1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUInstructionSelector.h" 20 #include "AMDGPULegalizerInfo.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPUTargetObjectFile.h" 23 #include "AMDGPUTargetTransformInfo.h" 24 #include "GCNIterativeScheduler.h" 25 #include "GCNSchedStrategy.h" 26 #include "R600MachineScheduler.h" 27 #include "SIMachineFunctionInfo.h" 28 #include "SIMachineScheduler.h" 29 #include "TargetInfo/AMDGPUTargetInfo.h" 30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/Localizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MIRParser/MIParser.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/LegacyPassManager.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Compiler.h" 45 #include "llvm/Support/TargetRegistry.h" 46 #include "llvm/Target/TargetLoweringObjectFile.h" 47 #include "llvm/Transforms/IPO.h" 48 #include "llvm/Transforms/IPO/AlwaysInliner.h" 49 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 50 #include "llvm/Transforms/Scalar.h" 51 #include "llvm/Transforms/Scalar/GVN.h" 52 #include "llvm/Transforms/Utils.h" 53 #include "llvm/Transforms/Vectorize.h" 54 #include <memory> 55 56 using namespace llvm; 57 58 static cl::opt<bool> EnableR600StructurizeCFG( 59 "r600-ir-structurize", 60 cl::desc("Use StructurizeCFG IR pass"), 61 cl::init(true)); 62 63 static cl::opt<bool> EnableSROA( 64 "amdgpu-sroa", 65 cl::desc("Run SROA after promote alloca pass"), 66 cl::ReallyHidden, 67 cl::init(true)); 68 69 static cl::opt<bool> 70 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 71 cl::desc("Run early if-conversion"), 72 cl::init(false)); 73 74 static cl::opt<bool> 75 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 76 cl::desc("Run pre-RA exec mask optimizations"), 77 cl::init(true)); 78 79 static cl::opt<bool> EnableR600IfConvert( 80 "r600-if-convert", 81 cl::desc("Use if conversion pass"), 82 cl::ReallyHidden, 83 cl::init(true)); 84 85 // Option to disable vectorizer for tests. 86 static cl::opt<bool> EnableLoadStoreVectorizer( 87 "amdgpu-load-store-vectorizer", 88 cl::desc("Enable load store vectorizer"), 89 cl::init(true), 90 cl::Hidden); 91 92 // Option to control global loads scalarization 93 static cl::opt<bool> ScalarizeGlobal( 94 "amdgpu-scalarize-global-loads", 95 cl::desc("Enable global load scalarization"), 96 cl::init(true), 97 cl::Hidden); 98 99 // Option to run internalize pass. 100 static cl::opt<bool> InternalizeSymbols( 101 "amdgpu-internalize-symbols", 102 cl::desc("Enable elimination of non-kernel functions and unused globals"), 103 cl::init(false), 104 cl::Hidden); 105 106 // Option to inline all early. 107 static cl::opt<bool> EarlyInlineAll( 108 "amdgpu-early-inline-all", 109 cl::desc("Inline all functions early"), 110 cl::init(false), 111 cl::Hidden); 112 113 static cl::opt<bool> EnableSDWAPeephole( 114 "amdgpu-sdwa-peephole", 115 cl::desc("Enable SDWA peepholer"), 116 cl::init(true)); 117 118 static cl::opt<bool> EnableDPPCombine( 119 "amdgpu-dpp-combine", 120 cl::desc("Enable DPP combiner"), 121 cl::init(true)); 122 123 // Enable address space based alias analysis 124 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 125 cl::desc("Enable AMDGPU Alias Analysis"), 126 cl::init(true)); 127 128 // Option to run late CFG structurizer 129 static cl::opt<bool, true> LateCFGStructurize( 130 "amdgpu-late-structurize", 131 cl::desc("Enable late CFG structurization"), 132 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 133 cl::Hidden); 134 135 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 136 "amdgpu-function-calls", 137 cl::desc("Enable AMDGPU function call support"), 138 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 139 cl::init(true), 140 cl::Hidden); 141 142 // Enable lib calls simplifications 143 static cl::opt<bool> EnableLibCallSimplify( 144 "amdgpu-simplify-libcall", 145 cl::desc("Enable amdgpu library simplifications"), 146 cl::init(true), 147 cl::Hidden); 148 149 static cl::opt<bool> EnableLowerKernelArguments( 150 "amdgpu-ir-lower-kernel-arguments", 151 cl::desc("Lower kernel argument loads in IR pass"), 152 cl::init(true), 153 cl::Hidden); 154 155 static cl::opt<bool> EnableRegReassign( 156 "amdgpu-reassign-regs", 157 cl::desc("Enable register reassign optimizations on gfx10+"), 158 cl::init(true), 159 cl::Hidden); 160 161 // Enable atomic optimization 162 static cl::opt<bool> EnableAtomicOptimizations( 163 "amdgpu-atomic-optimizations", 164 cl::desc("Enable atomic optimizations"), 165 cl::init(false), 166 cl::Hidden); 167 168 // Enable Mode register optimization 169 static cl::opt<bool> EnableSIModeRegisterPass( 170 "amdgpu-mode-register", 171 cl::desc("Enable mode register pass"), 172 cl::init(true), 173 cl::Hidden); 174 175 // Option is used in lit tests to prevent deadcoding of patterns inspected. 