1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUTargetObjectFile.h" 20 #include "AMDGPUTargetTransformInfo.h" 21 #include "GCNSchedStrategy.h" 22 #include "R600ISelLowering.h" 23 #include "R600InstrInfo.h" 24 #include "R600MachineScheduler.h" 25 #include "SIISelLowering.h" 26 #include "SIInstrInfo.h" 27 #include "SIMachineScheduler.h" 28 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/CodeGen/TargetPassConfig.h" 31 #include "llvm/Support/TargetRegistry.h" 32 #include "llvm/Transforms/IPO.h" 33 #include "llvm/Transforms/IPO/AlwaysInliner.h" 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/Transforms/Scalar/GVN.h" 36 #include "llvm/Transforms/Vectorize.h" 37 38 using namespace llvm; 39 40 static cl::opt<bool> EnableR600StructurizeCFG( 41 "r600-ir-structurize", 42 cl::desc("Use StructurizeCFG IR pass"), 43 cl::init(true)); 44 45 static cl::opt<bool> EnableSROA( 46 "amdgpu-sroa", 47 cl::desc("Run SROA after promote alloca pass"), 48 cl::ReallyHidden, 49 cl::init(true)); 50 51 static cl::opt<bool> EnableR600IfConvert( 52 "r600-if-convert", 53 cl::desc("Use if conversion pass"), 54 cl::ReallyHidden, 55 cl::init(true)); 56 57 // Option to disable vectorizer for tests. 58 static cl::opt<bool> EnableLoadStoreVectorizer( 59 "amdgpu-load-store-vectorizer", 60 cl::desc("Enable load store vectorizer"), 61 cl::init(false), 62 cl::Hidden); 63 64 extern "C" void LLVMInitializeAMDGPUTarget() { 65 // Register the target 66 RegisterTargetMachine<R600TargetMachine> X(TheAMDGPUTarget); 67 RegisterTargetMachine<GCNTargetMachine> Y(TheGCNTarget); 68 69 PassRegistry *PR = PassRegistry::getPassRegistry(); 70 initializeSILowerI1CopiesPass(*PR); 71 initializeSIFixSGPRCopiesPass(*PR); 72 initializeSIFoldOperandsPass(*PR); 73 initializeSIShrinkInstructionsPass(*PR); 74 initializeSIFixControlFlowLiveIntervalsPass(*PR); 75 initializeSILoadStoreOptimizerPass(*PR); 76 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 77 initializeAMDGPUAnnotateUniformValuesPass(*PR); 78 initializeAMDGPUPromoteAllocaPass(*PR); 79 initializeAMDGPUCodeGenPreparePass(*PR); 80 initializeSIAnnotateControlFlowPass(*PR); 81 initializeSIInsertWaitsPass(*PR); 82 initializeSIWholeQuadModePass(*PR); 83 initializeSILowerControlFlowPass(*PR); 84 initializeSIInsertSkipsPass(*PR); 85 initializeSIDebuggerInsertNopsPass(*PR); 86 } 87 88 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 89 return make_unique<AMDGPUTargetObjectFile>(); 90 } 91 92 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 93 return new ScheduleDAGMILive(C, make_unique<R600SchedStrategy>()); 94 } 95 96 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 97 return new SIScheduleDAGMI(C); 98 } 99 100 static ScheduleDAGInstrs * 101 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 102 ScheduleDAGMILive *DAG = 103 new ScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 104 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 105 return DAG; 106 } 107 108 static MachineSchedRegistry 109 R600SchedRegistry("r600", "Run R600's custom scheduler", 110 createR600MachineScheduler); 111 112 static MachineSchedRegistry 113 SISchedRegistry("si", "Run SI's custom scheduler", 114 createSIMachineScheduler); 115 116 static MachineSchedRegistry 117 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 118 "Run GCN scheduler to maximize occupancy", 119 createGCNMaxOccupancyMachineScheduler); 120 121 static StringRef computeDataLayout(const Triple &TT) { 122 if (TT.getArch() == Triple::r600) { 123 // 32-bit pointers. 124 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 125 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 126 } 127 128 // 32-bit private, local, and region pointers. 