1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUInstructionSelector.h" 20 #include "AMDGPULegalizerInfo.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPUTargetObjectFile.h" 23 #include "AMDGPUTargetTransformInfo.h" 24 #include "GCNIterativeScheduler.h" 25 #include "GCNSchedStrategy.h" 26 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 27 #include "R600MachineScheduler.h" 28 #include "SIMachineFunctionInfo.h" 29 #include "SIMachineScheduler.h" 30 #include "TargetInfo/AMDGPUTargetInfo.h" 31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/Localizer.h" 35 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 36 #include "llvm/CodeGen/MIRParser/MIParser.h" 37 #include "llvm/CodeGen/Passes.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/LegacyPassManager.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/IPO/AlwaysInliner.h" 50 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 51 #include "llvm/Transforms/Scalar.h" 52 #include "llvm/Transforms/Scalar/GVN.h" 53 #include "llvm/Transforms/Utils.h" 54 #include "llvm/Transforms/Vectorize.h" 55 #include <memory> 56 57 using namespace llvm; 58 59 static cl::opt<bool> EnableR600StructurizeCFG( 60 "r600-ir-structurize", 61 cl::desc("Use StructurizeCFG IR pass"), 62 cl::init(true)); 63 64 static cl::opt<bool> EnableSROA( 65 "amdgpu-sroa", 66 cl::desc("Run SROA after promote alloca pass"), 67 cl::ReallyHidden, 68 cl::init(true)); 69 70 static cl::opt<bool> 71 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 72 cl::desc("Run early if-conversion"), 73 cl::init(false)); 74 75 static cl::opt<bool> 76 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 77 cl::desc("Run pre-RA exec mask optimizations"), 78 cl::init(true)); 79 80 static cl::opt<bool> EnableR600IfConvert( 81 "r600-if-convert", 82 cl::desc("Use if conversion pass"), 83 cl::ReallyHidden, 84 cl::init(true)); 85 86 // Option to disable vectorizer for tests. 87 static cl::opt<bool> EnableLoadStoreVectorizer( 88 "amdgpu-load-store-vectorizer", 89 cl::desc("Enable load store vectorizer"), 90 cl::init(true), 91 cl::Hidden); 92 93 // Option to control global loads scalarization 94 static cl::opt<bool> ScalarizeGlobal( 95 "amdgpu-scalarize-global-loads", 96 cl::desc("Enable global load scalarization"), 97 cl::init(true), 98 cl::Hidden); 99 100 // Option to run internalize pass. 101 static cl::opt<bool> InternalizeSymbols( 102 "amdgpu-internalize-symbols", 103 cl::desc("Enable elimination of non-kernel functions and unused globals"), 104 cl::init(false), 105 cl::Hidden); 106 107 // Option to inline all early. 108 static cl::opt<bool> EarlyInlineAll( 109 "amdgpu-early-inline-all", 110 cl::desc("Inline all functions early"), 111 cl::init(false), 112 cl::Hidden); 113 114 static cl::opt<bool> EnableSDWAPeephole( 115 "amdgpu-sdwa-peephole", 116 cl::desc("Enable SDWA peepholer"), 117 cl::init(true)); 118 119 static cl::opt<bool> EnableDPPCombine( 120 "amdgpu-dpp-combine", 121 cl::desc("Enable DPP combiner"), 122 cl::init(true)); 123 124 // Enable address space based alias analysis 125 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 126 cl::desc("Enable AMDGPU Alias Analysis"), 127 cl::init(true)); 128 129 // Option to run late CFG structurizer 130 static cl::opt<bool, true> LateCFGStructurize( 131 "amdgpu-late-structurize", 132 cl::desc("Enable late CFG structurization"), 133 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 134 cl::Hidden); 135 136 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 137 "amdgpu-function-calls", 138 cl::desc("Enable AMDGPU function call support"), 139 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 140 cl::init(true), 141 cl::Hidden); 142 143 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 144 "amdgpu-fixed-function-abi", 145 cl::desc("Enable all implicit function arguments"), 146 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 147 cl::init(false), 148 cl::Hidden); 149 150 // Enable lib calls simplifications 151 static cl::opt<bool> EnableLibCallSimplify( 152 "amdgpu-simplify-libcall", 153 cl::desc("Enable amdgpu library simplifications"), 154 cl::init(true), 155 cl::Hidden); 156 157 static cl::opt<bool> EnableLowerKernelArguments( 158 "amdgpu-ir-lower-kernel-arguments", 159 cl::desc("Lower kernel argument loads in IR pass"), 160 cl::init(true), 161 cl::Hidden); 162 163 static cl::opt<bool> EnableRegReassign( 164 "amdgpu-reassign-regs", 165 cl::desc("Enable register reassign optimizations on gfx10+"), 166 cl::init(true), 167 cl::Hidden); 168 169 // Enable atomic optimization 170 static cl::opt<bool> EnableAtomicOptimizations( 171 "amdgpu-atomic-optimizations", 172 cl::desc("Enable atomic optimizations"), 173 cl::init(false), 174 cl::Hidden); 175 176 // Enable Mode register optimization 177 static cl::opt<bool> EnableSIModeRegisterPass( 178 "amdgpu-mode-register", 179 cl::desc("Enable mode register pass"), 180 cl::init(true), 181 cl::Hidden); 182 183 // Option is used in lit tests to prevent deadcoding of patterns inspected. 