176 static cl::opt<bool> 177 EnableDCEInRA("amdgpu-dce-in-ra", 178 cl::init(true), cl::Hidden, 179 cl::desc("Enable machine DCE inside regalloc")); 180 181 static cl::opt<bool> EnableScalarIRPasses( 182 "amdgpu-scalar-ir-passes", 183 cl::desc("Enable scalar IR passes"), 184 cl::init(true), 185 cl::Hidden); 186 187 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 188 // Register the target 189 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 190 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 191 192 PassRegistry *PR = PassRegistry::getPassRegistry(); 193 initializeR600ClauseMergePassPass(*PR); 194 initializeR600ControlFlowFinalizerPass(*PR); 195 initializeR600PacketizerPass(*PR); 196 initializeR600ExpandSpecialInstrsPassPass(*PR); 197 initializeR600VectorRegMergerPass(*PR); 198 initializeGlobalISel(*PR); 199 initializeAMDGPUDAGToDAGISelPass(*PR); 200 initializeGCNDPPCombinePass(*PR); 201 initializeSILowerI1CopiesPass(*PR); 202 initializeSILowerSGPRSpillsPass(*PR); 203 initializeSIFixSGPRCopiesPass(*PR); 204 initializeSIFixVGPRCopiesPass(*PR); 205 initializeSIFixupVectorISelPass(*PR); 206 initializeSIFoldOperandsPass(*PR); 207 initializeSIPeepholeSDWAPass(*PR); 208 initializeSIShrinkInstructionsPass(*PR); 209 initializeSIOptimizeExecMaskingPreRAPass(*PR); 210 initializeSILoadStoreOptimizerPass(*PR); 211 initializeAMDGPUFixFunctionBitcastsPass(*PR); 212 initializeAMDGPUAlwaysInlinePass(*PR); 213 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 214 initializeAMDGPUAnnotateUniformValuesPass(*PR); 215 initializeAMDGPUArgumentUsageInfoPass(*PR); 216 initializeAMDGPUAtomicOptimizerPass(*PR); 217 initializeAMDGPULowerKernelArgumentsPass(*PR); 218 initializeAMDGPULowerKernelAttributesPass(*PR); 219 initializeAMDGPULowerIntrinsicsPass(*PR); 220 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 221 initializeAMDGPUPreLegalizerCombinerPass(*PR); 222 initializeAMDGPUPromoteAllocaPass(*PR); 223 initializeAMDGPUCodeGenPreparePass(*PR); 224 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 225 initializeAMDGPUPropagateAttributesLatePass(*PR); 226 initializeAMDGPURewriteOutArgumentsPass(*PR); 227 initializeAMDGPUUnifyMetadataPass(*PR); 228 initializeSIAnnotateControlFlowPass(*PR); 229 initializeSIInsertWaitcntsPass(*PR); 230 initializeSIModeRegisterPass(*PR); 231 initializeSIWholeQuadModePass(*PR); 232 initializeSILowerControlFlowPass(*PR); 233 initializeSIRemoveShortExecBranchesPass(*PR); 234 initializeSIInsertSkipsPass(*PR); 235 initializeSIMemoryLegalizerPass(*PR); 236 initializeSIOptimizeExecMaskingPass(*PR); 237 initializeSIPreAllocateWWMRegsPass(*PR); 238 initializeSIFormMemoryClausesPass(*PR); 239 initializeSIPostRABundlerPass(*PR); 240 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 241 initializeAMDGPUAAWrapperPassPass(*PR); 242 initializeAMDGPUExternalAAWrapperPass(*PR); 243 initializeAMDGPUUseNativeCallsPass(*PR); 244 initializeAMDGPUSimplifyLibCallsPass(*PR); 245 initializeAMDGPUInlinerPass(*PR); 246 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 247 initializeGCNRegBankReassignPass(*PR); 248 initializeGCNNSAReassignPass(*PR); 249 initializeSIAddIMGInitPass(*PR); 250 } 251 252 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 253 return std::make_unique<AMDGPUTargetObjectFile>(); 254 } 255 256 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 257 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 258 } 259 260 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 261 return new SIScheduleDAGMI(C); 262 } 263 264 static ScheduleDAGInstrs * 265 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 266 ScheduleDAGMILive *DAG = 267 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 268 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 269 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 270 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 271 return DAG; 272 } 273 274 static ScheduleDAGInstrs * 275 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 276 auto DAG = new GCNIterativeScheduler(C, 277 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 278 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 279 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 280 return DAG; 281 } 282 283 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 284 return new GCNIterativeScheduler(C, 285 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 286 } 287 288 static ScheduleDAGInstrs * 289 createIterativeILPMachineScheduler(MachineSchedContext *C) { 290 auto DAG = new GCNIterativeScheduler(C, 291 GCNIterativeScheduler::SCHEDULE_ILP); 292 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 293 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 294 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 295 return DAG; 296 } 297 298 static MachineSchedRegistry 299 R600SchedRegistry("r600", "Run R600's custom scheduler", 300 createR600MachineScheduler); 301 302 static MachineSchedRegistry 303 SISchedRegistry("si", "Run SI's custom scheduler", 304 createSIMachineScheduler); 305 306 static MachineSchedRegistry 307 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 308 "Run GCN scheduler to