1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUMacroFusion.h" 20 #include "AMDGPUTargetObjectFile.h" 21 #include "AMDGPUTargetTransformInfo.h" 22 #include "GCNIterativeScheduler.h" 23 #include "GCNSchedStrategy.h" 24 #include "R600MachineScheduler.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIMachineScheduler.h" 27 #include "TargetInfo/AMDGPUTargetInfo.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/Localizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegAllocRegistry.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/LegacyPassManager.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Passes/PassBuilder.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/IPO/AlwaysInliner.h" 45 #include "llvm/Transforms/IPO/GlobalDCE.h" 46 #include "llvm/Transforms/IPO/Internalize.h" 47 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 48 #include "llvm/Transforms/Scalar.h" 49 #include "llvm/Transforms/Scalar/GVN.h" 50 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 51 #include "llvm/Transforms/Utils.h" 52 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 53 #include "llvm/Transforms/Vectorize.h" 54 55 using namespace llvm; 56 57 namespace { 58 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> { 59 public: 60 SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 61 : RegisterRegAllocBase(N, D, C) {} 62 }; 63 64 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> { 65 public: 66 VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 67 : RegisterRegAllocBase(N, D, C) {} 68 }; 69 70 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI, 71 const TargetRegisterClass &RC) { 72 return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 73 } 74 75 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI, 76 const TargetRegisterClass &RC) { 77 return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 78 } 79 80 81 /// -{sgpr|vgpr}-regalloc=... command line option. 82 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; } 83 84 /// A dummy default pass factory indicates whether the register allocator is 85 /// overridden on the command line. 86 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag; 87 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag; 88 89 static SGPRRegisterRegAlloc 90 defaultSGPRRegAlloc("default", 91 "pick SGPR register allocator based on -O option", 92 useDefaultRegisterAllocator); 93 94 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false, 95 RegisterPassParser<SGPRRegisterRegAlloc>> 96 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 97 cl::desc("Register allocator to use for SGPRs")); 98 99 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false, 100 RegisterPassParser<VGPRRegisterRegAlloc>> 101 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 102 cl::desc("Register allocator to use for VGPRs")); 103 104 105 static void initializeDefaultSGPRRegisterAllocatorOnce() { 106 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 107 108 if (!Ctor) { 109 Ctor = SGPRRegAlloc; 110 SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc); 111 } 112 } 113 114 static void initializeDefaultVGPRRegisterAllocatorOnce() { 115 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 116 117 if (!Ctor) { 118 Ctor = VGPRRegAlloc; 119 VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc); 120 } 121 } 122 123 static FunctionPass *createBasicSGPRRegisterAllocator() { 124 return createBasicRegisterAllocator(onlyAllocateSGPRs); 125 } 126 127 static FunctionPass *createGreedySGPRRegisterAllocator() { 128 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 129 } 130 131 static FunctionPass *createFastSGPRRegisterAllocator() { 132 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 133 } 134 135 static FunctionPass *createBasicVGPRRegisterAllocator() { 136 return createBasicRegisterAllocator(onlyAllocateVGPRs); 137 } 138 139 static FunctionPass *createGreedyVGPRRegisterAllocator() { 140 return createGreedyRegisterAllocator(onlyAllocateVGPRs); 141 } 142 143 static FunctionPass *createFastVGPRRegisterAllocator() { 144 return createFastRegisterAllocator(onlyAllocateVGPRs, true); 145 } 146 147 static SGPRRegisterRegAlloc basicRegAllocSGPR( 148 "basic", "basic register allocator", createBasicSGPRRegisterAllocator); 149 static SGPRRegisterRegAlloc greedyRegAllocSGPR( 150 "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator); 151 152 static SGPRRegisterRegAlloc fastRegAllocSGPR( 153 "fast", "fast register allocator", createFastSGPRRegisterAllocator); 154 155 156 static VGPRRegisterRegAlloc basicRegAllocVGPR( 157 "basic", "basic register allocator", createBasicVGPRRegisterAllocator); 158 static VGPRRegisterRegAlloc greedyRegAllocVGPR( 159 "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator); 160 161 static VGPRRegisterRegAlloc fastRegAllocVGPR( 162 "fast", "fast register allocator", createFastVGPRRegisterAllocator); 163 } 164 165 166 static cl::opt<bool> EnableR600StructurizeCFG( 167 "r600-ir-structurize", 168 cl::desc("Use StructurizeCFG IR pass"), 169 cl::init(true)); 170 171 static cl::opt<bool> EnableSROA( 172 "amdgpu-sroa", 173 cl::desc("Run SROA after promote alloca pass"), 174 cl::ReallyHidden, 175 cl::init(true)); 176 177 static cl::opt<bool> 178 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 179 cl::desc("Run early if-conversion"), 180 cl::init(false)); 181 182 static cl::opt<bool> 183 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 184 cl::desc("Run pre-RA exec mask optimizations"), 185 cl::init(true)); 186 187 static cl::opt<bool> EnableR600IfConvert( 188 "r600-if-convert", 189 cl::desc("Use if conversion pass"), 190 cl::ReallyHidden, 191 cl::init(true)); 192 193 // Option to disable vectorizer for tests. 194 static cl::opt<bool> EnableLoadStoreVectorizer( 195 "amdgpu-load-store-vectorizer", 196 cl::desc("Enable load store vectorizer"), 197 cl::init(true), 198 cl::Hidden); 199 200 // Option to control global loads scalarization 201 static cl::opt<bool> ScalarizeGlobal( 202 "amdgpu-scalarize-global-loads", 203 cl::desc("Enable global load scalarization"), 204 cl::init(true), 205 cl::Hidden); 206 207 // Option to run internalize pass. 208 static cl::opt<bool> InternalizeSymbols( 209 "amdgpu-internalize-symbols", 210 cl::desc("Enable elimination of non-kernel functions and unused globals"), 211 cl::init(false), 212 cl::Hidden); 213 214 // Option to inline all early. 