenault // f32 rcp
631376f1bd7SMatt Arsenault // f32 fmul
632376f1bd7SMatt Arsenault // v_cvt_f16_f32
633376f1bd7SMatt Arsenault // f16 div_fixup
6349068c209Sdfukalov int Cost =
6359068c209Sdfukalov 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
636376f1bd7SMatt Arsenault return LT.first * Cost * NElts;
637376f1bd7SMatt Arsenault }
638376f1bd7SMatt Arsenault
6399651813eSMatt Arsenault if (SLT == MVT::f32 || SLT == MVT::f16) {
6409068c209Sdfukalov // 4 more v_cvt_* insts without f16 insts support
6419068c209Sdfukalov int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
6429068c209Sdfukalov 1 * getQuarterRateInstrCost(CostKind);
643376f1bd7SMatt Arsenault
644db0ed3e4SMatt Arsenault if (!HasFP32Denormals) {
645376f1bd7SMatt Arsenault // FP mode switches.
646376f1bd7SMatt Arsenault Cost += 2 * getFullRateInstrCost();
647376f1bd7SMatt Arsenault }
648376f1bd7SMatt Arsenault
6499651813eSMatt Arsenault return LT.first * NElts * Cost;
6509651813eSMatt Arsenault }
6519651813eSMatt Arsenault break;
652129388ddSdfukalov case ISD::FNEG:
653129388ddSdfukalov // Use the backend' estimation. If fneg is not free each element will cost
654129388ddSdfukalov // one additional instruction.
655129388ddSdfukalov return TLI->isFNegFree(SLT) ? 0 : NElts;
6569651813eSMatt Arsenault default:
6579651813eSMatt Arsenault break;
6589651813eSMatt Arsenault }
6599651813eSMatt Arsenault
66076a0c0eeSdfukalov return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
66176a0c0eeSdfukalov Opd1PropInfo, Opd2PropInfo, Args, CxtI);
6629651813eSMatt Arsenault }
6639651813eSMatt Arsenault
664c230965cSMatt Arsenault // Return true if there's a potential benefit from using v2f16/v2i16
665c230965cSMatt Arsenault // instructions for an intrinsic, even if it requires nontrivial legalization.
intrinsicHasPackedVectorBenefit(Intrinsic::ID ID)66666073953SMatt Arsenault static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
66766073953SMatt Arsenault switch (ID) {
66866073953SMatt Arsenault case Intrinsic::fma: // TODO: fmuladd
66966073953SMatt Arsenault // There's a small benefit to using vector ops in the legalized code.
67066073953SMatt Arsenault case Intrinsic::round:
671c230965cSMatt Arsenault case Intrinsic::uadd_sat:
672c230965cSMatt Arsenault case Intrinsic::usub_sat:
673c230965cSMatt Arsenault case Intrinsic::sadd_sat:
674c230965cSMatt Arsenault case Intrinsic::ssub_sat:
67566073953SMatt Arsenault return true;
67666073953SMatt Arsenault default:
67766073953SMatt Arsenault return false;
67866073953SMatt Arsenault }
67966073953SMatt Arsenault }
68066073953SMatt Arsenault
6812f6f249aSSander de Smalen InstructionCost
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)6822f6f249aSSander de Smalen GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
6838cc911faSSam Parker TTI::TargetCostKind CostKind) {
684871556a4SSam Parker if (ICA.getID() == Intrinsic::fabs)
685871556a4SSam Parker return 0;
686871556a4SSam Parker
6878cc911faSSam Parker if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
6888cc911faSSam Parker return BaseT::getIntrinsicInstrCost(ICA, CostKind);
68958578f70SStanislav Mekhanoshin
6908cc911faSSam Parker Type *RetTy = ICA.getReturnType();
69158578f70SStanislav Mekhanoshin
69258578f70SStanislav Mekhanoshin // Legalize the type.
6933489c2d7SDaniil Fukalov std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
69458578f70SStanislav Mekhanoshin
69558578f70SStanislav Mekhanoshin unsigned NElts = LT.second.isVector() ?