maximize occupancy", 309 createGCNMaxOccupancyMachineScheduler); 310 311 static MachineSchedRegistry 312 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 313 "Run GCN scheduler to maximize occupancy (experimental)", 314 createIterativeGCNMaxOccupancyMachineScheduler); 315 316 static MachineSchedRegistry 317 GCNMinRegSchedRegistry("gcn-minreg", 318 "Run GCN iterative scheduler for minimal register usage (experimental)", 319 createMinRegScheduler); 320 321 static MachineSchedRegistry 322 GCNILPSchedRegistry("gcn-ilp", 323 "Run GCN iterative scheduler for ILP scheduling (experimental)", 324 createIterativeILPMachineScheduler); 325 326 static StringRef computeDataLayout(const Triple &TT) { 327 if (TT.getArch() == Triple::r600) { 328 // 32-bit pointers. 329 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 330 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 331 } 332 333 // 32-bit private, local, and region pointers. 64-bit global, constant and 334 // flat, non-integral buffer fat pointers. 335 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 336 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 337 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 338 "-ni:7"; 339 } 340 341 LLVM_READNONE 342 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 343 if (!GPU.empty()) 344 return GPU; 345 346 // Need to default to a target with flat support for HSA. 347 if (TT.getArch() == Triple::amdgcn) 348 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 349 350 return "r600"; 351 } 352 353 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 354 // The AMDGPU toolchain only supports generating shared objects, so we 355 // must always use PIC. 356 return Reloc::PIC_; 357 } 358 359 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 360 StringRef CPU, StringRef FS, 361 TargetOptions Options, 362 Optional<Reloc::Model> RM, 363 Optional<CodeModel::Model> CM, 364 CodeGenOpt::Level OptLevel) 365 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 366 FS, Options, getEffectiveRelocModel(RM), 367 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 368 TLOF(createTLOF(getTargetTriple())) { 369 initAsmInfo(); 370 } 371 372 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 373 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 374 375 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 376 377 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 378 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 379 return GPUAttr.hasAttribute(Attribute::None) ? 380 getTargetCPU() : GPUAttr.getValueAsString(); 381 } 382 383 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 384 Attribute FSAttr = F.getFnAttribute("target-features"); 385 386 return FSAttr.hasAttribute(Attribute::None) ? 387 getTargetFeatureString() : 388 FSAttr.getValueAsString(); 389 } 390 391 /// Predicate for Internalize pass. 392 static bool mustPreserveGV(const GlobalValue &GV) { 393 if (const Function *F = dyn_cast<Function>(&GV)) 394 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 395 396 return !GV.use_empty(); 397 } 398 399 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 400 Builder.DivergentTarget = true; 401 402 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 403 bool Internalize = InternalizeSymbols; 404 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 405 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 406 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 407 408 if (EnableFunctionCalls) { 409 delete Builder.Inliner; 410 Builder.Inliner = createAMDGPUFunctionInliningPass(); 411 } 412 413 Builder.addExtension( 414 PassManagerBuilder::EP_ModuleOptimizerEarly, 415 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 416 legacy::PassManagerBase &PM) { 417 if (AMDGPUAA) { 418 PM.add(createAMDGPUAAWrapperPass()); 419 PM.add(createAMDGPUExternalAAWrapperPass()); 420 } 421 PM.add(createAMDGPUUnifyMetadataPass()); 422 PM.add(createAMDGPUPrintfRuntimeBinding()); 423 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 424 if (Internalize) { 425 PM.add(createInternalizePass(mustPreserveGV)); 426 PM.add(createGlobalDCEPass()); 427 } 428 if (EarlyInline) 429 PM.add(createAMDGPUAlwaysInlinePass(false)); 430 }); 431 432 const auto &Opt = Options; 433 Builder.addExtension( 434 PassManagerBuilder::EP_EarlyAsPossible, 435 [AMDGPUAA, LibCallSimplify, &Opt, this](const PassManagerBuilder &, 436 legacy::PassManagerBase &PM) { 437 if (AMDGPUAA) { 438 PM.add(createAMDGPUAAWrapperPass()); 439 PM.add(createAMDGPUExternalAAWrapperPass()); 440 } 441 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 442 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 443 if (LibCallSimplify) 444 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt, this)); 445 }); 446 447 Builder.addExtension( 448 PassManagerBuilder::EP_CGSCCOptimizerLate, 449 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 450 // Add infer address spaces pass to the opt pipeline after inlining 451 // but before SROA to increase SROA opportunities. 