215 static cl::opt<bool> EarlyInlineAll( 216 "amdgpu-early-inline-all", 217 cl::desc("Inline all functions early"), 218 cl::init(false), 219 cl::Hidden); 220 221 static cl::opt<bool> EnableSDWAPeephole( 222 "amdgpu-sdwa-peephole", 223 cl::desc("Enable SDWA peepholer"), 224 cl::init(true)); 225 226 static cl::opt<bool> EnableDPPCombine( 227 "amdgpu-dpp-combine", 228 cl::desc("Enable DPP combiner"), 229 cl::init(true)); 230 231 // Enable address space based alias analysis 232 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 233 cl::desc("Enable AMDGPU Alias Analysis"), 234 cl::init(true)); 235 236 // Option to run late CFG structurizer 237 static cl::opt<bool, true> LateCFGStructurize( 238 "amdgpu-late-structurize", 239 cl::desc("Enable late CFG structurization"), 240 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 241 cl::Hidden); 242 243 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 244 "amdgpu-function-calls", 245 cl::desc("Enable AMDGPU function call support"), 246 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 247 cl::init(true), 248 cl::Hidden); 249 250 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 251 "amdgpu-fixed-function-abi", 252 cl::desc("Enable all implicit function arguments"), 253 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 254 cl::init(false), 255 cl::Hidden); 256 257 // Enable lib calls simplifications 258 static cl::opt<bool> EnableLibCallSimplify( 259 "amdgpu-simplify-libcall", 260 cl::desc("Enable amdgpu library simplifications"), 261 cl::init(true), 262 cl::Hidden); 263 264 static cl::opt<bool> EnableLowerKernelArguments( 265 "amdgpu-ir-lower-kernel-arguments", 266 cl::desc("Lower kernel argument loads in IR pass"), 267 cl::init(true), 268 cl::Hidden); 269 270 static cl::opt<bool> EnableRegReassign( 271 "amdgpu-reassign-regs", 272 cl::desc("Enable register reassign optimizations on gfx10+"), 273 cl::init(true), 274 cl::Hidden); 275 276 static cl::opt<bool> OptVGPRLiveRange( 277 "amdgpu-opt-vgpr-liverange", 278 cl::desc("Enable VGPR liverange optimizations for if-else structure"), 279 cl::init(true), cl::Hidden); 280 281 // Enable atomic optimization 282 static cl::opt<bool> EnableAtomicOptimizations( 283 "amdgpu-atomic-optimizations", 284 cl::desc("Enable atomic optimizations"), 285 cl::init(false), 286 cl::Hidden); 287 288 // Enable Mode register optimization 289 static cl::opt<bool> EnableSIModeRegisterPass( 290 "amdgpu-mode-register", 291 cl::desc("Enable mode register pass"), 292 cl::init(true), 293 cl::Hidden); 294 295 // Option is used in lit tests to prevent deadcoding of patterns inspected. 296 static cl::opt<bool> 297 EnableDCEInRA("amdgpu-dce-in-ra", 298 cl::init(true), cl::Hidden, 299 cl::desc("Enable machine DCE inside regalloc")); 300 301 static cl::opt<bool> EnableScalarIRPasses( 302 "amdgpu-scalar-ir-passes", 303 cl::desc("Enable scalar IR passes"), 304 cl::init(true), 305 cl::Hidden); 306 307 static cl::opt<bool> EnableStructurizerWorkarounds( 308 "amdgpu-enable-structurizer-workarounds", 309 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 310 cl::Hidden); 311 312 static cl::opt<bool> EnableLDSReplaceWithPointer( 313 "amdgpu-enable-lds-replace-with-pointer", 314 cl::desc("Enable LDS replace with pointer pass"), cl::init(false), 315 cl::Hidden); 316 317 static cl::opt<bool, true> EnableLowerModuleLDS( 318 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), 319 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), 320 cl::Hidden); 321 322 static cl::opt<bool> EnablePreRAOptimizations( 323 "amdgpu-enable-pre-ra-optimizations", 324 cl::desc("Enable Pre-RA optimizations pass"), cl::init(true), 325 cl::Hidden); 326 327 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 328 // Register the target 329 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 330 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 331 332 PassRegistry *PR = PassRegistry::getPassRegistry(); 333 initializeR600ClauseMergePassPass(*PR); 334 initializeR600ControlFlowFinalizerPass(*PR); 335 initializeR600PacketizerPass(*PR); 336 initializeR600ExpandSpecialInstrsPassPass(*PR); 337 initializeR600VectorRegMergerPass(*PR); 338 initializeGlobalISel(*PR); 339 initializeAMDGPUDAGToDAGISelPass(*PR); 340 initializeGCNDPPCombinePass(*PR); 341 initializeSILowerI1CopiesPass(*PR); 342 initializeSILowerSGPRSpillsPass(*PR); 343 initializeSIFixSGPRCopiesPass(*PR); 344 initializeSIFixVGPRCopiesPass(*PR); 345 initializeSIFoldOperandsPass(*PR); 346 initializeSIPeepholeSDWAPass(*PR); 347 initializeSIShrinkInstructionsPass(*PR); 348 initializeSIOptimizeExecMaskingPreRAPass(*PR); 349 initializeSIOptimizeVGPRLiveRangePass(*PR); 350 initializeSILoadStoreOptimizerPass(*PR); 351 initializeAMDGPUFixFunctionBitcastsPass(*PR); 352 initializeAMDGPUAlwaysInlinePass(*PR); 353 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 354 initializeAMDGPUAnnotateUniformValuesPass(*PR); 355 initializeAMDGPUArgumentUsageInfoPass(*PR); 356 initializeAMDGPUAtomicOptimizerPass(*PR); 357 initializeAMDGPULowerKernelArgumentsPass(*PR); 358 initializeAMDGPULowerKernelAttributesPass(*PR); 359 initializeAMDGPULowerIntrinsicsPass(*PR); 360 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 361 initializeAMDGPUPostLegalizerCombinerPass(*PR); 362 initializeAMDGPUPreLegalizerCombinerPass(*PR); 363 initializeAMDGPURegBankCombinerPass(*PR); 364 initializeAMDGPUPromoteAllocaPass(*PR); 365 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 366 initializeAMDGPUCodeGenPreparePass(*PR); 367 initializeAMDGPULateCodeGenPreparePass(*PR); 368 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 369 initializeAMDGPUPropagateAttributesLatePass(*PR); 370 initializeAMDGPUReplaceLDSUseWithPointerPass(*PR); 371 initializeAMDGPULowerModuleLDSPass(*PR); 372 initializeAMDGPURewriteOutArgumentsPass(*PR); 373 initializeAMDGPUUnifyMetadataPass(*PR); 374 initializeSIAnnotateControlFlowPass(*PR); 375 initializeSIInsertHardClausesPass(*PR); 376 initializeSIInsertWaitcntsPass(*PR); 377 initializeSIModeRegisterPass(*PR); 378 initializeSIWholeQuadModePass(*PR); 379 initializeSILowerControlFlowPass(*PR); 380 initializeSIPreEmitPeepholePass(*PR); 381 initializeSILateBranchLoweringPass(*PR); 382 initializeSIMemoryLegalizerPass(*PR); 383 initializeSIOptimizeExecMaskingPass(*PR); 384 initializeSIPreAllocateWWMRegsPass(*PR); 385 initializeSIFormMemoryClausesPass(*PR); 386 initializeSIPostRABundlerPass(*PR); 387 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 388 initializeAMDGPUAAWrapperPassPass(*PR); 389 initializeAMDGPUExternalAAWrapperPass(*PR); 390 initializeAMDGPUUseNativeCallsPass(*PR); 391 initializeAMDGPUSimplifyLibCallsPass(*PR); 392 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 393 initializeAMDGPUResourceUsageAnalysisPass(*PR); 394 initializeGCNNSAReassignPass(*PR); 395 initializeGCNPreRAOptimizationsPass(*PR); 396 } 397 398 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 399 return std::make_unique<AMDGPUTargetObjectFile>(); 400 } 401 402 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 403 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 404 } 405 406 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 407 return new SIScheduleDAGMI(C); 408 } 409 410 static ScheduleDAGInstrs * 411 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 412 ScheduleDAGMILive *DAG = 413 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 414 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 415 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 416 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 417 return DAG; 418 } 419 420 static ScheduleDAGInstrs * 421 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 422 auto DAG = new GCNIterativeScheduler(C, 423 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 424 