69658578f70SStanislav Mekhanoshin LT.second.getVectorNumElements() : 1;
69758578f70SStanislav Mekhanoshin
69858578f70SStanislav Mekhanoshin MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
69958578f70SStanislav Mekhanoshin
70058578f70SStanislav Mekhanoshin if (SLT == MVT::f64)
7019068c209Sdfukalov return LT.first * NElts * get64BitInstrCost(CostKind);
70258578f70SStanislav Mekhanoshin
703a8d9d507SStanislav Mekhanoshin if ((ST->has16BitInsts() && SLT == MVT::f16) ||
704a8d9d507SStanislav Mekhanoshin (ST->hasPackedFP32Ops() && SLT == MVT::f32))
70558578f70SStanislav Mekhanoshin NElts = (NElts + 1) / 2;
70658578f70SStanislav Mekhanoshin
70766073953SMatt Arsenault // TODO: Get more refined intrinsic costs?
7089068c209Sdfukalov unsigned InstRate = getQuarterRateInstrCost(CostKind);
709bd4b61efSDavid Green
710bd4b61efSDavid Green switch (ICA.getID()) {
711bd4b61efSDavid Green case Intrinsic::fma:
7129068c209Sdfukalov InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
7139068c209Sdfukalov : getQuarterRateInstrCost(CostKind);
714bd4b61efSDavid Green break;
715bd4b61efSDavid Green case Intrinsic::uadd_sat:
716bd4b61efSDavid Green case Intrinsic::usub_sat:
717bd4b61efSDavid Green case Intrinsic::sadd_sat:
718bd4b61efSDavid Green case Intrinsic::ssub_sat:
719bd4b61efSDavid Green static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
720bd4b61efSDavid Green if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; }))
721bd4b61efSDavid Green NElts = 1;
722bd4b61efSDavid Green break;
72366073953SMatt Arsenault }
72466073953SMatt Arsenault
72566073953SMatt Arsenault return LT.first * NElts * InstRate;
72658578f70SStanislav Mekhanoshin }
72758578f70SStanislav Mekhanoshin
getCFInstrCost(unsigned Opcode,TTI::TargetCostKind CostKind,const Instruction * I)72814b934f8SSander de Smalen InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode,
7298f4b7e94Sdfukalov TTI::TargetCostKind CostKind,
7308f4b7e94Sdfukalov const Instruction *I) {
7318f4b7e94Sdfukalov assert((I == nullptr || I->getOpcode() == Opcode) &&
7328f4b7e94Sdfukalov "Opcode should reflect passed instruction.");
7338f4b7e94Sdfukalov const bool SCost =
7348f4b7e94Sdfukalov (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency);
7358f4b7e94Sdfukalov const int CBrCost = SCost ? 5 : 7;
736e05ff151SMatt Arsenault switch (Opcode) {
7378f4b7e94Sdfukalov case Instruction::Br: {
7388f4b7e94Sdfukalov // Branch instruction takes about 4 slots on gfx900.
7398f4b7e94Sdfukalov auto BI = dyn_cast_or_null<BranchInst>(I);
7408f4b7e94Sdfukalov if (BI && BI->isUnconditional())
7418f4b7e94Sdfukalov return SCost ? 1 : 4;
7428f4b7e94Sdfukalov // Suppose conditional branch takes additional 3 exec manipulations
7438f4b7e94Sdfukalov // instructions in average.
7448f4b7e94Sdfukalov return CBrCost;
745e05ff151SMatt Arsenault }
7468f4b7e94Sdfukalov case Instruction::Switch: {
7478f4b7e94Sdfukalov auto SI = dyn_cast_or_null<SwitchInst>(I);
7488f4b7e94Sdfukalov // Each case (including default) takes 1 cmp + 1 cbr instructions in
7498f4b7e94Sdfukalov // average.
7508f4b7e94Sdfukalov return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1);
7518f4b7e94Sdfukalov }
7528f4b7e94Sdfukalov case Instruction::Ret:
7538f4b7e94Sdfukalov return SCost ? 1 : 10;
7548f4b7e94Sdfukalov }
7558f4b7e94Sdfukalov return BaseT::getCFInstrCost(Opcode, CostKind, I);
756e05ff151SMatt Arsenault }
757e05ff151SMatt Arsenault
758bd86824dSSander de Smalen InstructionCost
getArithmeticReductionCost(unsigned Opcode,VectorType * Ty,Optional<FastMathFlags> FMF,TTI::TargetCostKind CostKind)759bd86824dSSander de Smalen GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
7600aff1798SDavid Sherwood Optional<FastMathFlags> FMF,
76140574fefSSam Parker TTI::TargetCostKind CostKind) {
7620aff1798SDavid Sherwood if (TTI::requiresOrderedReduction(FMF))
7630aff1798SDavid Sherwood return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
7640aff1798SDavid Sherwood
765e2dfe8a8SFarhana Aleen EVT OrigTy = TLI->getValueType(DL, Ty);
766e2dfe8a8SFarhana Aleen
767e2dfe8a8SFarhana Aleen // Computes cost on targets that have packed math instructions(which support
768e2dfe8a8SFarhana Aleen // 16-bit types only).