64-bit global, constant and 129 // flat. 130 return "e-p:32:32-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32" 131 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 132 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 133 } 134 135 LLVM_READNONE 136 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 137 if (!GPU.empty()) 138 return GPU; 139 140 // HSA only supports CI+, so change the default GPU to a CI for HSA. 141 if (TT.getArch() == Triple::amdgcn) 142 return (TT.getOS() == Triple::AMDHSA) ? "kaveri" : "tahiti"; 143 144 return "r600"; 145 } 146 147 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 148 // The AMDGPU toolchain only supports generating shared objects, so we 149 // must always use PIC. 150 return Reloc::PIC_; 151 } 152 153 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 154 StringRef CPU, StringRef FS, 155 TargetOptions Options, 156 Optional<Reloc::Model> RM, 157 CodeModel::Model CM, 158 CodeGenOpt::Level OptLevel) 159 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 160 FS, Options, getEffectiveRelocModel(RM), CM, OptLevel), 161 TLOF(createTLOF(getTargetTriple())), 162 IntrinsicInfo() { 163 setRequiresStructuredCFG(true); 164 initAsmInfo(); 165 } 166 167 AMDGPUTargetMachine::~AMDGPUTargetMachine() { } 168 169 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 170 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 171 return GPUAttr.hasAttribute(Attribute::None) ? 172 getTargetCPU() : GPUAttr.getValueAsString(); 173 } 174 175 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 176 Attribute FSAttr = F.getFnAttribute("target-features"); 177 178 return FSAttr.hasAttribute(Attribute::None) ? 179 getTargetFeatureString() : 180 FSAttr.getValueAsString(); 181 } 182 183 //===----------------------------------------------------------------------===// 184 // R600 Target Machine (R600 -> Cayman) 185 //===----------------------------------------------------------------------===// 186 187 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 188 StringRef CPU, StringRef FS, 189 TargetOptions Options, 190 Optional<Reloc::Model> RM, 191 CodeModel::Model CM, CodeGenOpt::Level OL) 192 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 193 194 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 195 const Function &F) const { 196 StringRef GPU = getGPUName(F); 197 StringRef FS = getFeatureString(F); 198 199 SmallString<128> SubtargetKey(GPU); 200 SubtargetKey.append(FS); 201 202 auto &I = SubtargetMap[SubtargetKey]; 203 if (!I) { 204 // This needs to be done before we create a new subtarget since any 205 // creation will depend on the TM and the code generation flags on the 206 // function that reside in TargetOptions. 207 resetTargetOptions(F); 208 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 209 } 210 211 return I.get(); 212 } 213 214 //===----------------------------------------------------------------------===// 215 // GCN Target Machine (SI+) 216 //===----------------------------------------------------------------------===// 217 218 #ifdef LLVM_BUILD_GLOBAL_ISEL 219 namespace { 220 struct SIGISelActualAccessor : public GISelAccessor { 221 std::unique_ptr<AMDGPUCallLowering> CallLoweringInfo; 222 const AMDGPUCallLowering *getCallLowering() const override { 223 return CallLoweringInfo.get(); 224 } 225 }; 226 } // End anonymous namespace. 227 #endif 228 229 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 230 StringRef CPU, StringRef FS, 231 TargetOptions Options, 232 Optional<Reloc::Model> RM, 233 CodeModel::Model CM, CodeGenOpt::Level OL) 234 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 235 236 const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 237 StringRef GPU = getGPUName(F); 238 StringRef FS = getFeatureString(F); 239 240 SmallString<128> SubtargetKey(GPU); 241 SubtargetKey.append(FS); 242 243 auto &I = SubtargetMap[SubtargetKey]; 244 if (!I) { 245 // This needs to be done before we create a new subtarget since any 246 // creation will depend on the TM and the code generation flags on the 247 // function that reside in TargetOptions. 