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 425 return DAG; 426 } 427 428 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 429 return new GCNIterativeScheduler(C, 430 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 431 } 432 433 static ScheduleDAGInstrs * 434 createIterativeILPMachineScheduler(MachineSchedContext *C) { 435 auto DAG = new GCNIterativeScheduler(C, 436 GCNIterativeScheduler::SCHEDULE_ILP); 437 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 438 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 439 return DAG; 440 } 441 442 static MachineSchedRegistry 443 R600SchedRegistry("r600", "Run R600's custom scheduler", 444 createR600MachineScheduler); 445 446 static MachineSchedRegistry 447 SISchedRegistry("si", "Run SI's custom scheduler", 448 createSIMachineScheduler); 449 450 static MachineSchedRegistry 451 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 452 "Run GCN scheduler to maximize occupancy", 453 createGCNMaxOccupancyMachineScheduler); 454 455 static MachineSchedRegistry 456 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 457 "Run GCN scheduler to maximize occupancy (experimental)", 458 createIterativeGCNMaxOccupancyMachineScheduler); 459 460 static MachineSchedRegistry 461 GCNMinRegSchedRegistry("gcn-minreg", 462 "Run GCN iterative scheduler for minimal register usage (experimental)", 463 createMinRegScheduler); 464 465 static MachineSchedRegistry 466 GCNILPSchedRegistry("gcn-ilp", 467 "Run GCN iterative scheduler for ILP scheduling (experimental)", 468 createIterativeILPMachineScheduler); 469 470 static StringRef computeDataLayout(const Triple &TT) { 471 if (TT.getArch() == Triple::r600) { 472 // 32-bit pointers. 473 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 474 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 475 } 476 477 // 32-bit private, local, and region pointers. 64-bit global, constant and 478 // flat, non-integral buffer fat pointers. 479 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 480 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 481 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 482 "-ni:7"; 483 } 484 485 LLVM_READNONE 486 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 487 if (!GPU.empty()) 488 return GPU; 489 490 // Need to default to a target with flat support for HSA. 491 if (TT.getArch() == Triple::amdgcn) 492 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 493 494 return "r600"; 495 } 496 497 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 498 // The AMDGPU toolchain only supports generating shared objects, so we 499 // must always use PIC. 500 return Reloc::PIC_; 501 } 502 503 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 504 StringRef CPU, StringRef FS, 505 TargetOptions Options, 506 Optional<Reloc::Model> RM, 507 Optional<CodeModel::Model> CM, 508 CodeGenOpt::Level OptLevel) 509 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 510 FS, Options, getEffectiveRelocModel(RM), 511 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 512 TLOF(createTLOF(getTargetTriple())) { 513 initAsmInfo(); 514 if (TT.getArch() == Triple::amdgcn) { 515 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 516 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 517 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 518 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 519 } 520 } 521 522 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 523 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 524 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 525 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; 526 527 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 528 529 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 530 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 531 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 532 } 533 534 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 535 Attribute FSAttr = F.getFnAttribute("target-features"); 536 537 return FSAttr.isValid() ? FSAttr.getValueAsString() 538 : getTargetFeatureString(); 539 } 540 541 /// Predicate for Internalize pass. 542 static bool mustPreserveGV(const GlobalValue &GV) { 543 if (const Function *F = dyn_cast<Function>(&GV)) 544 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 545 546 GV.removeDeadConstantUsers(); 547 return !GV.use_empty(); 548 } 549 550 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 551 Builder.DivergentTarget = true; 552 553 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 554 bool Internalize = InternalizeSymbols; 555 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 556 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 557 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 558 559 if (EnableFunctionCalls) { 560 delete Builder.Inliner; 561 Builder.Inliner = createFunctionInliningPass(); 562 } 563 564 Builder.addExtension( 565 PassManagerBuilder::EP_ModuleOptimizerEarly, 566 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 567 legacy::PassManagerBase &PM) { 568 if (AMDGPUAA) { 569 PM.add(createAMDGPUAAWrapperPass()); 570 PM.add(createAMDGPUExternalAAWrapperPass()); 571 } 572 PM.add(createAMDGPUUnifyMetadataPass()); 573 PM.add(createAMDGPUPrintfRuntimeBinding()); 574 if (Internalize) 575 PM.add(createInternalizePass(mustPreserveGV)); 576 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 577 if (Internalize) 578 PM.add(createGlobalDCEPass()); 579 if (EarlyInline) 580 PM.add(createAMDGPUAlwaysInlinePass(false)); 581 }); 582 583 Builder.addExtension( 584 PassManagerBuilder::EP_EarlyAsPossible, 585 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 586 legacy::PassManagerBase &PM) { 587 if (AMDGPUAA) { 588 PM.add(createAMDGPUAAWrapperPass()); 589 PM.add(createAMDGPUExternalAAWrapperPass()); 590 } 591 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 592 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 593 if (LibCallSimplify) 594 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 595 }); 596 597 Builder.addExtension( 598 PassManagerBuilder::EP_CGSCCOptimizerLate, 599 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 600 // Add infer address spaces pass to the opt pipeline after inlining 601 // but before SROA to increase SROA opportunities. 602 PM.add(createInferAddressSpacesPass()); 603 604 // This should run after inlining to have any chance of doing anything, 605 // and before other cleanup optimizations. 