76938c9a406SDavid Green if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
7700aff1798SDavid Sherwood return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
771e2dfe8a8SFarhana Aleen
7723489c2d7SDaniil Fukalov std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
773e2dfe8a8SFarhana Aleen return LT.first * getFullRateInstrCost();
774e2dfe8a8SFarhana Aleen }
775e2dfe8a8SFarhana Aleen
7762285dfb7SSander de Smalen InstructionCost
getMinMaxReductionCost(VectorType * Ty,VectorType * CondTy,bool IsUnsigned,TTI::TargetCostKind CostKind)7772285dfb7SSander de Smalen GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
77838c9a406SDavid Green bool IsUnsigned,
77940574fefSSam Parker TTI::TargetCostKind CostKind) {
780e24f3ff8SFarhana Aleen EVT OrigTy = TLI->getValueType(DL, Ty);
781e24f3ff8SFarhana Aleen
782e24f3ff8SFarhana Aleen // Computes cost on targets that have packed math instructions(which support
783e24f3ff8SFarhana Aleen // 16-bit types only).
78438c9a406SDavid Green if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
78538c9a406SDavid Green return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
786e24f3ff8SFarhana Aleen
7873489c2d7SDaniil Fukalov std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
7889068c209Sdfukalov return LT.first * getHalfRateInstrCost(CostKind);
789e24f3ff8SFarhana Aleen }
790e24f3ff8SFarhana Aleen
getVectorInstrCost(unsigned Opcode,Type * ValTy,unsigned Index)7911af35e77SSander de Smalen InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
792e830f542SMatt Arsenault unsigned Index) {
793e830f542SMatt Arsenault switch (Opcode) {
794e830f542SMatt Arsenault case Instruction::ExtractElement:
7953c5e4237SMatt Arsenault case Instruction::InsertElement: {
7963c5e4237SMatt Arsenault unsigned EltSize
7973c5e4237SMatt Arsenault = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
7983c5e4237SMatt Arsenault if (EltSize < 32) {
7993c5e4237SMatt Arsenault if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
8003c5e4237SMatt Arsenault return 0;
8013c5e4237SMatt Arsenault return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
8023c5e4237SMatt Arsenault }
8033c5e4237SMatt Arsenault
80459767ceaSMatt Arsenault // Extracts are just reads of a subregister, so are free. Inserts are
80559767ceaSMatt Arsenault // considered free because we don't want to have any cost for scalarizing
80659767ceaSMatt Arsenault // operations, and we don't have to copy into a different register class.
80759767ceaSMatt Arsenault
808e830f542SMatt Arsenault // Dynamic indexing isn't free and is best avoided.
809e830f542SMatt Arsenault return Index == ~0u ? 2 : 0;
8103c5e4237SMatt Arsenault }
811e830f542SMatt Arsenault default:
812e830f542SMatt Arsenault return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
813e830f542SMatt Arsenault }
814e830f542SMatt Arsenault }
815dbe374b2STom Stellard
816cb7b661dSMatt Arsenault /// Analyze if the results of inline asm are divergent. If \p Indices is empty,
817cb7b661dSMatt Arsenault /// this is analyzing the collective result of all output registers. Otherwise,
818cb7b661dSMatt Arsenault /// this is only querying a specific result index if this returns multiple
819cb7b661dSMatt Arsenault /// registers in a struct.
isInlineAsmSourceOfDivergence(const CallInst * CI,ArrayRef<unsigned> Indices) const820cb7b661dSMatt Arsenault bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
821cb7b661dSMatt Arsenault const CallInst *CI, ArrayRef<unsigned> Indices) const {
822cb7b661dSMatt Arsenault // TODO: Handle complex extract indices
823cb7b661dSMatt Arsenault if (Indices.size() > 1)
824cb7b661dSMatt Arsenault return true;
825cb7b661dSMatt Arsenault
826cb7b661dSMatt Arsenault const DataLayout &DL = CI->getModule()->getDataLayout();
827cb7b661dSMatt Arsenault const SIRegisterInfo *TRI = ST->getRegisterInfo();
82895192f54SCraig Topper TargetLowering::AsmOperandInfoVector TargetConstraints =
82995192f54SCraig Topper TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
830cb7b661dSMatt Arsenault
831cb7b661dSMatt Arsenault const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
832cb7b661dSMatt Arsenault
833cb7b661dSMatt Arsenault int OutputIdx = 0;
834cb7b661dSMatt Arsenault for (auto &TC : TargetConstraints) {
835cb7b661dSMatt Arsenault if (TC.Type != InlineAsm::isOutput)
836cb7b661dSMatt Arsenault continue;
837cb7b661dSMatt Arsenault
838cb7b661dSMatt Arsenault // Skip outputs we don't care about.