184 static cl::opt<bool> 185 EnableDCEInRA("amdgpu-dce-in-ra", 186 cl::init(true), cl::Hidden, 187 cl::desc("Enable machine DCE inside regalloc")); 188 189 static cl::opt<bool> EnableScalarIRPasses( 190 "amdgpu-scalar-ir-passes", 191 cl::desc("Enable scalar IR passes"), 192 cl::init(true), 193 cl::Hidden); 194 195 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 196 // Register the target 197 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 198 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 199 200 PassRegistry *PR = PassRegistry::getPassRegistry(); 201 initializeR600ClauseMergePassPass(*PR); 202 initializeR600ControlFlowFinalizerPass(*PR); 203 initializeR600PacketizerPass(*PR); 204 initializeR600ExpandSpecialInstrsPassPass(*PR); 205 initializeR600VectorRegMergerPass(*PR); 206 initializeGlobalISel(*PR); 207 initializeAMDGPUDAGToDAGISelPass(*PR); 208 initializeGCNDPPCombinePass(*PR); 209 initializeSILowerI1CopiesPass(*PR); 210 initializeSILowerSGPRSpillsPass(*PR); 211 initializeSIFixSGPRCopiesPass(*PR); 212 initializeSIFixVGPRCopiesPass(*PR); 213 initializeSIFixupVectorISelPass(*PR); 214 initializeSIFoldOperandsPass(*PR); 215 initializeSIPeepholeSDWAPass(*PR); 216 initializeSIShrinkInstructionsPass(*PR); 217 initializeSIOptimizeExecMaskingPreRAPass(*PR); 218 initializeSILoadStoreOptimizerPass(*PR); 219 initializeAMDGPUFixFunctionBitcastsPass(*PR); 220 initializeAMDGPUAlwaysInlinePass(*PR); 221 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 222 initializeAMDGPUAnnotateUniformValuesPass(*PR); 223 initializeAMDGPUArgumentUsageInfoPass(*PR); 224 initializeAMDGPUAtomicOptimizerPass(*PR); 225 initializeAMDGPULowerKernelArgumentsPass(*PR); 226 initializeAMDGPULowerKernelAttributesPass(*PR); 227 initializeAMDGPULowerIntrinsicsPass(*PR); 228 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 229 initializeAMDGPUPostLegalizerCombinerPass(*PR); 230 initializeAMDGPUPreLegalizerCombinerPass(*PR); 231 initializeAMDGPUPromoteAllocaPass(*PR); 232 initializeAMDGPUCodeGenPreparePass(*PR); 233 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 234 initializeAMDGPUPropagateAttributesLatePass(*PR); 235 initializeAMDGPURewriteOutArgumentsPass(*PR); 236 initializeAMDGPUUnifyMetadataPass(*PR); 237 initializeSIAnnotateControlFlowPass(*PR); 238 initializeSIInsertWaitcntsPass(*PR); 239 initializeSIModeRegisterPass(*PR); 240 initializeSIWholeQuadModePass(*PR); 241 initializeSILowerControlFlowPass(*PR); 242 initializeSIRemoveShortExecBranchesPass(*PR); 243 initializeSIPreEmitPeepholePass(*PR); 244 initializeSIInsertSkipsPass(*PR); 245 initializeSIMemoryLegalizerPass(*PR); 246 initializeSIOptimizeExecMaskingPass(*PR); 247 initializeSIPreAllocateWWMRegsPass(*PR); 248 initializeSIFormMemoryClausesPass(*PR); 249 initializeSIPostRABundlerPass(*PR); 250 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 251 initializeAMDGPUAAWrapperPassPass(*PR); 252 initializeAMDGPUExternalAAWrapperPass(*PR); 253 initializeAMDGPUUseNativeCallsPass(*PR); 254 initializeAMDGPUSimplifyLibCallsPass(*PR); 255 initializeAMDGPUInlinerPass(*PR); 256 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 257 initializeGCNRegBankReassignPass(*PR); 258 initializeGCNNSAReassignPass(*PR); 259 initializeSIAddIMGInitPass(*PR); 260 } 261 262 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 263 return std::make_unique<AMDGPUTargetObjectFile>(); 264 } 265 266 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 267 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 268 } 269 270 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 271 return new SIScheduleDAGMI(C); 272 } 273 274 static ScheduleDAGInstrs * 275 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 276 ScheduleDAGMILive *DAG = 277 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 278 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 279 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 280 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 281 return DAG; 282 } 283 284 static ScheduleDAGInstrs * 285 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 286 auto DAG = new GCNIterativeScheduler(C, 287 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 288 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 289 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 290 return DAG; 291 } 292 293 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 294 return new GCNIterativeScheduler(C, 295 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 296 } 297 298 static ScheduleDAGInstrs * 299 createIterativeILPMachineScheduler(MachineSchedContext *C) { 300 auto DAG = new GCNIterativeScheduler(C, 301 GCNIterativeScheduler::SCHEDULE_ILP); 302 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 303 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 304 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 305 return DAG; 306 } 307 308 static MachineSchedRegistry 309 R600SchedRegistry("r600", "Run R600's custom scheduler", 310 createR600MachineScheduler); 311 312 static MachineSchedRegistry 313 SISchedRegistry("si", "Run SI's custom scheduler", 314 createSIMachineScheduler); 315 316 