606 PM.add(createAMDGPULowerKernelAttributesPass()); 607 608 // Promote alloca to vector before SROA and loop unroll. If we manage 609 // to eliminate allocas before unroll we may choose to unroll less. 610 if (EnableOpt) 611 PM.add(createAMDGPUPromoteAllocaToVector()); 612 }); 613 } 614 615 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 616 AAM.registerFunctionAnalysis<AMDGPUAA>(); 617 } 618 619 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) { 620 PB.registerPipelineParsingCallback( 621 [this](StringRef PassName, ModulePassManager &PM, 622 ArrayRef<PassBuilder::PipelineElement>) { 623 if (PassName == "amdgpu-propagate-attributes-late") { 624 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 625 return true; 626 } 627 if (PassName == "amdgpu-unify-metadata") { 628 PM.addPass(AMDGPUUnifyMetadataPass()); 629 return true; 630 } 631 if (PassName == "amdgpu-printf-runtime-binding") { 632 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 633 return true; 634 } 635 if (PassName == "amdgpu-always-inline") { 636 PM.addPass(AMDGPUAlwaysInlinePass()); 637 return true; 638 } 639 if (PassName == "amdgpu-replace-lds-use-with-pointer") { 640 PM.addPass(AMDGPUReplaceLDSUseWithPointerPass()); 641 return true; 642 } 643 if (PassName == "amdgpu-lower-module-lds") { 644 PM.addPass(AMDGPULowerModuleLDSPass()); 645 return true; 646 } 647 return false; 648 }); 649 PB.registerPipelineParsingCallback( 650 [this](StringRef PassName, FunctionPassManager &PM, 651 ArrayRef<PassBuilder::PipelineElement>) { 652 if (PassName == "amdgpu-simplifylib") { 653 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 654 return true; 655 } 656 if (PassName == "amdgpu-usenative") { 657 PM.addPass(AMDGPUUseNativeCallsPass()); 658 return true; 659 } 660 if (PassName == "amdgpu-promote-alloca") { 661 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 662 return true; 663 } 664 if (PassName == "amdgpu-promote-alloca-to-vector") { 665 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 666 return true; 667 } 668 if (PassName == "amdgpu-lower-kernel-attributes") { 669 PM.addPass(AMDGPULowerKernelAttributesPass()); 670 return true; 671 } 672 if (PassName == "amdgpu-propagate-attributes-early") { 673 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 674 return true; 675 } 676 return false; 677 }); 678 679 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 680 FAM.registerPass([&] { return AMDGPUAA(); }); 681 }); 682 683 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 684 if (AAName == "amdgpu-aa") { 685 AAM.registerFunctionAnalysis<AMDGPUAA>(); 686 return true; 687 } 688 return false; 689 }); 690 691 PB.registerPipelineStartEPCallback( 692 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) { 693 FunctionPassManager FPM; 694 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 695 FPM.addPass(AMDGPUUseNativeCallsPass()); 696 if (EnableLibCallSimplify && 697 Level != PassBuilder::OptimizationLevel::O0) 698 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 699 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 700 }); 701 702 PB.registerPipelineEarlySimplificationEPCallback( 703 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) { 704 if (Level == PassBuilder::OptimizationLevel::O0) 705 return; 706 707 PM.addPass(AMDGPUUnifyMetadataPass()); 708 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 709 710 if (InternalizeSymbols) { 711 PM.addPass(InternalizePass(mustPreserveGV)); 712 } 713 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 714 if (InternalizeSymbols) { 715 PM.addPass(GlobalDCEPass()); 716 } 717 if (EarlyInlineAll && !EnableFunctionCalls) 718 PM.addPass(AMDGPUAlwaysInlinePass()); 719 }); 720 721 PB.registerCGSCCOptimizerLateEPCallback( 722 [this](CGSCCPassManager &PM, PassBuilder::OptimizationLevel Level) { 723 if (Level == PassBuilder::OptimizationLevel::O0) 724 return; 725 726 FunctionPassManager FPM; 727 728 // Add infer address spaces pass to the opt pipeline after inlining 729 // but before SROA to increase SROA opportunities. 730 FPM.addPass(InferAddressSpacesPass()); 731 732 // This should run after inlining to have any chance of doing 733 // anything, and before other cleanup optimizations. 734 FPM.addPass(AMDGPULowerKernelAttributesPass()); 735 736 if (Level != PassBuilder::OptimizationLevel::O0) { 737 // Promote alloca to vector before SROA and loop unroll. If we 738 // manage to eliminate allocas before unroll we may choose to unroll 739 // less. 740 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 741 } 742 743 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 744 }); 745 } 746 747 //===----------------------------------------------------------------------===// 748 // R600 Target Machine (R600 -> Cayman) 749 //===----------------------------------------------------------------------===// 750 751 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 752 StringRef CPU, StringRef FS, 753 TargetOptions Options, 754 Optional<Reloc::Model> RM, 755 Optional<CodeModel::Model> CM, 756 CodeGenOpt::Level OL, bool JIT) 757 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 758 setRequiresStructuredCFG(true); 759 760 // Override the default since calls aren't supported for r600. 761 if (EnableFunctionCalls && 762 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 763 EnableFunctionCalls = false; 764 } 765 766 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 767 const Function &F) const { 768 StringRef GPU = getGPUName(F); 769 StringRef FS = getFeatureString(F); 770 771 SmallString<128> SubtargetKey(GPU); 772 SubtargetKey.append(FS); 773 774 auto &I = SubtargetMap[SubtargetKey]; 775 if (!I) { 776 // This needs to be done before we create a new subtarget since any 777 // creation will depend on the TM and the code generation flags on the 778 // function that reside in TargetOptions. 779 resetTargetOptions(F); 780 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 781 } 782 783 return I.get(); 784 } 785 786 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 787 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 788 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 789 AddrSpace == AMDGPUAS::REGION_ADDRESS) 790 ? -1 791 : 0; 792 } 793 794 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 795 unsigned DestAS) const { 796 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 797 AMDGPU::isFlatGlobalAddrSpace(DestAS); 798 } 799 800 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 801 const auto *LD = dyn_cast<LoadInst>(V); 802 if (!LD) 803 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 804 805 // It must be a generic pointer loaded. 806 assert(V->getType()->isPointerTy() && 807 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 808 809 const auto *Ptr = LD->getPointerOperand(); 810 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 811 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 812 // For a generic pointer loaded from the constant memory, it could be assumed 813 // as a global pointer since the constant memory is only populated on the 814 // host side. As implied by the offload programming model, only global 815 // pointers could be referenced on the host side. 816 return AMDGPUAS::GLOBAL_ADDRESS; 817 } 818 819 TargetTransformInfo 820 R600TargetMachine::getTargetTransformInfo(const Function &F) { 821 return TargetTransformInfo(R600TTIImpl(this, F)); 822 } 823 824 //===----------------------------------------------------------------------===// 825 // GCN Target Machine (SI+) 826 //===----------------------------------------------------------------------===// 827 828 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 829 StringRef CPU, StringRef FS, 830 TargetOptions Options, 831 Optional<Reloc::Model> RM, 832 Optional<CodeModel::Model> CM, 833 CodeGenOpt::Level OL, bool JIT) 834 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 835 836 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 837 StringRef GPU = getGPUName(F); 838 StringRef FS = getFeatureString(F); 839 840 SmallString<128> SubtargetKey(GPU); 841 SubtargetKey.append(FS); 842 843 auto &I = SubtargetMap[SubtargetKey]; 844 if (!I) { 845 // This needs to be done before we create a new subtarget since any 846 // creation will depend on the TM and the code generation flags on the 847 // function that reside in TargetOptions. 