839cb7b661dSMatt Arsenault if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
840cb7b661dSMatt Arsenault continue;
841cb7b661dSMatt Arsenault
842cb7b661dSMatt Arsenault TLI->ComputeConstraintToUse(TC, SDValue());
843cb7b661dSMatt Arsenault
844d043822dSStanislav Mekhanoshin const TargetRegisterClass *RC = TLI->getRegForInlineAsmConstraint(
845d043822dSStanislav Mekhanoshin TRI, TC.ConstraintCode, TC.ConstraintVT).second;
846cb7b661dSMatt Arsenault
847cb7b661dSMatt Arsenault // For AGPR constraints null is returned on subtargets without AGPRs, so
848cb7b661dSMatt Arsenault // assume divergent for null.
849cb7b661dSMatt Arsenault if (!RC || !TRI->isSGPRClass(RC))
850cb7b661dSMatt Arsenault return true;
851cb7b661dSMatt Arsenault }
852cb7b661dSMatt Arsenault
853cb7b661dSMatt Arsenault return false;
854cb7b661dSMatt Arsenault }
855cb7b661dSMatt Arsenault
856c2266463SAustin Kerbow /// \returns true if the new GPU divergence analysis is enabled.
useGPUDivergenceAnalysis() const857c2266463SAustin Kerbow bool GCNTTIImpl::useGPUDivergenceAnalysis() const {
858c2266463SAustin Kerbow return !UseLegacyDA;
859c2266463SAustin Kerbow }
860c2266463SAustin Kerbow
861dbe374b2STom Stellard /// \returns true if the result of the value could potentially be
862dbe374b2STom Stellard /// different across workitems in a wavefront.
isSourceOfDivergence(const Value * V) const863c7624317STom Stellard bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
864dbe374b2STom Stellard if (const Argument *A = dyn_cast<Argument>(V))
865a022b1ccSSebastian Neubauer return !AMDGPU::isArgPassedInSGPR(A);
866dbe374b2STom Stellard
86772855e36SScott Linder // Loads from the private and flat address spaces are divergent, because
86872855e36SScott Linder // threads can execute the load instruction with the same inputs and get
86972855e36SScott Linder // different results.
870dbe374b2STom Stellard //
871dbe374b2STom Stellard // All other loads are not divergent, because if threads issue loads with the
872dbe374b2STom Stellard // same arguments, they will always get the same result.
873dbe374b2STom Stellard if (const LoadInst *Load = dyn_cast<LoadInst>(V))
8740da6350dSMatt Arsenault return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
8750da6350dSMatt Arsenault Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
876dbe374b2STom Stellard
87779cad857SNicolai Haehnle // Atomics are divergent because they are executed sequentially: when an
87879cad857SNicolai Haehnle // atomic operation refers to the same address in each thread, then each
87979cad857SNicolai Haehnle // thread after the first sees the value written by the previous thread as
88079cad857SNicolai Haehnle // original value.
88179cad857SNicolai Haehnle if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
88279cad857SNicolai Haehnle return true;
88379cad857SNicolai Haehnle
884d2c8a337SMatt Arsenault if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
8852e5eeceeSAlexander Timofeev return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
886dbe374b2STom Stellard
887dbe374b2STom Stellard // Assume all function calls are a source of divergence.
888cb7b661dSMatt Arsenault if (const CallInst *CI = dyn_cast<CallInst>(V)) {
889a58b62b4SCraig Topper if (CI->isInlineAsm())
890cb7b661dSMatt Arsenault return isInlineAsmSourceOfDivergence(CI);
891cb7b661dSMatt Arsenault return true;
892cb7b661dSMatt Arsenault }
893cb7b661dSMatt Arsenault
894cb7b661dSMatt Arsenault // Assume all function calls are a source of divergence.