248 resetTargetOptions(F); 249 I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this); 250 251 #ifndef LLVM_BUILD_GLOBAL_ISEL 252 GISelAccessor *GISel = new GISelAccessor(); 253 #else 254 SIGISelActualAccessor *GISel = new SIGISelActualAccessor(); 255 GISel->CallLoweringInfo.reset( 256 new AMDGPUCallLowering(*I->getTargetLowering())); 257 #endif 258 259 I->setGISelAccessor(*GISel); 260 } 261 262 return I.get(); 263 } 264 265 //===----------------------------------------------------------------------===// 266 // AMDGPU Pass Setup 267 //===----------------------------------------------------------------------===// 268 269 namespace { 270 271 class AMDGPUPassConfig : public TargetPassConfig { 272 public: 273 AMDGPUPassConfig(TargetMachine *TM, PassManagerBase &PM) 274 : TargetPassConfig(TM, PM) { 275 276 // Exceptions and StackMaps are not supported, so these passes will never do 277 // anything. 278 disablePass(&StackMapLivenessID); 279 disablePass(&FuncletLayoutID); 280 } 281 282 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 283 return getTM<AMDGPUTargetMachine>(); 284 } 285 286 void addEarlyCSEOrGVNPass(); 287 void addStraightLineScalarOptimizationPasses(); 288 void addIRPasses() override; 289 void addCodeGenPrepare() override; 290 bool addPreISel() override; 291 bool addInstSelector() override; 292 bool addGCPasses() override; 293 }; 294 295 class R600PassConfig final : public AMDGPUPassConfig { 296 public: 297 R600PassConfig(TargetMachine *TM, PassManagerBase &PM) 298 : AMDGPUPassConfig(TM, PM) { } 299 300 ScheduleDAGInstrs *createMachineScheduler( 301 MachineSchedContext *C) const override { 302 return createR600MachineScheduler(C); 303 } 304 305 bool addPreISel() override; 306 void addPreRegAlloc() override; 307 void addPreSched2() override; 308 void addPreEmitPass() override; 309 }; 310 311 class GCNPassConfig final : public AMDGPUPassConfig { 312 public: 313 GCNPassConfig(TargetMachine *TM, PassManagerBase &PM) 314 : AMDGPUPassConfig(TM, PM) { } 315 316 GCNTargetMachine &getGCNTargetMachine() const { 317 return getTM<GCNTargetMachine>(); 318 } 319 320 ScheduleDAGInstrs * 321 createMachineScheduler(MachineSchedContext *C) const override; 322 323 void addIRPasses() override; 324 bool addPreISel() override; 325 void addMachineSSAOptimization() override; 326 bool addInstSelector() override; 327 #ifdef LLVM_BUILD_GLOBAL_ISEL 328 bool addIRTranslator() override; 329 bool addLegalizeMachineIR() override; 330 bool addRegBankSelect() override; 331 bool addGlobalInstructionSelect() override; 332 #endif 333 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 334 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 335 void addPreRegAlloc() override; 336 void addPreSched2() override; 337 void addPreEmitPass() override; 338 }; 339 340 } // End of anonymous namespace 341 342 TargetIRAnalysis AMDGPUTargetMachine::getTargetIRAnalysis() { 343 return TargetIRAnalysis([this](const Function &F) { 344 return TargetTransformInfo(AMDGPUTTIImpl(this, F)); 345 }); 346 } 347 348 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 349 if (getOptLevel() == CodeGenOpt::Aggressive) 350 addPass(createGVNPass()); 351 else 352 addPass(createEarlyCSEPass()); 353 } 354 355 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 356 addPass(createSeparateConstOffsetFromGEPPass()); 357 addPass(createSpeculativeExecutionPass()); 358 // ReassociateGEPs exposes more opportunites for SLSR. See 359 // the example in reassociate-geps-and-slsr.ll. 360 addPass(createStraightLineStrengthReducePass()); 361 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 362 // EarlyCSE can reuse. 