848 resetTargetOptions(F); 849 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 850 } 851 852 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 853 854 return I.get(); 855 } 856 857 TargetTransformInfo 858 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 859 return TargetTransformInfo(GCNTTIImpl(this, F)); 860 } 861 862 //===----------------------------------------------------------------------===// 863 // AMDGPU Pass Setup 864 //===----------------------------------------------------------------------===// 865 866 namespace { 867 868 class AMDGPUPassConfig : public TargetPassConfig { 869 public: 870 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 871 : TargetPassConfig(TM, PM) { 872 // Exceptions and StackMaps are not supported, so these passes will never do 873 // anything. 874 disablePass(&StackMapLivenessID); 875 disablePass(&FuncletLayoutID); 876 // Garbage collection is not supported. 877 disablePass(&GCLoweringID); 878 disablePass(&ShadowStackGCLoweringID); 879 } 880 881 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 882 return getTM<AMDGPUTargetMachine>(); 883 } 884 885 ScheduleDAGInstrs * 886 createMachineScheduler(MachineSchedContext *C) const override { 887 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 888 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 889 return DAG; 890 } 891 892 void addEarlyCSEOrGVNPass(); 893 void addStraightLineScalarOptimizationPasses(); 894 void addIRPasses() override; 895 void addCodeGenPrepare() override; 896 bool addPreISel() override; 897 bool addInstSelector() override; 898 bool addGCPasses() override; 899 900 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 901 902 /// Check if a pass is enabled given \p Opt option. The option always 903 /// overrides defaults if explicitely used. Otherwise its default will 904 /// be used given that a pass shall work at an optimization \p Level 905 /// minimum. 906 bool isPassEnabled(const cl::opt<bool> &Opt, 907 CodeGenOpt::Level Level = CodeGenOpt::Default) const { 908 if (Opt.getNumOccurrences()) 909 return Opt; 910 if (TM->getOptLevel() < Level) 911 return false; 912 return Opt; 913 } 914 }; 915 916 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 917 return getStandardCSEConfigForOpt(TM->getOptLevel()); 918 } 919 920 class R600PassConfig final : public AMDGPUPassConfig { 921 public: 922 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 923 : AMDGPUPassConfig(TM, PM) {} 924 925 ScheduleDAGInstrs *createMachineScheduler( 926 MachineSchedContext *C) const override { 927 return createR600MachineScheduler(C); 928 } 929 930 bool addPreISel() override; 931 bool addInstSelector() override; 932 void addPreRegAlloc() override; 933 void addPreSched2() override; 934 void addPreEmitPass() override; 935 }; 936 937 class GCNPassConfig final : public AMDGPUPassConfig { 938 public: 939 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 940 : AMDGPUPassConfig(TM, PM) { 941 // It is necessary to know the register usage of the entire call graph. We 942 // allow calls without EnableAMDGPUFunctionCalls if they are marked 943 // noinline, so this is always required. 944 setRequiresCodeGenSCCOrder(true); 945 } 946 947 GCNTargetMachine &getGCNTargetMachine() const { 948 return getTM<GCNTargetMachine>(); 949 } 950 951 ScheduleDAGInstrs * 952 createMachineScheduler(MachineSchedContext *C) const override; 953 954 bool addPreISel() override; 955 void addMachineSSAOptimization() override; 956 bool addILPOpts() override; 957 bool addInstSelector() override; 958 bool addIRTranslator() override; 959 void addPreLegalizeMachineIR() override; 960 bool addLegalizeMachineIR() override; 961 void addPreRegBankSelect() override; 962 bool addRegBankSelect() override; 963 void addPreGlobalInstructionSelect() override; 964 bool addGlobalInstructionSelect() override; 965 void addFastRegAlloc() override; 966 void addOptimizedRegAlloc() override; 967 968 FunctionPass *createSGPRAllocPass(bool Optimized); 969 FunctionPass *createVGPRAllocPass(bool Optimized); 970 FunctionPass *createRegAllocPass(bool Optimized) override; 971 972 bool addRegAssignAndRewriteFast() override; 973 bool addRegAssignAndRewriteOptimized() override; 974 975 void addPreRegAlloc() override; 976 bool addPreRewrite() override; 977 void addPostRegAlloc() override; 978 void addPreSched2() override; 979 void addPreEmitPass() override; 980 }; 981 982 } // end anonymous namespace 983 984 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 985 if (getOptLevel() == CodeGenOpt::Aggressive) 986 addPass(createGVNPass()); 987 else 988 addPass(createEarlyCSEPass()); 989 } 990 991 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 992 addPass(createLICMPass()); 993 addPass(createSeparateConstOffsetFromGEPPass()); 994 addPass(createSpeculativeExecutionPass()); 995 // ReassociateGEPs exposes more opportunites for SLSR. See 996 // the example in reassociate-geps-and-slsr.ll. 997 addPass(createStraightLineStrengthReducePass()); 998 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 999 // EarlyCSE can reuse. 1000 addEarlyCSEOrGVNPass(); 1001 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 1002 addPass(createNaryReassociatePass()); 1003 // NaryReassociate on GEPs creates redundant common expressions, so run 1004 // EarlyCSE after it. 1005 addPass(createEarlyCSEPass()); 1006 } 1007 1008 void AMDGPUPassConfig::addIRPasses() { 1009 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 1010 1011 // There is no reason to run these. 1012 disablePass(&StackMapLivenessID); 1013 disablePass(&FuncletLayoutID); 1014 disablePass(&PatchableFunctionID); 1015 1016 addPass(createAMDGPUPrintfRuntimeBinding()); 1017 1018 // This must occur before inlining, as the inliner will not look through 1019 // bitcast calls. 1020 addPass(createAMDGPUFixFunctionBitcastsPass()); 1021 1022 // A call to propagate attributes pass in the backend in case opt was not run. 1023 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 1024 1025 addPass(createAMDGPULowerIntrinsicsPass()); 1026 1027 // Function calls are not supported, so make sure we inline everything. 1028 addPass(createAMDGPUAlwaysInlinePass()); 1029 addPass(createAlwaysInlinerLegacyPass()); 1030 // We need to add the barrier noop pass, otherwise adding the function 1031 // inlining pass will cause all of the PassConfigs passes to be run 1032 // one function at a time, which means if we have a nodule with two 1033 // functions, then we will generate code for the first function 1034 // without ever running any passes on the second. 