895cb7b661dSMatt Arsenault if (isa<InvokeInst>(V))
896dbe374b2STom Stellard return true;
897dbe374b2STom Stellard
898dbe374b2STom Stellard return false;
899dbe374b2STom Stellard }
9003c5e4237SMatt Arsenault
isAlwaysUniform(const Value * V) const901c7624317STom Stellard bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
9020f9c84cdSAlexander Timofeev if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
9030f9c84cdSAlexander Timofeev switch (Intrinsic->getIntrinsicID()) {
9040f9c84cdSAlexander Timofeev default:
9050f9c84cdSAlexander Timofeev return false;
9060f9c84cdSAlexander Timofeev case Intrinsic::amdgcn_readfirstlane:
9070f9c84cdSAlexander Timofeev case Intrinsic::amdgcn_readlane:
9083ed09f8eSNeil Henning case Intrinsic::amdgcn_icmp:
9093ed09f8eSNeil Henning case Intrinsic::amdgcn_fcmp:
9105d3a69feSSebastian Neubauer case Intrinsic::amdgcn_ballot:
911096cd991SMatt Arsenault case Intrinsic::amdgcn_if_break:
9120f9c84cdSAlexander Timofeev return true;
9130f9c84cdSAlexander Timofeev }
9140f9c84cdSAlexander Timofeev }
915cb7b661dSMatt Arsenault
9164f9f5d09SMatt Arsenault if (const CallInst *CI = dyn_cast<CallInst>(V)) {
917a58b62b4SCraig Topper if (CI->isInlineAsm())
9184f9f5d09SMatt Arsenault return !isInlineAsmSourceOfDivergence(CI);
9194f9f5d09SMatt Arsenault return false;
9204f9f5d09SMatt Arsenault }
9214f9f5d09SMatt Arsenault
922cb7b661dSMatt Arsenault const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
923cb7b661dSMatt Arsenault if (!ExtValue)
924cb7b661dSMatt Arsenault return false;
925cb7b661dSMatt Arsenault
926096cd991SMatt Arsenault const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
927096cd991SMatt Arsenault if (!CI)
928096cd991SMatt Arsenault return false;
929096cd991SMatt Arsenault
930096cd991SMatt Arsenault if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
931096cd991SMatt Arsenault switch (Intrinsic->getIntrinsicID()) {
932096cd991SMatt Arsenault default:
933096cd991SMatt Arsenault return false;
934096cd991SMatt Arsenault case Intrinsic::amdgcn_if:
935096cd991SMatt Arsenault case Intrinsic::amdgcn_else: {
936096cd991SMatt Arsenault ArrayRef<unsigned> Indices = ExtValue->getIndices();
937096cd991SMatt Arsenault return Indices.size() == 1 && Indices[0] == 1;
938096cd991SMatt Arsenault }
939096cd991SMatt Arsenault }
940096cd991SMatt Arsenault }
941096cd991SMatt Arsenault
942cb7b661dSMatt Arsenault // If we have inline asm returning mixed SGPR and VGPR results, we inferred
943cb7b661dSMatt Arsenault // divergent for the overall struct return. We need to override it in the
944cb7b661dSMatt Arsenault // case we're extracting an SGPR component here.