static MachineSchedRegistry 317 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 318 "Run GCN scheduler to maximize occupancy", 319 createGCNMaxOccupancyMachineScheduler); 320 321 static MachineSchedRegistry 322 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 323 "Run GCN scheduler to maximize occupancy (experimental)", 324 createIterativeGCNMaxOccupancyMachineScheduler); 325 326 static MachineSchedRegistry 327 GCNMinRegSchedRegistry("gcn-minreg", 328 "Run GCN iterative scheduler for minimal register usage (experimental)", 329 createMinRegScheduler); 330 331 static MachineSchedRegistry 332 GCNILPSchedRegistry("gcn-ilp", 333 "Run GCN iterative scheduler for ILP scheduling (experimental)", 334 createIterativeILPMachineScheduler); 335 336 static StringRef computeDataLayout(const Triple &TT) { 337 if (TT.getArch() == Triple::r600) { 338 // 32-bit pointers. 339 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 340 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 341 } 342 343 // 32-bit private, local, and region pointers. 64-bit global, constant and 344 // flat, non-integral buffer fat pointers. 345 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 346 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 347 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 348 "-ni:7"; 349 } 350 351 LLVM_READNONE 352 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 353 if (!GPU.empty()) 354 return GPU; 355 356 // Need to default to a target with flat support for HSA. 357 if (TT.getArch() == Triple::amdgcn) 358 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 359 360 return "r600"; 361 } 362 363 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 364 // The AMDGPU toolchain only supports generating shared objects, so we 365 // must always use PIC. 366 return Reloc::PIC_; 367 } 368 369 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 370 StringRef CPU, StringRef FS, 371 TargetOptions Options, 372 Optional<Reloc::Model> RM, 373 Optional<CodeModel::Model> CM, 374 CodeGenOpt::Level OptLevel) 375 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 376 FS, Options, getEffectiveRelocModel(RM), 377 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 378 TLOF(createTLOF(getTargetTriple())) { 379 initAsmInfo(); 380 if (TT.getArch() == Triple::amdgcn) { 381 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 382 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 383 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 384 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 385 } 386 } 387 388 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 389 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 390 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 391 392 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 393 394 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 395 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 396 return GPUAttr.hasAttribute(Attribute::None) ? 397 getTargetCPU() : GPUAttr.getValueAsString(); 398 } 399 400 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 401 Attribute FSAttr = F.getFnAttribute("target-features"); 402 403 return FSAttr.hasAttribute(Attribute::None) ? 404 getTargetFeatureString() : 405 FSAttr.getValueAsString(); 406 } 407 408 /// Predicate for Internalize pass. 409 static bool mustPreserveGV(const GlobalValue &GV) { 410 if (const Function *F = dyn_cast<Function>(&GV)) 411 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 412 413 return !GV.use_empty(); 414 } 415 416 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 417 Builder.DivergentTarget = true; 418 419 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 420 bool Internalize = InternalizeSymbols; 421 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 422 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 423 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 424 425 if (EnableFunctionCalls) { 426 delete Builder.Inliner; 427 Builder.Inliner = createAMDGPUFunctionInliningPass(); 428 } 429 430 Builder.addExtension( 431 PassManagerBuilder::EP_ModuleOptimizerEarly, 432 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 433 legacy::PassManagerBase &PM) { 434 if (AMDGPUAA) { 435 PM.add(createAMDGPUAAWrapperPass()); 436 PM.add(createAMDGPUExternalAAWrapperPass()); 437 } 438 PM.add(createAMDGPUUnifyMetadataPass()); 439 PM.add(createAMDGPUPrintfRuntimeBinding()); 440 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 441 if (Internalize) { 442 PM.add(createInternalizePass(mustPreserveGV)); 443 PM.add(createGlobalDCEPass()); 444 } 445 if (EarlyInline) 446 PM.add(createAMDGPUAlwaysInlinePass(false)); 447 }); 448 449 const auto &Opt = Options; 450 Builder.addExtension( 451 PassManagerBuilder::EP_EarlyAsPossible, 452 [AMDGPUAA, LibCallSimplify, &Opt, this](const PassManagerBuilder &, 453 legacy::PassManagerBase &PM) { 454 if (AMDGPUAA) { 455 PM.add(createAMDGPUAAWrapperPass()); 456 PM.add(createAMDGPUExternalAAWrapperPass()); 457 } 458 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 459 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 460 if (LibCallSimplify) 461 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt, this)); 462 }); 463 464 Builder.addExtension( 465 PassManagerBuilder::EP_CGSCCOptimizerLate, 466 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 467 // Add infer address spaces pass to the opt pipeline after inlining 468 // but before SROA to increase SROA opportunities. 