1035 addPass(createBarrierNoopPass()); 1036 1037 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 1038 if (TM.getTargetTriple().getArch() == Triple::r600) 1039 addPass(createR600OpenCLImageTypeLoweringPass()); 1040 1041 // Replace OpenCL enqueued block function pointers with global variables. 1042 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 1043 1044 // Can increase LDS used by kernel so runs before PromoteAlloca 1045 if (EnableLowerModuleLDS) { 1046 // The pass "amdgpu-replace-lds-use-with-pointer" need to be run before the 1047 // pass "amdgpu-lower-module-lds", and also it required to be run only if 1048 // "amdgpu-lower-module-lds" pass is enabled. 1049 if (EnableLDSReplaceWithPointer) 1050 addPass(createAMDGPUReplaceLDSUseWithPointerPass()); 1051 1052 addPass(createAMDGPULowerModuleLDSPass()); 1053 } 1054 1055 if (TM.getOptLevel() > CodeGenOpt::None) 1056 addPass(createInferAddressSpacesPass()); 1057 1058 addPass(createAtomicExpandPass()); 1059 1060 if (TM.getOptLevel() > CodeGenOpt::None) { 1061 addPass(createAMDGPUPromoteAlloca()); 1062 1063 if (EnableSROA) 1064 addPass(createSROAPass()); 1065 if (isPassEnabled(EnableScalarIRPasses)) 1066 addStraightLineScalarOptimizationPasses(); 1067 1068 if (EnableAMDGPUAliasAnalysis) { 1069 addPass(createAMDGPUAAWrapperPass()); 1070 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 1071 AAResults &AAR) { 1072 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 1073 AAR.addAAResult(WrapperPass->getResult()); 1074 })); 1075 } 1076 1077 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1078 // TODO: May want to move later or split into an early and late one. 1079 addPass(createAMDGPUCodeGenPreparePass()); 1080 } 1081 } 1082 1083 TargetPassConfig::addIRPasses(); 1084 1085 // EarlyCSE is not always strong enough to clean up what LSR produces. For 1086 // example, GVN can combine 1087 // 1088 // %0 = add %a, %b 1089 // %1 = add %b, %a 1090 // 1091 // and 1092 // 1093 // %0 = shl nsw %a, 2 1094 // %1 = shl %a, 2 1095 // 1096 // but EarlyCSE can do neither of them. 1097 if (isPassEnabled(EnableScalarIRPasses)) 1098 addEarlyCSEOrGVNPass(); 1099 } 1100 1101 void AMDGPUPassConfig::addCodeGenPrepare() { 1102 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 1103 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 1104 1105 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 1106 EnableLowerKernelArguments) 1107 addPass(createAMDGPULowerKernelArgumentsPass()); 1108 1109 TargetPassConfig::addCodeGenPrepare(); 1110 1111 if (isPassEnabled(EnableLoadStoreVectorizer)) 1112 addPass(createLoadStoreVectorizerPass()); 1113 1114 // LowerSwitch pass may introduce unreachable blocks that can 1115 // cause unexpected behavior for subsequent passes. Placing it 1116 // here seems better that these blocks would get cleaned up by 1117 // UnreachableBlockElim inserted next in the pass flow. 1118 addPass(createLowerSwitchPass()); 1119 } 1120 1121 bool AMDGPUPassConfig::addPreISel() { 1122 if (TM->getOptLevel() > CodeGenOpt::None) 1123 addPass(createFlattenCFGPass()); 1124 return false; 1125 } 1126 1127 bool AMDGPUPassConfig::addInstSelector() { 1128 // Defer the verifier until FinalizeISel. 1129 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 1130 return false; 1131 } 1132 1133 bool AMDGPUPassConfig::addGCPasses() { 1134 // Do nothing. GC is not supported. 1135 return false; 1136 } 1137 1138 //===----------------------------------------------------------------------===// 1139 // R600 Pass Setup 1140 //===----------------------------------------------------------------------===// 1141 1142 bool R600PassConfig::addPreISel() { 1143 AMDGPUPassConfig::addPreISel(); 1144 1145 if (EnableR600StructurizeCFG) 1146 addPass(createStructurizeCFGPass()); 1147 return false; 1148 } 1149 1150 bool R600PassConfig::addInstSelector() { 1151 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 1152 return false; 1153 } 1154 1155 void R600PassConfig::addPreRegAlloc() { 1156 addPass(createR600VectorRegMerger()); 1157 } 1158 1159 void R600PassConfig::addPreSched2() { 1160 addPass(createR600EmitClauseMarkers(), false); 1161 if (EnableR600IfConvert) 1162 addPass(&IfConverterID, false); 1163 addPass(createR600ClauseMergePass(), false); 1164 } 1165 1166 void R600PassConfig::addPreEmitPass() { 1167 addPass(createAMDGPUCFGStructurizerPass(), false); 1168 addPass(createR600ExpandSpecialInstrsPass(), false); 1169 addPass(&FinalizeMachineBundlesID, false); 1170 addPass(createR600Packetizer(), false); 1171 addPass(createR600ControlFlowFinalizer(), false); 1172 } 1173 1174 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 1175 return new R600PassConfig(*this, PM); 1176 } 1177 1178 //===----------------------------------------------------------------------===// 1179 // GCN Pass Setup 1180 //===----------------------------------------------------------------------===// 1181 1182 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1183 MachineSchedContext *C) const { 1184 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1185 if (ST.enableSIScheduler()) 1186 return createSIMachineScheduler(C); 1187 return createGCNMaxOccupancyMachineScheduler(C); 1188 } 1189 1190 bool GCNPassConfig::addPreISel() { 1191 AMDGPUPassConfig::addPreISel(); 1192 1193 if (TM->getOptLevel() > CodeGenOpt::None) 1194 addPass(createAMDGPULateCodeGenPreparePass()); 1195 1196 if (isPassEnabled(EnableAtomicOptimizations, CodeGenOpt::Less)) { 1197 addPass(createAMDGPUAtomicOptimizerPass()); 1198 } 1199 1200 if (TM->getOptLevel() > CodeGenOpt::None) 1201 addPass(createSinkingPass()); 1202 1203 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1204 // regions formed by them. 1205 addPass(&AMDGPUUnifyDivergentExitNodesID); 1206 if (!LateCFGStructurize) { 1207 if (EnableStructurizerWorkarounds) { 1208 addPass(createFixIrreduciblePass()); 1209 addPass(createUnifyLoopExitsPass()); 1210 } 1211 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1212 } 1213 addPass(createAMDGPUAnnotateUniformValues()); 1214 if (!LateCFGStructurize) { 1215 addPass(createSIAnnotateControlFlowPass()); 1216 } 1217 addPass(createLCSSAPass()); 1218 1219 if (TM->getOptLevel() > CodeGenOpt::Less) 1220 addPass(&AMDGPUPerfHintAnalysisID); 1221 1222 return false; 1223 } 1224 1225 void GCNPassConfig::addMachineSSAOptimization() { 1226 TargetPassConfig::addMachineSSAOptimization(); 1227 1228 // We want to fold operands after PeepholeOptimizer has run (or as part of 1229 // it), because it will eliminate extra copies making it easier to fold the 1230 // real source operand. We want to eliminate dead instructions after, so that 1231 // we see fewer uses of the copies. We then need to clean up the dead 1232 // instructions leftover after the operands are folded as well. 1233 // 1234 // XXX - Can we get away without running DeadMachineInstructionElim again? 