363 addEarlyCSEOrGVNPass(); 364 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 365 addPass(createNaryReassociatePass()); 366 // NaryReassociate on GEPs creates redundant common expressions, so run 367 // EarlyCSE after it. 368 addPass(createEarlyCSEPass()); 369 } 370 371 void AMDGPUPassConfig::addIRPasses() { 372 // There is no reason to run these. 373 disablePass(&StackMapLivenessID); 374 disablePass(&FuncletLayoutID); 375 disablePass(&PatchableFunctionID); 376 377 // Function calls are not supported, so make sure we inline everything. 378 addPass(createAMDGPUAlwaysInlinePass()); 379 addPass(createAlwaysInlinerLegacyPass()); 380 // We need to add the barrier noop pass, otherwise adding the function 381 // inlining pass will cause all of the PassConfigs passes to be run 382 // one function at a time, which means if we have a nodule with two 383 // functions, then we will generate code for the first function 384 // without ever running any passes on the second. 385 addPass(createBarrierNoopPass()); 386 387 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 388 addPass(createAMDGPUOpenCLImageTypeLoweringPass()); 389 390 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 391 if (TM.getOptLevel() > CodeGenOpt::None) { 392 addPass(createAMDGPUPromoteAlloca(&TM)); 393 394 if (EnableSROA) 395 addPass(createSROAPass()); 396 } 397 398 addStraightLineScalarOptimizationPasses(); 399 400 TargetPassConfig::addIRPasses(); 401 402 // EarlyCSE is not always strong enough to clean up what LSR produces. For 403 // example, GVN can combine 404 // 405 // %0 = add %a, %b 406 // %1 = add %b, %a 407 // 408 // and 409 // 410 // %0 = shl nsw %a, 2 411 // %1 = shl %a, 2 412 // 413 // but EarlyCSE can do neither of them. 414 if (getOptLevel() != CodeGenOpt::None) 415 addEarlyCSEOrGVNPass(); 416 } 417 418 void AMDGPUPassConfig::addCodeGenPrepare() { 419 TargetPassConfig::addCodeGenPrepare(); 420 421 if (EnableLoadStoreVectorizer) 422 addPass(createLoadStoreVectorizerPass()); 423 } 424 425 bool AMDGPUPassConfig::addPreISel() { 426 addPass(createFlattenCFGPass()); 427 return false; 428 } 429 430 bool AMDGPUPassConfig::addInstSelector() { 431 addPass(createAMDGPUISelDag(getAMDGPUTargetMachine())); 432 return false; 433 } 434 435 bool AMDGPUPassConfig::addGCPasses() { 436 // Do nothing. GC is not supported. 437 return false; 438 } 439 440 //===----------------------------------------------------------------------===// 441 // R600 Pass Setup 442 //===----------------------------------------------------------------------===// 443 444 bool R600PassConfig::addPreISel() { 445 AMDGPUPassConfig::addPreISel(); 446 447 if (EnableR600StructurizeCFG) 448 addPass(createStructurizeCFGPass()); 449 return false; 450 } 451 452 void R600PassConfig::addPreRegAlloc() { 453 addPass(createR600VectorRegMerger(*TM)); 454 } 455 456 void R600PassConfig::addPreSched2() { 457 addPass(createR600EmitClauseMarkers(), false); 458 if (EnableR600IfConvert) 459 addPass(&IfConverterID, false); 460 addPass(createR600ClauseMergePass(*TM), false); 461 } 462 463 void R600PassConfig::addPreEmitPass() { 464 addPass(createAMDGPUCFGStructurizerPass(), false); 465 addPass(createR600ExpandSpecialInstrsPass(*TM), false); 466 addPass(&FinalizeMachineBundlesID, false); 467 addPass(createR600Packetizer(*TM), false); 468 addPass(createR600ControlFlowFinalizer(*TM), false); 469 } 470 471 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 472 return new R600PassConfig(this, PM); 473 } 474 475 //===----------------------------------------------------------------------===// 476 // GCN Pass Setup 477 //===----------------------------------------------------------------------===// 478 479 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 480 MachineSchedContext *C) const { 481 const SISubtarget &ST = C->MF->getSubtarget<SISubtarget>(); 482 if (ST.enableSIScheduler()) 483 return createSIMachineScheduler(C); 484 return createGCNMaxOccupancyMachineScheduler(C); 485 } 486 487 bool GCNPassConfig::addPreISel() { 488 AMDGPUPassConfig::addPreISel(); 489 490 // FIXME: We need to run a pass to propagate the attributes when calls are 491 // supported. 