452 PM.add(createInferAddressSpacesPass()); 453 454 // This should run after inlining to have any chance of doing anything, 455 // and before other cleanup optimizations. 456 PM.add(createAMDGPULowerKernelAttributesPass()); 457 }); 458 } 459 460 //===----------------------------------------------------------------------===// 461 // R600 Target Machine (R600 -> Cayman) 462 //===----------------------------------------------------------------------===// 463 464 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 465 StringRef CPU, StringRef FS, 466 TargetOptions Options, 467 Optional<Reloc::Model> RM, 468 Optional<CodeModel::Model> CM, 469 CodeGenOpt::Level OL, bool JIT) 470 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 471 setRequiresStructuredCFG(true); 472 473 // Override the default since calls aren't supported for r600. 474 if (EnableFunctionCalls && 475 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 476 EnableFunctionCalls = false; 477 } 478 479 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 480 const Function &F) const { 481 StringRef GPU = getGPUName(F); 482 StringRef FS = getFeatureString(F); 483 484 SmallString<128> SubtargetKey(GPU); 485 SubtargetKey.append(FS); 486 487 auto &I = SubtargetMap[SubtargetKey]; 488 if (!I) { 489 // This needs to be done before we create a new subtarget since any 490 // creation will depend on the TM and the code generation flags on the 491 // function that reside in TargetOptions. 492 resetTargetOptions(F); 493 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 494 } 495 496 return I.get(); 497 } 498 499 TargetTransformInfo 500 R600TargetMachine::getTargetTransformInfo(const Function &F) { 501 return TargetTransformInfo(R600TTIImpl(this, F)); 502 } 503 504 //===----------------------------------------------------------------------===// 505 // GCN Target Machine (SI+) 506 //===----------------------------------------------------------------------===// 507 508 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 509 StringRef CPU, StringRef FS, 510 TargetOptions Options, 511 Optional<Reloc::Model> RM, 512 Optional<CodeModel::Model> CM, 513 CodeGenOpt::Level OL, bool JIT) 514 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 515 516 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 517 StringRef GPU = getGPUName(F); 518 StringRef FS = getFeatureString(F); 519 520 SmallString<128> SubtargetKey(GPU); 521 SubtargetKey.append(FS); 522 523 auto &I = SubtargetMap[SubtargetKey]; 524 if (!I) { 525 // This needs to be done before we create a new subtarget since any 526 // creation will depend on the TM and the code generation flags on the 527 // function that reside in TargetOptions. 528 resetTargetOptions(F); 529 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 530 } 531 532 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 533 534 return I.get(); 535 } 536 537 TargetTransformInfo 538 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 539 return TargetTransformInfo(GCNTTIImpl(this, F)); 540 } 541 542 //===----------------------------------------------------------------------===// 543 // AMDGPU Pass Setup 544 //===----------------------------------------------------------------------===// 545 546 namespace { 547 548 class AMDGPUPassConfig : public TargetPassConfig { 549 public: 550 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 551 : TargetPassConfig(TM, PM) { 552 // Exceptions and StackMaps are not supported, so these passes will never do 553 // anything. 554 disablePass(&StackMapLivenessID); 555 disablePass(&FuncletLayoutID); 556 } 557 558 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 559 return getTM<AMDGPUTargetMachine>(); 560 } 561 562 ScheduleDAGInstrs * 563 createMachineScheduler(MachineSchedContext *C) const override { 564 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 565 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 566 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 567 return DAG; 568 } 569 570 void addEarlyCSEOrGVNPass(); 571 void addStraightLineScalarOptimizationPasses(); 572 void addIRPasses() override; 573 void addCodeGenPrepare() override; 574 bool addPreISel() override; 575 bool addInstSelector() override; 576 bool addGCPasses() override; 577 578 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 579 }; 580 581 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 582 return getStandardCSEConfigForOpt(TM->getOptLevel()); 583 } 584 585 class R600PassConfig final : public AMDGPUPassConfig { 586 public: 587 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 588 : AMDGPUPassConfig(TM, PM) {} 589 590 ScheduleDAGInstrs *createMachineScheduler( 591 MachineSchedContext *C) const override { 592 return createR600MachineScheduler(C); 593 } 594 595 bool addPreISel() override; 596 bool addInstSelector() override; 597 void addPreRegAlloc() override; 598 void addPreSched2() override; 599 void addPreEmitPass() override; 600 }; 601 602 class GCNPassConfig final : public AMDGPUPassConfig { 603 public: 604 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 605 : AMDGPUPassConfig(TM, PM) { 606 // It is necessary to know the register usage of the entire call graph. We 607 // allow calls without EnableAMDGPUFunctionCalls if they are marked 608 // noinline, so this is always required. 