469 PM.add(createInferAddressSpacesPass()); 470 471 // This should run after inlining to have any chance of doing anything, 472 // and before other cleanup optimizations. 473 PM.add(createAMDGPULowerKernelAttributesPass()); 474 }); 475 } 476 477 //===----------------------------------------------------------------------===// 478 // R600 Target Machine (R600 -> Cayman) 479 //===----------------------------------------------------------------------===// 480 481 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 482 StringRef CPU, StringRef FS, 483 TargetOptions Options, 484 Optional<Reloc::Model> RM, 485 Optional<CodeModel::Model> CM, 486 CodeGenOpt::Level OL, bool JIT) 487 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 488 setRequiresStructuredCFG(true); 489 490 // Override the default since calls aren't supported for r600. 491 if (EnableFunctionCalls && 492 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 493 EnableFunctionCalls = false; 494 } 495 496 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 497 const Function &F) const { 498 StringRef GPU = getGPUName(F); 499 StringRef FS = getFeatureString(F); 500 501 SmallString<128> SubtargetKey(GPU); 502 SubtargetKey.append(FS); 503 504 auto &I = SubtargetMap[SubtargetKey]; 505 if (!I) { 506 // This needs to be done before we create a new subtarget since any 507 // creation will depend on the TM and the code generation flags on the 508 // function that reside in TargetOptions. 509 resetTargetOptions(F); 510 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 511 } 512 513 return I.get(); 514 } 515 516 TargetTransformInfo 517 R600TargetMachine::getTargetTransformInfo(const Function &F) { 518 return TargetTransformInfo(R600TTIImpl(this, F)); 519 } 520 521 //===----------------------------------------------------------------------===// 522 // GCN Target Machine (SI+) 523 //===----------------------------------------------------------------------===// 524 525 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 526 StringRef CPU, StringRef FS, 527 TargetOptions Options, 528 Optional<Reloc::Model> RM, 529 Optional<CodeModel::Model> CM, 530 CodeGenOpt::Level OL, bool JIT) 531 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 532 533 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 534 StringRef GPU = getGPUName(F); 535 StringRef FS = getFeatureString(F); 536 537 SmallString<128> SubtargetKey(GPU); 538 SubtargetKey.append(FS); 539 540 auto &I = SubtargetMap[SubtargetKey]; 541 if (!I) { 542 // This needs to be done before we create a new subtarget since any 543 // creation will depend on the TM and the code generation flags on the 544 // function that reside in TargetOptions. 545 resetTargetOptions(F); 546 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 547 } 548 549 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 550 551 return I.get(); 552 } 553 554 TargetTransformInfo 555 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 556 return TargetTransformInfo(GCNTTIImpl(this, F)); 557 } 558 559 //===----------------------------------------------------------------------===// 560 // AMDGPU Pass Setup 561 //===----------------------------------------------------------------------===// 562 563 namespace { 564 565 class AMDGPUPassConfig : public TargetPassConfig { 566 public: 567 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 568 : TargetPassConfig(TM, PM) { 569 // Exceptions and StackMaps are not supported, so these passes will never do 570 // anything. 571 disablePass(&StackMapLivenessID); 572 disablePass(&FuncletLayoutID); 573 } 574 575 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 576 return getTM<AMDGPUTargetMachine>(); 577 } 578 579 ScheduleDAGInstrs * 580 createMachineScheduler(MachineSchedContext *C) const override { 581 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 582 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 583 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 584 return DAG; 585 } 586 587 void addEarlyCSEOrGVNPass(); 588 void addStraightLineScalarOptimizationPasses(); 589 void addIRPasses() override; 590 void addCodeGenPrepare() override; 591 bool addPreISel() override; 592 bool addInstSelector() override; 593 bool addGCPasses() override; 594 595 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 596 }; 597 598 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 599 return getStandardCSEConfigForOpt(TM->getOptLevel()); 600 } 601 602 class R600PassConfig final : public AMDGPUPassConfig { 603 public: 604 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 605 : AMDGPUPassConfig(TM, PM) {} 606 607 ScheduleDAGInstrs *createMachineScheduler( 608 MachineSchedContext *C) const override { 609 return createR600MachineScheduler(C); 610 } 611 612 bool addPreISel() override; 613 bool addInstSelector() override; 614 void addPreRegAlloc() override; 615 void addPreSched2() override; 616 void addPreEmitPass() override; 617 }; 618 619 class GCNPassConfig final : public AMDGPUPassConfig { 620 public: 621 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 622 : AMDGPUPassConfig(TM, PM) { 623 // It is necessary to know the register usage of the entire call graph. We 624 // allow calls without EnableAMDGPUFunctionCalls if they are marked 625 // noinline, so this is always required. 