1235 addPass(&SIFoldOperandsID); 1236 if (EnableDPPCombine) 1237 addPass(&GCNDPPCombineID); 1238 addPass(&SILoadStoreOptimizerID); 1239 if (isPassEnabled(EnableSDWAPeephole)) { 1240 addPass(&SIPeepholeSDWAID); 1241 addPass(&EarlyMachineLICMID); 1242 addPass(&MachineCSEID); 1243 addPass(&SIFoldOperandsID); 1244 } 1245 addPass(&DeadMachineInstructionElimID); 1246 addPass(createSIShrinkInstructionsPass()); 1247 } 1248 1249 bool GCNPassConfig::addILPOpts() { 1250 if (EnableEarlyIfConversion) 1251 addPass(&EarlyIfConverterID); 1252 1253 TargetPassConfig::addILPOpts(); 1254 return false; 1255 } 1256 1257 bool GCNPassConfig::addInstSelector() { 1258 AMDGPUPassConfig::addInstSelector(); 1259 addPass(&SIFixSGPRCopiesID); 1260 addPass(createSILowerI1CopiesPass()); 1261 return false; 1262 } 1263 1264 bool GCNPassConfig::addIRTranslator() { 1265 addPass(new IRTranslator(getOptLevel())); 1266 return false; 1267 } 1268 1269 void GCNPassConfig::addPreLegalizeMachineIR() { 1270 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1271 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1272 addPass(new Localizer()); 1273 } 1274 1275 bool GCNPassConfig::addLegalizeMachineIR() { 1276 addPass(new Legalizer()); 1277 return false; 1278 } 1279 1280 void GCNPassConfig::addPreRegBankSelect() { 1281 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1282 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1283 } 1284 1285 bool GCNPassConfig::addRegBankSelect() { 1286 addPass(new RegBankSelect()); 1287 return false; 1288 } 1289 1290 void GCNPassConfig::addPreGlobalInstructionSelect() { 1291 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1292 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1293 } 1294 1295 bool GCNPassConfig::addGlobalInstructionSelect() { 1296 addPass(new InstructionSelect(getOptLevel())); 1297 return false; 1298 } 1299 1300 void GCNPassConfig::addPreRegAlloc() { 1301 if (LateCFGStructurize) { 1302 addPass(createAMDGPUMachineCFGStructurizerPass()); 1303 } 1304 } 1305 1306 void GCNPassConfig::addFastRegAlloc() { 1307 // FIXME: We have to disable the verifier here because of PHIElimination + 1308 // TwoAddressInstructions disabling it. 1309 1310 // This must be run immediately after phi elimination and before 1311 // TwoAddressInstructions, otherwise the processing of the tied operand of 1312 // SI_ELSE will introduce a copy of the tied operand source after the else. 1313 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1314 1315 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1316 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1317 1318 TargetPassConfig::addFastRegAlloc(); 1319 } 1320 1321 void GCNPassConfig::addOptimizedRegAlloc() { 1322 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1323 // instructions that cause scheduling barriers. 1324 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1325 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1326 1327 if (OptExecMaskPreRA) 1328 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1329 1330 if (isPassEnabled(EnablePreRAOptimizations)) 1331 insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID); 1332 1333 // This is not an essential optimization and it has a noticeable impact on 1334 // compilation time, so we only enable it from O2. 1335 if (TM->getOptLevel() > CodeGenOpt::Less) 1336 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1337 1338 // FIXME: when an instruction has a Killed operand, and the instruction is 1339 // inside a bundle, seems only the BUNDLE instruction appears as the Kills of 1340 // the register in LiveVariables, this would trigger a failure in verifier, 1341 // we should fix it and enable the verifier. 1342 if (OptVGPRLiveRange) 1343 insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID, false); 1344 // This must be run immediately after phi elimination and before 1345 // TwoAddressInstructions, otherwise the processing of the tied operand of 1346 // SI_ELSE will introduce a copy of the tied operand source after the else. 1347 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1348 1349 if (EnableDCEInRA) 1350 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1351 1352 TargetPassConfig::addOptimizedRegAlloc(); 1353 } 1354 1355 bool GCNPassConfig::addPreRewrite() { 1356 if (EnableRegReassign) 1357 addPass(&GCNNSAReassignID); 1358 return true; 1359 } 1360 1361 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) { 1362 // Initialize the global default. 1363 llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag, 1364 initializeDefaultSGPRRegisterAllocatorOnce); 1365 1366 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 1367 if (Ctor != useDefaultRegisterAllocator) 1368 return Ctor(); 1369 1370 if (Optimized) 1371 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 1372 1373 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 1374 } 1375 1376 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) { 1377 // Initialize the global default. 1378 llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag, 1379 initializeDefaultVGPRRegisterAllocatorOnce); 1380 1381 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 1382 if (Ctor != useDefaultRegisterAllocator) 1383 return Ctor(); 1384 1385 if (Optimized) 1386 return createGreedyVGPRRegisterAllocator(); 1387 1388 return createFastVGPRRegisterAllocator(); 1389 } 1390 1391 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) { 1392 llvm_unreachable("should not be used"); 1393 } 1394 1395 static const char RegAllocOptNotSupportedMessage[] = 1396 "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc"; 1397 1398 bool GCNPassConfig::addRegAssignAndRewriteFast() { 1399 if (!usingDefaultRegAlloc()) 1400 report_fatal_error(RegAllocOptNotSupportedMessage); 1401 1402 addPass(createSGPRAllocPass(false)); 1403 1404 // Equivalent of PEI for SGPRs. 1405 addPass(&SILowerSGPRSpillsID); 1406 1407 addPass(createVGPRAllocPass(false)); 1408 return true; 1409 } 1410 1411 bool GCNPassConfig::addRegAssignAndRewriteOptimized() { 1412 if (!usingDefaultRegAlloc()) 1413 report_fatal_error(RegAllocOptNotSupportedMessage); 1414 1415 addPass(createSGPRAllocPass(true)); 1416 1417 // Commit allocated register changes. This is mostly necessary because too 1418 // many things rely on the use lists of the physical registers, such as the 1419 // verifier. This is only necessary with allocators which use LiveIntervals, 1420 // since FastRegAlloc does the replacments itself. 1421 addPass(createVirtRegRewriter(false)); 1422 1423 // Equivalent of PEI for SGPRs. 1424 addPass(&SILowerSGPRSpillsID); 1425 1426 addPass(createVGPRAllocPass(true)); 1427 1428 addPreRewrite(); 1429 addPass(&VirtRegRewriterID); 1430 1431 return true; 1432 } 1433 1434 void GCNPassConfig::addPostRegAlloc() { 1435 addPass(&SIFixVGPRCopiesID); 1436 if (getOptLevel() > CodeGenOpt::None) 1437 addPass(&SIOptimizeExecMaskingID); 1438 TargetPassConfig::addPostRegAlloc(); 1439 } 1440 1441 void GCNPassConfig::addPreSched2() { 1442 addPass(&SIPostRABundlerID); 1443 } 1444 1445 void GCNPassConfig::addPreEmitPass() { 1446 addPass(createSIMemoryLegalizerPass()); 1447 addPass(createSIInsertWaitcntsPass()); 1448 1449 if (TM->getOptLevel() > CodeGenOpt::None) 1450 addPass(createSIShrinkInstructionsPass()); 1451 1452 addPass(createSIModeRegisterPass()); 1453 1454 if (getOptLevel() > CodeGenOpt::None) 1455 addPass(&SIInsertHardClausesID); 1456 1457 addPass(&SILateBranchLoweringPassID); 1458 if (getOptLevel() > CodeGenOpt::None) 1459 addPass(&SIPreEmitPeepholeID); 1460 // The hazard recognizer that runs as part of the post-ra scheduler does not 1461 // guarantee to be able handle all hazards correctly. This is because if there 1462 // are multiple scheduling regions in a basic block, the regions are scheduled 1463 // bottom up, so when we begin to schedule a region we don't know what 1464 // instructions were emitted directly before it. 1465 // 1466 // Here we add a stand-alone hazard recognizer pass which can handle all 1467 // cases. 