609 setRequiresCodeGenSCCOrder(true); 610 } 611 612 GCNTargetMachine &getGCNTargetMachine() const { 613 return getTM<GCNTargetMachine>(); 614 } 615 616 ScheduleDAGInstrs * 617 createMachineScheduler(MachineSchedContext *C) const override; 618 619 bool addPreISel() override; 620 void addMachineSSAOptimization() override; 621 bool addILPOpts() override; 622 bool addInstSelector() override; 623 bool addIRTranslator() override; 624 void addPreLegalizeMachineIR() override; 625 bool addLegalizeMachineIR() override; 626 bool addRegBankSelect() override; 627 bool addGlobalInstructionSelect() override; 628 void addFastRegAlloc() override; 629 void addOptimizedRegAlloc() override; 630 void addPreRegAlloc() override; 631 bool addPreRewrite() override; 632 void addPostRegAlloc() override; 633 void addPreSched2() override; 634 void addPreEmitPass() override; 635 }; 636 637 } // end anonymous namespace 638 639 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 640 if (getOptLevel() == CodeGenOpt::Aggressive) 641 addPass(createGVNPass()); 642 else 643 addPass(createEarlyCSEPass()); 644 } 645 646 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 647 addPass(createLICMPass()); 648 addPass(createSeparateConstOffsetFromGEPPass()); 649 addPass(createSpeculativeExecutionPass()); 650 // ReassociateGEPs exposes more opportunites for SLSR. See 651 // the example in reassociate-geps-and-slsr.ll. 652 addPass(createStraightLineStrengthReducePass()); 653 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 654 // EarlyCSE can reuse. 655 addEarlyCSEOrGVNPass(); 656 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 657 addPass(createNaryReassociatePass()); 658 // NaryReassociate on GEPs creates redundant common expressions, so run 659 // EarlyCSE after it. 660 addPass(createEarlyCSEPass()); 661 } 662 663 void AMDGPUPassConfig::addIRPasses() { 664 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 665 666 // There is no reason to run these. 667 disablePass(&StackMapLivenessID); 668 disablePass(&FuncletLayoutID); 669 disablePass(&PatchableFunctionID); 670 671 addPass(createAMDGPUPrintfRuntimeBinding()); 672 673 // This must occur before inlining, as the inliner will not look through 674 // bitcast calls. 675 addPass(createAMDGPUFixFunctionBitcastsPass()); 676 677 // A call to propagate attributes pass in the backend in case opt was not run. 678 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 679 680 addPass(createAtomicExpandPass()); 681 682 683 addPass(createAMDGPULowerIntrinsicsPass()); 684 685 // Function calls are not supported, so make sure we inline everything. 686 addPass(createAMDGPUAlwaysInlinePass()); 687 addPass(createAlwaysInlinerLegacyPass()); 688 // We need to add the barrier noop pass, otherwise adding the function 689 // inlining pass will cause all of the PassConfigs passes to be run 690 // one function at a time, which means if we have a nodule with two 691 // functions, then we will generate code for the first function 692 // without ever running any passes on the second. 693 addPass(createBarrierNoopPass()); 694 695 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 696 if (TM.getTargetTriple().getArch() == Triple::r600) 697 addPass(createR600OpenCLImageTypeLoweringPass()); 698 699 // Replace OpenCL enqueued block function pointers with global variables. 700 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 701 702 if (TM.getOptLevel() > CodeGenOpt::None) { 703 addPass(createInferAddressSpacesPass()); 704 addPass(createAMDGPUPromoteAlloca()); 705 706 if (EnableSROA) 707 addPass(createSROAPass()); 708 709 if (EnableScalarIRPasses) 710 addStraightLineScalarOptimizationPasses(); 711 712 if (EnableAMDGPUAliasAnalysis) { 713 addPass(createAMDGPUAAWrapperPass()); 714 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 715 AAResults &AAR) { 716 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 717 AAR.addAAResult(WrapperPass->getResult()); 718 })); 719 } 720 } 721 722 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 723 // TODO: May want to move later or split into an early and late one. 724 addPass(createAMDGPUCodeGenPreparePass()); 725 } 726 727 TargetPassConfig::addIRPasses(); 728 729 // EarlyCSE is not always strong enough to clean up what LSR produces. For 730 // example, GVN can combine 731 // 732 // %0 = add %a, %b 733 // %1 = add %b, %a 734 // 735 // and 736 // 737 // %0 = shl nsw %a, 2 738 // %1 = shl %a, 2 739 // 740 // but EarlyCSE can do neither of them. 741 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 742 addEarlyCSEOrGVNPass(); 743 } 744 745 void AMDGPUPassConfig::addCodeGenPrepare() { 746 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 747 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 748 749 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 750 EnableLowerKernelArguments) 751 addPass(createAMDGPULowerKernelArgumentsPass()); 752 753 addPass(&AMDGPUPerfHintAnalysisID); 754 755 TargetPassConfig::addCodeGenPrepare(); 756 757 if (EnableLoadStoreVectorizer) 758 addPass(createLoadStoreVectorizerPass()); 759 } 760 761 bool AMDGPUPassConfig::addPreISel() { 762 addPass(createLowerSwitchPass()); 763 addPass(createFlattenCFGPass()); 764 return false; 765 } 766 767 bool AMDGPUPassConfig::addInstSelector() { 768 // Defer the verifier until FinalizeISel. 