945a58b62b4SCraig Topper if (CI->isInlineAsm())
946cb7b661dSMatt Arsenault return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
947cb7b661dSMatt Arsenault
9480f9c84cdSAlexander Timofeev return false;
9490f9c84cdSAlexander Timofeev }
9500f9c84cdSAlexander Timofeev
collectFlatAddressOperands(SmallVectorImpl<int> & OpIndexes,Intrinsic::ID IID) const951dbc1f207SMatt Arsenault bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
952dbc1f207SMatt Arsenault Intrinsic::ID IID) const {
953dbc1f207SMatt Arsenault switch (IID) {
954dbc1f207SMatt Arsenault case Intrinsic::amdgcn_atomic_inc:
955dbc1f207SMatt Arsenault case Intrinsic::amdgcn_atomic_dec:
956dbc1f207SMatt Arsenault case Intrinsic::amdgcn_ds_fadd:
957dbc1f207SMatt Arsenault case Intrinsic::amdgcn_ds_fmin:
958dbc1f207SMatt Arsenault case Intrinsic::amdgcn_ds_fmax:
959f581d575SMatt Arsenault case Intrinsic::amdgcn_is_shared:
960f581d575SMatt Arsenault case Intrinsic::amdgcn_is_private:
961dbc1f207SMatt Arsenault OpIndexes.push_back(0);
962dbc1f207SMatt Arsenault return true;
963dbc1f207SMatt Arsenault default:
964dbc1f207SMatt Arsenault return false;
965dbc1f207SMatt Arsenault }
966dbc1f207SMatt Arsenault }
967dbc1f207SMatt Arsenault
rewriteIntrinsicWithAddressSpace(IntrinsicInst * II,Value * OldV,Value * NewV) const968d6671ee9SMatt Arsenault Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
969d6671ee9SMatt Arsenault Value *OldV,
970d6671ee9SMatt Arsenault Value *NewV) const {
971f581d575SMatt Arsenault auto IntrID = II->getIntrinsicID();
972f581d575SMatt Arsenault switch (IntrID) {
973dbc1f207SMatt Arsenault case Intrinsic::amdgcn_atomic_inc:
974dbc1f207SMatt Arsenault case Intrinsic::amdgcn_atomic_dec:
975dbc1f207SMatt Arsenault case Intrinsic::amdgcn_ds_fadd:
976dbc1f207SMatt Arsenault case Intrinsic::amdgcn_ds_fmin:
977dbc1f207SMatt Arsenault case Intrinsic::amdgcn_ds_fmax: {
978dbc1f207SMatt Arsenault const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
979dbc1f207SMatt Arsenault if (!IsVolatile->isZero())
980d6671ee9SMatt Arsenault return nullptr;
981dbc1f207SMatt Arsenault Module *M = II->getParent()->getParent()->getParent();
982dbc1f207SMatt Arsenault Type *DestTy = II->getType();
983dbc1f207SMatt Arsenault Type *SrcTy = NewV->getType();
984dbc1f207SMatt Arsenault Function *NewDecl =
985dbc1f207SMatt Arsenault Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
986dbc1f207SMatt Arsenault II->setArgOperand(0, NewV);
987dbc1f207SMatt Arsenault II->setCalledFunction(NewDecl);
988d6671ee9SMatt Arsenault return II;
989dbc1f207SMatt Arsenault }
990f581d575SMatt Arsenault case Intrinsic::amdgcn_is_shared:
991f581d575SMatt Arsenault case Intrinsic::amdgcn_is_private: {
992f581d575SMatt Arsenault unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
993f581d575SMatt Arsenault AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
994f581d575SMatt Arsenault unsigned NewAS = NewV->getType()->getPointerAddressSpace();
995f581d575SMatt Arsenault LLVMContext &Ctx = NewV->getType()->getContext();
996f581d575SMatt Arsenault ConstantInt *NewVal = (TrueAS == NewAS) ?
997f581d575SMatt Arsenault ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
998d6671ee9SMatt Arsenault return NewVal;
999d6671ee9SMatt Arsenault }
1000d6671ee9SMatt Arsenault case Intrinsic::ptrmask: {
1001d6671ee9SMatt Arsenault unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1002d6671ee9SMatt Arsenault unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1003d6671ee9SMatt Arsenault Value *MaskOp = II->getArgOperand(1);
1004d6671ee9SMatt Arsenault Type *MaskTy = MaskOp->getType();
10054859dd41SMatt Arsenault
10064859dd41SMatt Arsenault bool DoTruncate = false;
100757bd64ffSMatt Arsenault
100857bd64ffSMatt Arsenault const GCNTargetMachine &TM =
100957bd64ffSMatt Arsenault static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
101057bd64ffSMatt Arsenault if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
10114859dd41SMatt Arsenault // All valid 64-bit to 32-bit casts work by chopping off the high
10124859dd41SMatt Arsenault // bits. Any masking only clearing the low bits will also apply in the new
10134859dd41SMatt Arsenault // address space.
10144859dd41SMatt Arsenault if (DL.getPointerSizeInBits(OldAS) != 64 ||
10154859dd41SMatt Arsenault DL.getPointerSizeInBits(NewAS) != 32)
10164859dd41SMatt Arsenault return nullptr;
10174859dd41SMatt Arsenault
10184859dd41SMatt Arsenault // TODO: Do we need to thread more context in here?