492 addPass(&AMDGPUAnnotateKernelFeaturesID); 493 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 494 addPass(createSinkingPass()); 495 addPass(createSITypeRewriter()); 496 addPass(createAMDGPUAnnotateUniformValues()); 497 addPass(createSIAnnotateControlFlowPass()); 498 499 return false; 500 } 501 502 void GCNPassConfig::addMachineSSAOptimization() { 503 TargetPassConfig::addMachineSSAOptimization(); 504 505 // We want to fold operands after PeepholeOptimizer has run (or as part of 506 // it), because it will eliminate extra copies making it easier to fold the 507 // real source operand. We want to eliminate dead instructions after, so that 508 // we see fewer uses of the copies. We then need to clean up the dead 509 // instructions leftover after the operands are folded as well. 510 // 511 // XXX - Can we get away without running DeadMachineInstructionElim again? 512 addPass(&SIFoldOperandsID); 513 addPass(&DeadMachineInstructionElimID); 514 addPass(&SILoadStoreOptimizerID); 515 } 516 517 void GCNPassConfig::addIRPasses() { 518 // TODO: May want to move later or split into an early and late one. 519 addPass(createAMDGPUCodeGenPreparePass(&getGCNTargetMachine())); 520 521 AMDGPUPassConfig::addIRPasses(); 522 } 523 524 bool GCNPassConfig::addInstSelector() { 525 AMDGPUPassConfig::addInstSelector(); 526 addPass(createSILowerI1CopiesPass()); 527 addPass(&SIFixSGPRCopiesID); 528 return false; 529 } 530 531 #ifdef LLVM_BUILD_GLOBAL_ISEL 532 bool GCNPassConfig::addIRTranslator() { 533 addPass(new IRTranslator()); 534 return false; 535 } 536 537 bool GCNPassConfig::addLegalizeMachineIR() { 538 return false; 539 } 540 541 bool GCNPassConfig::addRegBankSelect() { 542 return false; 543 } 544 545 bool GCNPassConfig::addGlobalInstructionSelect() { 546 return false; 547 } 548 #endif 549 550 void GCNPassConfig::addPreRegAlloc() { 551 552 addPass(createSIShrinkInstructionsPass()); 553 addPass(createSIWholeQuadModePass()); 554 } 555 556 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 557 // FIXME: We have to disable the verifier here because of PHIElimination + 558 // TwoAddressInstructions disabling it. 559 insertPass(&TwoAddressInstructionPassID, &SILowerControlFlowID, false); 560 561 TargetPassConfig::addFastRegAlloc(RegAllocPass); 562 } 563 564 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 565 // This needs to be run directly before register allocation because earlier 566 // passes might recompute live intervals. 567 insertPass(&MachineSchedulerID, &SIFixControlFlowLiveIntervalsID); 568 569 // TODO: It might be better to run this right after phi elimination, but for 570 // now that would require not running the verifier. 571 insertPass(&RenameIndependentSubregsID, &SILowerControlFlowID); 572 573 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 574 } 575 576 void GCNPassConfig::addPreSched2() { 577 } 578 579 void GCNPassConfig::addPreEmitPass() { 580 // The hazard recognizer that runs as part of the post-ra scheduler does not 581 // guarantee to be able handle all hazards correctly. This is because if there 582 // are multiple scheduling regions in a basic block, the regions are scheduled 583 // bottom up, so when we begin to schedule a region we don't know what 584 // instructions were emitted directly before it. 585 // 586 // Here we add a stand-alone hazard recognizer pass which can handle all 587 // cases. 588 addPass(&PostRAHazardRecognizerID); 589 590 addPass(createSIInsertWaitsPass()); 591 addPass(createSIShrinkInstructionsPass()); 592 addPass(&SIInsertSkipsPassID); 593 addPass(createSIDebuggerInsertNopsPass()); 594 } 595 596 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 597 return new GCNPassConfig(this, PM); 598 } 599