769 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 770 return false; 771 } 772 773 bool AMDGPUPassConfig::addGCPasses() { 774 // Do nothing. GC is not supported. 775 return false; 776 } 777 778 //===----------------------------------------------------------------------===// 779 // R600 Pass Setup 780 //===----------------------------------------------------------------------===// 781 782 bool R600PassConfig::addPreISel() { 783 AMDGPUPassConfig::addPreISel(); 784 785 if (EnableR600StructurizeCFG) 786 addPass(createStructurizeCFGPass()); 787 return false; 788 } 789 790 bool R600PassConfig::addInstSelector() { 791 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 792 return false; 793 } 794 795 void R600PassConfig::addPreRegAlloc() { 796 addPass(createR600VectorRegMerger()); 797 } 798 799 void R600PassConfig::addPreSched2() { 800 addPass(createR600EmitClauseMarkers(), false); 801 if (EnableR600IfConvert) 802 addPass(&IfConverterID, false); 803 addPass(createR600ClauseMergePass(), false); 804 } 805 806 void R600PassConfig::addPreEmitPass() { 807 addPass(createAMDGPUCFGStructurizerPass(), false); 808 addPass(createR600ExpandSpecialInstrsPass(), false); 809 addPass(&FinalizeMachineBundlesID, false); 810 addPass(createR600Packetizer(), false); 811 addPass(createR600ControlFlowFinalizer(), false); 812 } 813 814 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 815 return new R600PassConfig(*this, PM); 816 } 817 818 //===----------------------------------------------------------------------===// 819 // GCN Pass Setup 820 //===----------------------------------------------------------------------===// 821 822 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 823 MachineSchedContext *C) const { 824 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 825 if (ST.enableSIScheduler()) 826 return createSIMachineScheduler(C); 827 return createGCNMaxOccupancyMachineScheduler(C); 828 } 829 830 bool GCNPassConfig::addPreISel() { 831 AMDGPUPassConfig::addPreISel(); 832 833 if (EnableAtomicOptimizations) { 834 addPass(createAMDGPUAtomicOptimizerPass()); 835 } 836 837 // FIXME: We need to run a pass to propagate the attributes when calls are 838 // supported. 839 840 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 841 // regions formed by them. 842 addPass(&AMDGPUUnifyDivergentExitNodesID); 843 if (!LateCFGStructurize) { 844 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 845 } 846 addPass(createSinkingPass()); 847 addPass(createAMDGPUAnnotateUniformValues()); 848 if (!LateCFGStructurize) { 849 addPass(createSIAnnotateControlFlowPass()); 850 } 851 addPass(createLCSSAPass()); 852 853 return false; 854 } 855 856 void GCNPassConfig::addMachineSSAOptimization() { 857 TargetPassConfig::addMachineSSAOptimization(); 858 859 // We want to fold operands after PeepholeOptimizer has run (or as part of 860 // it), because it will eliminate extra copies making it easier to fold the 861 // real source operand. We want to eliminate dead instructions after, so that 862 // we see fewer uses of the copies. We then need to clean up the dead 863 // instructions leftover after the operands are folded as well. 864 // 865 // XXX - Can we get away without running DeadMachineInstructionElim again? 866 addPass(&SIFoldOperandsID); 867 if (EnableDPPCombine) 868 addPass(&GCNDPPCombineID); 869 addPass(&DeadMachineInstructionElimID); 870 addPass(&SILoadStoreOptimizerID); 871 if (EnableSDWAPeephole) { 872 addPass(&SIPeepholeSDWAID); 873 addPass(&EarlyMachineLICMID); 874 addPass(&MachineCSEID); 875 addPass(&SIFoldOperandsID); 876 addPass(&DeadMachineInstructionElimID); 877 } 878 addPass(createSIShrinkInstructionsPass()); 879 } 880 881 bool GCNPassConfig::addILPOpts() { 882 if (EnableEarlyIfConversion) 883 addPass(&EarlyIfConverterID); 884 885 TargetPassConfig::addILPOpts(); 886 return false; 887 } 888 889 bool GCNPassConfig::addInstSelector() { 890 AMDGPUPassConfig::addInstSelector(); 891 addPass(&SIFixSGPRCopiesID); 892 addPass(createSILowerI1CopiesPass()); 893 addPass(createSIFixupVectorISelPass()); 894 addPass(createSIAddIMGInitPass()); 895 return false; 896 } 897 898 bool GCNPassConfig::addIRTranslator() { 899 addPass(new IRTranslator()); 900 return false; 901 } 902 903 void GCNPassConfig::addPreLegalizeMachineIR() { 