10194859dd41SMatt Arsenault KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
10204859dd41SMatt Arsenault if (Known.countMinLeadingOnes() < 32)
10214859dd41SMatt Arsenault return nullptr;
10224859dd41SMatt Arsenault
10234859dd41SMatt Arsenault DoTruncate = true;
10244859dd41SMatt Arsenault }
10254859dd41SMatt Arsenault
10264859dd41SMatt Arsenault IRBuilder<> B(II);
10274859dd41SMatt Arsenault if (DoTruncate) {
10284859dd41SMatt Arsenault MaskTy = B.getInt32Ty();
10294859dd41SMatt Arsenault MaskOp = B.CreateTrunc(MaskOp, MaskTy);
10304859dd41SMatt Arsenault }
10314859dd41SMatt Arsenault
10324859dd41SMatt Arsenault return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
10334859dd41SMatt Arsenault {NewV, MaskOp});
1034f581d575SMatt Arsenault }
1035dbc1f207SMatt Arsenault default:
1036d6671ee9SMatt Arsenault return nullptr;
1037dbc1f207SMatt Arsenault }
1038dbc1f207SMatt Arsenault }
1039dbc1f207SMatt Arsenault
getShuffleCost(TTI::ShuffleKind Kind,VectorType * VT,ArrayRef<int> Mask,int Index,VectorType * SubTp,ArrayRef<const Value * > Args)1040174e8f6cSSander de Smalen InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1041174e8f6cSSander de Smalen VectorType *VT, ArrayRef<int> Mask,
104239aa202aSVasileios Porpodas int Index, VectorType *SubTp,
1043*fa8a9feaSVasileios Porpodas ArrayRef<const Value *> Args) {
104412c51f23SAlexey Bataev Kind = improveShuffleKindFromMask(Kind, Mask);
10453c5e4237SMatt Arsenault if (ST->hasVOP3PInsts()) {
10463254a001SChristopher Tetreault if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
10473c5e4237SMatt Arsenault DL.getTypeSizeInBits(VT->getElementType()) == 16) {
10483c5e4237SMatt Arsenault // With op_sel VOP3P instructions freely can access the low half or high
10493c5e4237SMatt Arsenault // half of a register, so any swizzle is free.
10503c5e4237SMatt Arsenault
10513c5e4237SMatt Arsenault switch (Kind) {
10523c5e4237SMatt Arsenault case TTI::SK_Broadcast:
10533c5e4237SMatt Arsenault case TTI::SK_Reverse:
10543c5e4237SMatt Arsenault case TTI::SK_PermuteSingleSrc:
10553c5e4237SMatt Arsenault return 0;
10563c5e4237SMatt Arsenault default:
10573c5e4237SMatt Arsenault break;
10583c5e4237SMatt Arsenault }
10593c5e4237SMatt Arsenault }
10603c5e4237SMatt Arsenault }
10613c5e4237SMatt Arsenault
1062e2935dcfSDavid Green return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp);
10633c5e4237SMatt Arsenault }
1064aac47c1cSMatt Arsenault
areInlineCompatible(const Function * Caller,const Function * Callee) const1065c7624317STom Stellard bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
1066aac47c1cSMatt Arsenault const Function *Callee) const {
1067aac47c1cSMatt Arsenault const TargetMachine &TM = getTLI()->getTargetMachine();
1068db0ed3e4SMatt Arsenault const GCNSubtarget *CallerST
1069db0ed3e4SMatt Arsenault = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1070db0ed3e4SMatt Arsenault const GCNSubtarget *CalleeST
1071db0ed3e4SMatt Arsenault = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1072db0ed3e4SMatt Arsenault
1073db0ed3e4SMatt Arsenault const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1074db0ed3e4SMatt Arsenault const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1075aac47c1cSMatt Arsenault
1076aac47c1cSMatt Arsenault FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1077aac47c1cSMatt Arsenault FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1078055e4dceSMatt Arsenault if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1079055e4dceSMatt Arsenault return false;
1080055e4dceSMatt Arsenault
1081055e4dceSMatt Arsenault // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1082055e4dceSMatt Arsenault // no way to support merge for backend defined attributes.
10835660bb6bSMatt Arsenault AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
10845660bb6bSMatt Arsenault AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
1085a11bf9a7SArthur Eubanks if (!CallerMode.isInlineCompatible(CalleeMode))
1086a11bf9a7SArthur Eubanks return false;
1087a11bf9a7SArthur Eubanks
1088b70c483eSStanislav Mekhanoshin if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
1089b70c483eSStanislav Mekhanoshin Callee->hasFnAttribute(Attribute::InlineHint))
1090b70c483eSStanislav Mekhanoshin return true;
1091b70c483eSStanislav Mekhanoshin
1092a11bf9a7SArthur Eubanks // Hack to make compile times reasonable.