626 setRequiresCodeGenSCCOrder(true); 627 } 628 629 GCNTargetMachine &getGCNTargetMachine() const { 630 return getTM<GCNTargetMachine>(); 631 } 632 633 ScheduleDAGInstrs * 634 createMachineScheduler(MachineSchedContext *C) const override; 635 636 bool addPreISel() override; 637 void addMachineSSAOptimization() override; 638 bool addILPOpts() override; 639 bool addInstSelector() override; 640 bool addIRTranslator() override; 641 void addPreLegalizeMachineIR() override; 642 bool addLegalizeMachineIR() override; 643 void addPreRegBankSelect() override; 644 bool addRegBankSelect() override; 645 bool addGlobalInstructionSelect() override; 646 void addFastRegAlloc() override; 647 void addOptimizedRegAlloc() override; 648 void addPreRegAlloc() override; 649 bool addPreRewrite() override; 650 void addPostRegAlloc() override; 651 void addPreSched2() override; 652 void addPreEmitPass() override; 653 }; 654 655 } // end anonymous namespace 656 657 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 658 if (getOptLevel() == CodeGenOpt::Aggressive) 659 addPass(createGVNPass()); 660 else 661 addPass(createEarlyCSEPass()); 662 } 663 664 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 665 addPass(createLICMPass()); 666 addPass(createSeparateConstOffsetFromGEPPass()); 667 addPass(createSpeculativeExecutionPass()); 668 // ReassociateGEPs exposes more opportunites for SLSR. See 669 // the example in reassociate-geps-and-slsr.ll. 670 addPass(createStraightLineStrengthReducePass()); 671 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 672 // EarlyCSE can reuse. 673 addEarlyCSEOrGVNPass(); 674 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 675 addPass(createNaryReassociatePass()); 676 // NaryReassociate on GEPs creates redundant common expressions, so run 677 // EarlyCSE after it. 678 addPass(createEarlyCSEPass()); 679 } 680 681 void AMDGPUPassConfig::addIRPasses() { 682 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 683 684 // There is no reason to run these. 685 disablePass(&StackMapLivenessID); 686 disablePass(&FuncletLayoutID); 687 disablePass(&PatchableFunctionID); 688 689 addPass(createAMDGPUPrintfRuntimeBinding()); 690 691 // This must occur before inlining, as the inliner will not look through 692 // bitcast calls. 693 addPass(createAMDGPUFixFunctionBitcastsPass()); 694 695 // A call to propagate attributes pass in the backend in case opt was not run. 696 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 697 698 addPass(createAtomicExpandPass()); 699 700 701 addPass(createAMDGPULowerIntrinsicsPass()); 702 703 // Function calls are not supported, so make sure we inline everything. 704 addPass(createAMDGPUAlwaysInlinePass()); 705 addPass(createAlwaysInlinerLegacyPass()); 706 // We need to add the barrier noop pass, otherwise adding the function 707 // inlining pass will cause all of the PassConfigs passes to be run 708 // one function at a time, which means if we have a nodule with two 709 // functions, then we will generate code for the first function 710 // without ever running any passes on the second. 711 addPass(createBarrierNoopPass()); 712 713 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 714 if (TM.getTargetTriple().getArch() == Triple::r600) 715 addPass(createR600OpenCLImageTypeLoweringPass()); 716 717 // Replace OpenCL enqueued block function pointers with global variables. 718 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 719 720 if (TM.getOptLevel() > CodeGenOpt::None) { 721 addPass(createInferAddressSpacesPass()); 722 addPass(createAMDGPUPromoteAlloca()); 723 724 if (EnableSROA) 725 addPass(createSROAPass()); 726 727 if (EnableScalarIRPasses) 728 addStraightLineScalarOptimizationPasses(); 729 730 if (EnableAMDGPUAliasAnalysis) { 731 addPass(createAMDGPUAAWrapperPass()); 732 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 733 AAResults &AAR) { 734 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 735 AAR.addAAResult(WrapperPass->getResult()); 736 })); 737 } 738 } 739 740 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 741 // TODO: May want to move later or split into an early and late one. 742 addPass(createAMDGPUCodeGenPreparePass()); 743 } 744 745 TargetPassConfig::addIRPasses(); 746 747 // EarlyCSE is not always strong enough to clean up what LSR produces. For 748 // example, GVN can combine 749 // 750 // %0 = add %a, %b 751 // %1 = add %b, %a 752 // 753 // and 754 // 755 // %0 = shl nsw %a, 