904 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 905 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 906 addPass(new Localizer()); 907 } 908 909 bool GCNPassConfig::addLegalizeMachineIR() { 910 addPass(new Legalizer()); 911 return false; 912 } 913 914 bool GCNPassConfig::addRegBankSelect() { 915 addPass(new RegBankSelect()); 916 return false; 917 } 918 919 bool GCNPassConfig::addGlobalInstructionSelect() { 920 addPass(new InstructionSelect()); 921 return false; 922 } 923 924 void GCNPassConfig::addPreRegAlloc() { 925 if (LateCFGStructurize) { 926 addPass(createAMDGPUMachineCFGStructurizerPass()); 927 } 928 addPass(createSIWholeQuadModePass()); 929 } 930 931 void GCNPassConfig::addFastRegAlloc() { 932 // FIXME: We have to disable the verifier here because of PHIElimination + 933 // TwoAddressInstructions disabling it. 934 935 // This must be run immediately after phi elimination and before 936 // TwoAddressInstructions, otherwise the processing of the tied operand of 937 // SI_ELSE will introduce a copy of the tied operand source after the else. 938 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 939 940 // This must be run just after RegisterCoalescing. 941 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 942 943 TargetPassConfig::addFastRegAlloc(); 944 } 945 946 void GCNPassConfig::addOptimizedRegAlloc() { 947 if (OptExecMaskPreRA) { 948 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 949 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 950 } else { 951 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 952 } 953 954 // This must be run immediately after phi elimination and before 955 // TwoAddressInstructions, otherwise the processing of the tied operand of 956 // SI_ELSE will introduce a copy of the tied operand source after the else. 957 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 958 959 // This must be run just after RegisterCoalescing. 960 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 961 962 if (EnableDCEInRA) 963 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 964 965 TargetPassConfig::addOptimizedRegAlloc(); 966 } 967 968 bool GCNPassConfig::addPreRewrite() { 969 if (EnableRegReassign) { 970 addPass(&GCNNSAReassignID); 971 addPass(&GCNRegBankReassignID); 972 } 973 return true; 974 } 975 976 void GCNPassConfig::addPostRegAlloc() { 977 addPass(&SIFixVGPRCopiesID); 978 if (getOptLevel() > CodeGenOpt::None) 979 addPass(&SIOptimizeExecMaskingID); 980 TargetPassConfig::addPostRegAlloc(); 981 982 // Equivalent of PEI for SGPRs. 983 addPass(&SILowerSGPRSpillsID); 984 } 985 986 void GCNPassConfig::addPreSched2() { 987 addPass(&SIPostRABundlerID); 988 } 989 990 void GCNPassConfig::addPreEmitPass() { 991 addPass(createSIMemoryLegalizerPass()); 992 addPass(createSIInsertWaitcntsPass()); 993 addPass(createSIShrinkInstructionsPass()); 994 addPass(createSIModeRegisterPass()); 995 996 // The hazard recognizer that runs as part of the post-ra scheduler does not 997 // guarantee to be able handle all hazards correctly. This is because if there 998 // are multiple scheduling regions in a basic block, the regions are scheduled 999 // bottom up, so when we begin to schedule a region we don't know what 1000 // instructions were emitted directly before it. 1001 // 1002 // Here we add a stand-alone hazard recognizer pass which can handle all 1003 // cases. 1004 // 1005 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 1006 // be better for it to emit S_NOP <N> when possible. 1007 addPass(&PostRAHazardRecognizerID); 1008 1009 addPass(&SIRemoveShortExecBranchesID); 1010 addPass(&SIInsertSkipsPassID); 1011 addPass(&BranchRelaxationPassID); 1012 } 1013 1014 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1015 return new GCNPassConfig(*this, PM); 1016 } 1017 1018 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1019 return new yaml::SIMachineFunctionInfo(); 1020 } 1021 1022 yaml::MachineFunctionInfo * 1023 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1024 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1025 return new yaml::SIMachineFunctionInfo(*MFI, 1026 *MF.getSubtarget().getRegisterInfo()); 1027 } 1028 1029 bool GCNTargetMachine::parseMachineFunctionInfo( 1030 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1031 SMDiagnostic &Error, SMRange &SourceRange) const { 1032 const yaml::SIMachineFunctionInfo &YamlMFI = 1033 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1034 MachineFunction &MF = PFS.MF; 1035 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1036 1037 MFI->initializeBaseYamlFields(YamlMFI); 1038 1039 auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) { 1040 if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) { 1041 SourceRange = RegName.SourceRange; 1042 return true; 1043 } 1044 1045 return false; 1046 }; 1047 1048 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1049 // Create a diagnostic for a the register string literal. 