1093b70c483eSStanislav Mekhanoshin if (InlineMaxBB) {
10947c724a89SStanislav Mekhanoshin // Single BB does not increase total BB amount.
10957c724a89SStanislav Mekhanoshin if (Callee->size() == 1)
10967c724a89SStanislav Mekhanoshin return true;
1097a11bf9a7SArthur Eubanks size_t BBSize = Caller->size() + Callee->size() - 1;
1098a11bf9a7SArthur Eubanks return BBSize <= InlineMaxBB;
1099a11bf9a7SArthur Eubanks }
1100a11bf9a7SArthur Eubanks
1101a11bf9a7SArthur Eubanks return true;
1102a11bf9a7SArthur Eubanks }
1103a11bf9a7SArthur Eubanks
adjustInliningThreshold(const CallBase * CB) const1104a11bf9a7SArthur Eubanks unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
1105a11bf9a7SArthur Eubanks // If we have a pointer to private array passed into a function
1106a11bf9a7SArthur Eubanks // it will not be optimized out, leaving scratch usage.
1107a11bf9a7SArthur Eubanks // Increase the inline threshold to allow inlining in this case.
1108a11bf9a7SArthur Eubanks uint64_t AllocaSize = 0;
1109a11bf9a7SArthur Eubanks SmallPtrSet<const AllocaInst *, 8> AIVisited;
1110a11bf9a7SArthur Eubanks for (Value *PtrArg : CB->args()) {
1111a11bf9a7SArthur Eubanks PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
1112a11bf9a7SArthur Eubanks if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS &&
1113a11bf9a7SArthur Eubanks Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS))
1114a11bf9a7SArthur Eubanks continue;
1115a11bf9a7SArthur Eubanks
1116a11bf9a7SArthur Eubanks PtrArg = getUnderlyingObject(PtrArg);
1117a11bf9a7SArthur Eubanks if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) {
1118a11bf9a7SArthur Eubanks if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second)
1119a11bf9a7SArthur Eubanks continue;
1120a11bf9a7SArthur Eubanks AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
1121a11bf9a7SArthur Eubanks // If the amount of stack memory is excessive we will not be able
1122a11bf9a7SArthur Eubanks // to get rid of the scratch anyway, bail out.
1123a11bf9a7SArthur Eubanks if (AllocaSize > ArgAllocaCutoff) {
1124a11bf9a7SArthur Eubanks AllocaSize = 0;
1125a11bf9a7SArthur Eubanks break;
1126a11bf9a7SArthur Eubanks }
1127a11bf9a7SArthur Eubanks }
1128a11bf9a7SArthur Eubanks }
1129a11bf9a7SArthur Eubanks if (AllocaSize)
1130a11bf9a7SArthur Eubanks return ArgAllocaCost;
1131a11bf9a7SArthur Eubanks return 0;
1132aac47c1cSMatt Arsenault }
1133c7624317STom Stellard
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP,OptimizationRemarkEmitter * ORE)1134c7624317STom Stellard void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
11356f6e9a86SRoman Lebedev TTI::UnrollingPreferences &UP,
11366f6e9a86SRoman Lebedev OptimizationRemarkEmitter *ORE) {
11376f6e9a86SRoman Lebedev CommonTTI.getUnrollingPreferences(L, SE, UP, ORE);
1138c7624317STom Stellard }
1139c7624317STom Stellard
getPeelingPreferences(Loop * L,ScalarEvolution & SE,TTI::PeelingPreferences & PP)1140e541e1b7SSidharth Baveja void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1141e541e1b7SSidharth Baveja TTI::PeelingPreferences &PP) {
1142e541e1b7SSidharth Baveja CommonTTI.getPeelingPreferences(L, SE, PP);
1143e541e1b7SSidharth Baveja }
1144e541e1b7SSidharth Baveja
get64BitInstrCost(TTI::TargetCostKind CostKind) const1145560d7e04Sdfukalov int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
1146a8d9d507SStanislav Mekhanoshin return ST->hasFullRate64Ops()
1147a8d9d507SStanislav Mekhanoshin ? getFullRateInstrCost()
1148a8d9d507SStanislav Mekhanoshin : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
1149560d7e04Sdfukalov : getQuarterRateInstrCost(CostKind);
1150560d7e04Sdfukalov }
1151