1468 addPass(&PostRAHazardRecognizerID); 1469 addPass(&BranchRelaxationPassID); 1470 } 1471 1472 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1473 return new GCNPassConfig(*this, PM); 1474 } 1475 1476 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1477 return new yaml::SIMachineFunctionInfo(); 1478 } 1479 1480 yaml::MachineFunctionInfo * 1481 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1482 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1483 return new yaml::SIMachineFunctionInfo( 1484 *MFI, *MF.getSubtarget().getRegisterInfo(), MF); 1485 } 1486 1487 bool GCNTargetMachine::parseMachineFunctionInfo( 1488 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1489 SMDiagnostic &Error, SMRange &SourceRange) const { 1490 const yaml::SIMachineFunctionInfo &YamlMFI = 1491 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1492 MachineFunction &MF = PFS.MF; 1493 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1494 1495 if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange)) 1496 return true; 1497 1498 if (MFI->Occupancy == 0) { 1499 // Fixup the subtarget dependent default value. 1500 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1501 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1502 } 1503 1504 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1505 Register TempReg; 1506 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1507 SourceRange = RegName.SourceRange; 1508 return true; 1509 } 1510 RegVal = TempReg; 1511 1512 return false; 1513 }; 1514 1515 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1516 // Create a diagnostic for a the register string literal. 1517 const MemoryBuffer &Buffer = 1518 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1519 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1520 RegName.Value.size(), SourceMgr::DK_Error, 1521 "incorrect register class for field", RegName.Value, 1522 None, None); 1523 SourceRange = RegName.SourceRange; 1524 return true; 1525 }; 1526 1527 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1528 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1529 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1530 return true; 1531 1532 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1533 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1534 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1535 } 1536 1537 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1538 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1539 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1540 } 1541 1542 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1543 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1544 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1545 } 1546 1547 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1548 const TargetRegisterClass &RC, 1549 ArgDescriptor &Arg, unsigned UserSGPRs, 1550 unsigned SystemSGPRs) { 1551 // Skip parsing if it's not present. 1552 if (!A) 1553 return false; 1554 1555 if (A->IsRegister) { 1556 Register Reg; 1557 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1558 SourceRange = A->RegisterName.SourceRange; 1559 return true; 1560 } 1561 if (!RC.contains(Reg)) 1562 return diagnoseRegisterClass(A->RegisterName); 1563 Arg = ArgDescriptor::createRegister(Reg); 1564 } else 1565 Arg = ArgDescriptor::createStack(A->StackOffset); 1566 // Check and apply the optional mask. 1567 if (A->Mask) 1568 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1569 1570 MFI->NumUserSGPRs += UserSGPRs; 1571 MFI->NumSystemSGPRs += SystemSGPRs; 1572 return false; 1573 }; 1574 1575 if (YamlMFI.ArgInfo && 1576 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1577 AMDGPU::SGPR_128RegClass, 1578 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1579 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1580 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1581 2, 0) || 1582 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1583 MFI->ArgInfo.QueuePtr, 2, 0) || 1584 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1585 AMDGPU::SReg_64RegClass, 1586 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1587 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1588 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1589 2, 0) || 1590 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1591 AMDGPU::SReg_64RegClass, 1592 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1593 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1594 AMDGPU::SGPR_32RegClass, 1595 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1596 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1597 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1598 0, 1) || 1599 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1600 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1601 0, 1) || 1602 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1603 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1604 0, 1) || 1605 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1606 AMDGPU::SGPR_32RegClass, 1607 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1608 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1609 AMDGPU::SGPR_32RegClass, 1610 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1611 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1612 AMDGPU::SReg_64RegClass, 1613 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1614 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1615 AMDGPU::SReg_64RegClass, 1616 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1617 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1618 AMDGPU::VGPR_32RegClass, 1619 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1620 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1621 AMDGPU::VGPR_32RegClass, 1622 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1623 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1624 AMDGPU::VGPR_32RegClass, 1625 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1626 return true; 1627 1628 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1629 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1630 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1631 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1632 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1633 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1634 1635 return false; 1636 } 1637