1050 const MemoryBuffer &Buffer = 1051 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1052 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1053 RegName.Value.size(), SourceMgr::DK_Error, 1054 "incorrect register class for field", RegName.Value, 1055 None, None); 1056 SourceRange = RegName.SourceRange; 1057 return true; 1058 }; 1059 1060 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1061 parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) || 1062 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1063 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1064 return true; 1065 1066 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1067 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1068 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1069 } 1070 1071 if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG && 1072 !AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) { 1073 return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg); 1074 } 1075 1076 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1077 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1078 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1079 } 1080 1081 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1082 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1083 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1084 } 1085 1086 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1087 const TargetRegisterClass &RC, 1088 ArgDescriptor &Arg, unsigned UserSGPRs, 1089 unsigned SystemSGPRs) { 1090 // Skip parsing if it's not present. 1091 if (!A) 1092 return false; 1093 1094 if (A->IsRegister) { 1095 unsigned Reg; 1096 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1097 SourceRange = A->RegisterName.SourceRange; 1098 return true; 1099 } 1100 if (!RC.contains(Reg)) 1101 return diagnoseRegisterClass(A->RegisterName); 1102 Arg = ArgDescriptor::createRegister(Reg); 1103 } else 1104 Arg = ArgDescriptor::createStack(A->StackOffset); 1105 // Check and apply the optional mask. 1106 if (A->Mask) 1107 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1108 1109 MFI->NumUserSGPRs += UserSGPRs; 1110 MFI->NumSystemSGPRs += SystemSGPRs; 1111 return false; 1112 }; 1113 1114 if (YamlMFI.ArgInfo && 1115 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1116 AMDGPU::SGPR_128RegClass, 1117 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1118 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1119 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1120 2, 0) || 1121 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1122 MFI->ArgInfo.QueuePtr, 2, 0) || 1123 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1124 AMDGPU::SReg_64RegClass, 1125 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1126 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1127 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1128 2, 0) || 1129 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1130 AMDGPU::SReg_64RegClass, 1131 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1132 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1133 AMDGPU::SGPR_32RegClass, 1134 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1135 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1136 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1137 0, 1) || 1138 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1139 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1140 0, 1) || 1141 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1142 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1143 0, 1) || 1144 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1145 AMDGPU::SGPR_32RegClass, 1146 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1147 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1148 AMDGPU::SGPR_32RegClass, 1149 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1150 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1151 AMDGPU::SReg_64RegClass, 1152 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1153 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1154 AMDGPU::SReg_64RegClass, 1155 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1156 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1157 AMDGPU::VGPR_32RegClass, 1158 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1159 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1160 AMDGPU::VGPR_32RegClass, 1161 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1162 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1163 AMDGPU::VGPR_32RegClass, 1164 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1165 return true; 1166 1167 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1168 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1169 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1170 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1171 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1172 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1173 1174 return false; 1175 } 1176