2 756 // %1 = shl %a, 2 757 // 758 // but EarlyCSE can do neither of them. 759 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 760 addEarlyCSEOrGVNPass(); 761 } 762 763 void AMDGPUPassConfig::addCodeGenPrepare() { 764 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 765 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 766 767 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 768 EnableLowerKernelArguments) 769 addPass(createAMDGPULowerKernelArgumentsPass()); 770 771 addPass(&AMDGPUPerfHintAnalysisID); 772 773 TargetPassConfig::addCodeGenPrepare(); 774 775 if (EnableLoadStoreVectorizer) 776 addPass(createLoadStoreVectorizerPass()); 777 } 778 779 bool AMDGPUPassConfig::addPreISel() { 780 addPass(createLowerSwitchPass()); 781 addPass(createFlattenCFGPass()); 782 return false; 783 } 784 785 bool AMDGPUPassConfig::addInstSelector() { 786 // Defer the verifier until FinalizeISel. 787 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 788 return false; 789 } 790 791 bool AMDGPUPassConfig::addGCPasses() { 792 // Do nothing. GC is not supported. 793 return false; 794 } 795 796 //===----------------------------------------------------------------------===// 797 // R600 Pass Setup 798 //===----------------------------------------------------------------------===// 799 800 bool R600PassConfig::addPreISel() { 801 AMDGPUPassConfig::addPreISel(); 802 803 if (EnableR600StructurizeCFG) 804 addPass(createStructurizeCFGPass()); 805 return false; 806 } 807 808 bool R600PassConfig::addInstSelector() { 809 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 810 return false; 811 } 812 813 void R600PassConfig::addPreRegAlloc() { 814 addPass(createR600VectorRegMerger()); 815 } 816 817 void R600PassConfig::addPreSched2() { 818 addPass(createR600EmitClauseMarkers(), false); 819 if (EnableR600IfConvert) 820 addPass(&IfConverterID, false); 821 addPass(createR600ClauseMergePass(), false); 822 } 823 824 void R600PassConfig::addPreEmitPass() { 825 addPass(createAMDGPUCFGStructurizerPass(), false); 826 addPass(createR600ExpandSpecialInstrsPass(), false); 827 addPass(&FinalizeMachineBundlesID, false); 828 addPass(createR600Packetizer(), false); 829 addPass(createR600ControlFlowFinalizer(), false); 830 } 831 832 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 833 return new R600PassConfig(*this, PM); 834 } 835 836 //===----------------------------------------------------------------------===// 837 // GCN Pass Setup 838 //===----------------------------------------------------------------------===// 839 840 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 841 MachineSchedContext *C) const { 842 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 843 if (ST.enableSIScheduler()) 844 return createSIMachineScheduler(C); 845 return createGCNMaxOccupancyMachineScheduler(C); 846 } 847 848 bool GCNPassConfig::addPreISel() { 849 AMDGPUPassConfig::addPreISel(); 850 851 if (EnableAtomicOptimizations) { 852 addPass(createAMDGPUAtomicOptimizerPass()); 853 } 854 855 // FIXME: We need to run a pass to propagate the attributes when calls are 856 // supported. 857 858 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 859 // regions formed by them. 860 addPass(&AMDGPUUnifyDivergentExitNodesID); 861 if (!LateCFGStructurize) { 862 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 863 } 864 addPass(createSinkingPass()); 865 addPass(createAMDGPUAnnotateUniformValues()); 866 if (!LateCFGStructurize) { 867 addPass(createSIAnnotateControlFlowPass()); 868 } 869 addPass(createLCSSAPass()); 870 871 return false; 872 } 873 874 void GCNPassConfig::addMachineSSAOptimization() { 875 TargetPassConfig::addMachineSSAOptimization(); 876 877 // We want to fold operands after PeepholeOptimizer has run (or as part of 878 // it), because it will eliminate extra copies making it easier to fold the 879 // real source operand. We want to eliminate dead instructions after, so that 880 // we see fewer uses of the copies. We then need to clean up the dead 881 // instructions leftover after the operands are folded as well. 882 // 883 // XXX - Can we get away without running DeadMachineInstructionElim again? 884 addPass(&SIFoldOperandsID); 885 if (EnableDPPCombine) 886 addPass(&GCNDPPCombineID); 887 addPass(&DeadMachineInstructionElimID); 888 addPass(&SILoadStoreOptimizerID); 889 if (EnableSDWAPeephole) { 890 addPass(&SIPeepholeSDWAID); 891 addPass(&EarlyMachineLICMID); 892 addPass(&MachineCSEID); 893 addPass(&SIFoldOperandsID); 894 addPass(&DeadMachineInstructionElimID); 895 } 896 addPass(createSIShrinkInstructionsPass()); 897 } 898 899 bool GCNPassConfig::addILPOpts() { 900 if (EnableEarlyIfConversion) 901 addPass(&EarlyIfConverterID); 902 903 TargetPassConfig::addILPOpts(); 904 return false; 905 } 906 907 bool GCNPassConfig::addInstSelector() { 908 AMDGPUPassConfig::addInstSelector(); 909 addPass(&SIFixSGPRCopiesID); 910 addPass(createSILowerI1CopiesPass()); 911 addPass(createSIFixupVectorISelPass()); 912 addPass(createSIAddIMGInitPass()); 913 return false; 914 } 915 916 bool GCNPassConfig::addIRTranslator() { 917 addPass(new IRTranslator()); 918 return false; 919 } 920 921 void GCNPassConfig::addPreLegalizeMachineIR() { 922 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 923 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 924 addPass(new Localizer()); 925 } 926 927 bool GCNPassConfig::addLegalizeMachineIR() { 928 addPass(new Legalizer()); 929 return false; 930 } 931 932 void GCNPassConfig::addPreRegBankSelect() { 933 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 934 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 935 } 936 937 bool GCNPassConfig::addRegBankSelect() { 938 addPass(new RegBankSelect()); 939 return false; 940 } 941 942 bool GCNPassConfig::addGlobalInstructionSelect() { 943 addPass(new InstructionSelect()); 944 return false; 945 } 946 947 void GCNPassConfig::addPreRegAlloc() { 948 if (LateCFGStructurize) { 949 addPass(createAMDGPUMachineCFGStructurizerPass()); 950 } 951 addPass(createSIWholeQuadModePass()); 952 } 953 954 void GCNPassConfig::addFastRegAlloc() { 955 // FIXME: We have to disable the verifier here because of PHIElimination + 956 // TwoAddressInstructions disabling it. 957 958 // This must be run immediately after phi elimination and before 959 // TwoAddressInstructions, otherwise the processing of the tied operand of 960 // SI_ELSE will introduce a copy of the tied operand source after the else. 961 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 962 963 // This must be run just after RegisterCoalescing. 964 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 965 966 TargetPassConfig::addFastRegAlloc(); 967 } 968 969 void GCNPassConfig::addOptimizedRegAlloc() { 970 if (OptExecMaskPreRA) { 971 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 972 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 973 } else { 974 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 975 } 976 977 // This must be run immediately after phi elimination and before 978 // TwoAddressInstructions, otherwise the processing of the tied operand of 979 // SI_ELSE will introduce a copy of the tied operand source after the else. 980 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 981 982 // This must be run just after RegisterCoalescing. 983 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 984 985 if (EnableDCEInRA) 986 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 987 988 TargetPassConfig::addOptimizedRegAlloc(); 989 } 990 991 bool GCNPassConfig::addPreRewrite() { 992 if (EnableRegReassign) { 993 addPass(&GCNNSAReassignID); 994 addPass(&GCNRegBankReassignID); 995 } 996 return true; 997 } 998 999 void GCNPassConfig::addPostRegAlloc() { 1000 addPass(&SIFixVGPRCopiesID); 1001 if (getOptLevel() > CodeGenOpt::None) 1002 addPass(&SIOptimizeExecMaskingID); 1003 TargetPassConfig::addPostRegAlloc(); 1004 1005 // Equivalent of PEI for SGPRs. 1006 addPass(&SILowerSGPRSpillsID); 1007 } 1008 1009 void GCNPassConfig::addPreSched2() { 1010 addPass(&SIPostRABundlerID); 1011 } 1012 1013 void GCNPassConfig::addPreEmitPass() { 1014 addPass(createSIMemoryLegalizerPass()); 1015 addPass(createSIInsertWaitcntsPass()); 1016 addPass(createSIShrinkInstructionsPass()); 1017 addPass(createSIModeRegisterPass()); 1018 1019 // The hazard recognizer that runs as part of the post-ra scheduler does not 1020 // guarantee to be able handle all hazards correctly. This is because if there 1021 // are multiple scheduling regions in a basic block, the regions are scheduled 1022 // bottom up, so when we begin to schedule a region we don't know what 1023 // instructions were emitted directly before it. 1024 // 1025 // Here we add a stand-alone hazard recognizer pass which can handle all 1026 // cases. 1027 // 1028 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 1029 // be better for it to emit S_NOP <N> when possible. 1030 addPass(&PostRAHazardRecognizerID); 1031 1032 addPass(&SIRemoveShortExecBranchesID); 1033 addPass(&SIPreEmitPeepholeID); 1034 addPass(&SIInsertSkipsPassID); 1035 addPass(&BranchRelaxationPassID); 1036 } 1037 1038 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1039 return new GCNPassConfig(*this, PM); 1040 } 1041 1042 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1043 return new yaml::SIMachineFunctionInfo(); 1044 } 1045 1046 yaml::MachineFunctionInfo * 1047 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1048 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1049 return new yaml::SIMachineFunctionInfo(*MFI, 1050 *MF.getSubtarget().getRegisterInfo()); 1051 } 1052 1053 bool GCNTargetMachine::parseMachineFunctionInfo( 1054 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1055 SMDiagnostic &Error, SMRange &SourceRange) const { 1056 const yaml::SIMachineFunctionInfo &YamlMFI = 1057 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1058 MachineFunction &MF = PFS.MF; 1059 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1060 1061 MFI->initializeBaseYamlFields(YamlMFI); 1062 1063 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1064 // FIXME: Update parseNamedRegsiterReference to take a Register. 1065 unsigned TempReg; 1066 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1067 SourceRange = RegName.SourceRange; 1068 return true; 1069 } 1070 RegVal = TempReg; 1071 1072 return false; 1073 }; 1074 1075 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1076 // Create a diagnostic for a the register string literal. 1077 const MemoryBuffer &Buffer = 1078 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1079 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1080 RegName.Value.size(), SourceMgr::DK_Error, 1081 "incorrect register class for field", RegName.Value, 1082 None, None); 1083 SourceRange = RegName.SourceRange; 1084 return true; 1085 }; 1086 1087 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1088 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1089 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1090 return true; 1091 1092 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1093 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1094 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1095 } 1096 1097 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1098 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1099 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1100 } 1101 1102 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1103 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1104 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1105 } 1106 1107 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1108 const TargetRegisterClass &RC, 1109 ArgDescriptor &Arg, unsigned UserSGPRs, 1110 unsigned SystemSGPRs) { 1111 // Skip parsing if it's not present. 1112 if (!A) 1113 return false; 1114 1115 if (A->IsRegister) { 1116 unsigned Reg; 1117 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1118 SourceRange = A->RegisterName.SourceRange; 1119 return true; 1120 } 1121 if (!RC.contains(Reg)) 1122 return diagnoseRegisterClass(A->RegisterName); 1123 Arg = ArgDescriptor::createRegister(Reg); 1124 } else 1125 Arg = ArgDescriptor::createStack(A->StackOffset); 1126 // Check and apply the optional mask. 1127 if (A->Mask) 1128 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1129 1130 MFI->NumUserSGPRs += UserSGPRs; 1131 MFI->NumSystemSGPRs += SystemSGPRs; 1132 return false; 1133 }; 1134 1135 if (YamlMFI.ArgInfo && 1136 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1137 AMDGPU::SGPR_128RegClass, 1138 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1139 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1140 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1141 2, 0) || 1142 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1143 MFI->ArgInfo.QueuePtr, 2, 0) || 1144 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1145 AMDGPU::SReg_64RegClass, 1146 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1147 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1148 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1149 2, 0) || 1150 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1151 AMDGPU::SReg_64RegClass, 1152 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1153 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1154 AMDGPU::SGPR_32RegClass, 1155 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1156 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1157 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1158 0, 1) || 1159 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1160 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1161 0, 1) || 1162 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1163 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1164 0, 1) || 1165 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1166 AMDGPU::SGPR_32RegClass, 1167 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1168 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1169 AMDGPU::SGPR_32RegClass, 1170 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1171 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1172 AMDGPU::SReg_64RegClass, 1173 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1174 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1175 AMDGPU::SReg_64RegClass, 1176 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1177 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1178 AMDGPU::VGPR_32RegClass, 1179 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1180 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1181 AMDGPU::VGPR_32RegClass, 1182 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1183 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1184 AMDGPU::VGPR_32RegClass, 1185 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1186 return true; 1187 1188 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1189 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1190 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1191 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1192 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1193 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1194 1195 return false; 1196 } 1197