1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUAliasAnalysis.h" 19 #include "AMDGPUCallLowering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "R600MachineScheduler.h" 28 #include "SIMachineScheduler.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/LegacyPassManager.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Target/TargetLoweringObjectFile.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/IPO/AlwaysInliner.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Vectorize.h" 49 #include <memory> 50 51 using namespace llvm; 52 53 static cl::opt<bool> EnableR600StructurizeCFG( 54 "r600-ir-structurize", 55 cl::desc("Use StructurizeCFG IR pass"), 56 cl::init(true)); 57 58 static cl::opt<bool> EnableSROA( 59 "amdgpu-sroa", 60 cl::desc("Run SROA after promote alloca pass"), 61 cl::ReallyHidden, 62 cl::init(true)); 63 64 static cl::opt<bool> 65 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 66 cl::desc("Run early if-conversion"), 67 cl::init(false)); 68 69 static cl::opt<bool> EnableR600IfConvert( 70 "r600-if-convert", 71 cl::desc("Use if conversion pass"), 72 cl::ReallyHidden, 73 cl::init(true)); 74 75 // Option to disable vectorizer for tests. 76 static cl::opt<bool> EnableLoadStoreVectorizer( 77 "amdgpu-load-store-vectorizer", 78 cl::desc("Enable load store vectorizer"), 79 cl::init(true), 80 cl::Hidden); 81 82 // Option to control global loads scalarization 83 static cl::opt<bool> ScalarizeGlobal( 84 "amdgpu-scalarize-global-loads", 85 cl::desc("Enable global load scalarization"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to run internalize pass. 90 static cl::opt<bool> InternalizeSymbols( 91 "amdgpu-internalize-symbols", 92 cl::desc("Enable elimination of non-kernel functions and unused globals"), 93 cl::init(false), 94 cl::Hidden); 95 96 // Option to inline all early. 97 static cl::opt<bool> EarlyInlineAll( 98 "amdgpu-early-inline-all", 99 cl::desc("Inline all functions early"), 100 cl::init(false), 101 cl::Hidden); 102 103 static cl::opt<bool> EnableSDWAPeephole( 104 "amdgpu-sdwa-peephole", 105 cl::desc("Enable SDWA peepholer"), 106 cl::init(true)); 107 108 // Enable address space based alias analysis 109 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 110 cl::desc("Enable AMDGPU Alias Analysis"), 111 cl::init(true)); 112 113 // Option to run late CFG structurizer 114 static cl::opt<bool, true> LateCFGStructurize( 115 "amdgpu-late-structurize", 116 cl::desc("Enable late CFG structurization"), 117 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 118 cl::Hidden); 119 120 static cl::opt<bool, true> EnableAMDGPUFunctionCalls( 121 "amdgpu-function-calls", 122 cl::desc("Enable AMDGPU function call support"), 123 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 124 cl::init(false), 125 cl::Hidden); 126 127 // Enable lib calls simplifications 128 static cl::opt<bool> EnableLibCallSimplify( 129 "amdgpu-simplify-libcall", 130 cl::desc("Enable amdgpu library simplifications"), 131 cl::init(true), 132 cl::Hidden); 133 134 static cl::opt<bool> EnableLowerKernelArguments( 135 "amdgpu-ir-lower-kernel-arguments", 136 cl::desc("Lower kernel argument loads in IR pass"), 137 cl::init(true), 138 cl::Hidden); 139 140 extern "C" void LLVMInitializeAMDGPUTarget() { 141 // Register the target 142 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 143 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 144 145 PassRegistry *PR = PassRegistry::getPassRegistry(); 146 initializeR600ClauseMergePassPass(*PR); 147 initializeR600ControlFlowFinalizerPass(*PR); 148 initializeR600PacketizerPass(*PR); 149 initializeR600ExpandSpecialInstrsPassPass(*PR); 150 initializeR600VectorRegMergerPass(*PR); 151 initializeGlobalISel(*PR); 152 initializeAMDGPUDAGToDAGISelPass(*PR); 153 initializeSILowerI1CopiesPass(*PR); 154 initializeSIFixSGPRCopiesPass(*PR); 155 initializeSIFixVGPRCopiesPass(*PR); 156 initializeSIFoldOperandsPass(*PR); 157 initializeSIPeepholeSDWAPass(*PR); 158 initializeSIShrinkInstructionsPass(*PR); 159 initializeSIOptimizeExecMaskingPreRAPass(*PR); 160 initializeSILoadStoreOptimizerPass(*PR); 161 initializeAMDGPUAlwaysInlinePass(*PR); 162 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 163 initializeAMDGPUAnnotateUniformValuesPass(*PR); 164 initializeAMDGPUArgumentUsageInfoPass(*PR); 165 initializeAMDGPULowerKernelArgumentsPass(*PR); 166 initializeAMDGPULowerKernelAttributesPass(*PR); 167 initializeAMDGPULowerIntrinsicsPass(*PR); 168 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 169 initializeAMDGPUPromoteAllocaPass(*PR); 170 initializeAMDGPUCodeGenPreparePass(*PR); 171 initializeAMDGPURewriteOutArgumentsPass(*PR); 172 initializeAMDGPUUnifyMetadataPass(*PR); 173 initializeSIAnnotateControlFlowPass(*PR); 174 initializeSIInsertWaitcntsPass(*PR); 175 initializeSIWholeQuadModePass(*PR); 176 initializeSILowerControlFlowPass(*PR); 177 initializeSIInsertSkipsPass(*PR); 178 initializeSIMemoryLegalizerPass(*PR); 179 initializeSIDebuggerInsertNopsPass(*PR); 180 initializeSIOptimizeExecMaskingPass(*PR); 181 initializeSIFixWWMLivenessPass(*PR); 182 initializeSIFormMemoryClausesPass(*PR); 183 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 184 initializeAMDGPUAAWrapperPassPass(*PR); 185 initializeAMDGPUUseNativeCallsPass(*PR); 186 initializeAMDGPUSimplifyLibCallsPass(*PR); 187 initializeAMDGPUInlinerPass(*PR); 188 } 189 190 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 191 return llvm::make_unique<AMDGPUTargetObjectFile>(); 192 } 193 194 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 195 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 196 } 197 198 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 199 return new SIScheduleDAGMI(C); 200 } 201 202 static ScheduleDAGInstrs * 203 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 204 ScheduleDAGMILive *DAG = 205 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 206 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 207 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 208 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 209 return DAG; 210 } 211 212 static ScheduleDAGInstrs * 213 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 214 auto DAG = new GCNIterativeScheduler(C, 215 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 216 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 217 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 218 return DAG; 219 } 220 221 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 222 return new GCNIterativeScheduler(C, 223 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 224 } 225 226 static ScheduleDAGInstrs * 227 createIterativeILPMachineScheduler(MachineSchedContext *C) { 228 auto DAG = new GCNIterativeScheduler(C, 229 GCNIterativeScheduler::SCHEDULE_ILP); 230 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 231 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 232 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 233 return DAG; 234 } 235 236 static MachineSchedRegistry 237 R600SchedRegistry("r600", "Run R600's custom scheduler", 238 createR600MachineScheduler); 239 240 static MachineSchedRegistry 241 SISchedRegistry("si", "Run SI's custom scheduler", 242 createSIMachineScheduler); 243 244 static MachineSchedRegistry 245 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 246 "Run GCN scheduler to maximize occupancy", 247 createGCNMaxOccupancyMachineScheduler); 248 249 static MachineSchedRegistry 250 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 251 "Run GCN scheduler to maximize occupancy (experimental)", 252 createIterativeGCNMaxOccupancyMachineScheduler); 253 254 static MachineSchedRegistry 255 GCNMinRegSchedRegistry("gcn-minreg", 256 "Run GCN iterative scheduler for minimal register usage (experimental)", 257 createMinRegScheduler); 258 259 static MachineSchedRegistry 260 GCNILPSchedRegistry("gcn-ilp", 261 "Run GCN iterative scheduler for ILP scheduling (experimental)", 262 createIterativeILPMachineScheduler); 263 264 static StringRef computeDataLayout(const Triple &TT) { 265 if (TT.getArch() == Triple::r600) { 266 // 32-bit pointers. 267 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 268 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 269 } 270 271 // 32-bit private, local, and region pointers. 64-bit global, constant and 272 // flat. 273 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 274 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 275 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 276 } 277 278 LLVM_READNONE 279 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 280 if (!GPU.empty()) 281 return GPU; 282 283 if (TT.getArch() == Triple::amdgcn) 284 return "generic"; 285 286 return "r600"; 287 } 288 289 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 290 // The AMDGPU toolchain only supports generating shared objects, so we 291 // must always use PIC. 292 return Reloc::PIC_; 293 } 294 295 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM) { 296 if (CM) 297 return *CM; 298 return CodeModel::Small; 299 } 300 301 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 302 StringRef CPU, StringRef FS, 303 TargetOptions Options, 304 Optional<Reloc::Model> RM, 305 Optional<CodeModel::Model> CM, 306 CodeGenOpt::Level OptLevel) 307 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 308 FS, Options, getEffectiveRelocModel(RM), 309 getEffectiveCodeModel(CM), OptLevel), 310 TLOF(createTLOF(getTargetTriple())) { 311 initAsmInfo(); 312 } 313 314 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 315 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 316 317 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 318 319 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 320 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 321 return GPUAttr.hasAttribute(Attribute::None) ? 322 getTargetCPU() : GPUAttr.getValueAsString(); 323 } 324 325 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 326 Attribute FSAttr = F.getFnAttribute("target-features"); 327 328 return FSAttr.hasAttribute(Attribute::None) ? 329 getTargetFeatureString() : 330 FSAttr.getValueAsString(); 331 } 332 333 static ImmutablePass *createAMDGPUExternalAAWrapperPass() { 334 return createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) { 335 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 336 AAR.addAAResult(WrapperPass->getResult()); 337 }); 338 } 339 340 /// Predicate for Internalize pass. 341 static bool mustPreserveGV(const GlobalValue &GV) { 342 if (const Function *F = dyn_cast<Function>(&GV)) 343 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 344 345 return !GV.use_empty(); 346 } 347 348 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 349 Builder.DivergentTarget = true; 350 351 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 352 bool Internalize = InternalizeSymbols; 353 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableAMDGPUFunctionCalls; 354 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 355 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 356 357 if (EnableAMDGPUFunctionCalls) { 358 delete Builder.Inliner; 359 Builder.Inliner = createAMDGPUFunctionInliningPass(); 360 } 361 362 Builder.addExtension( 363 PassManagerBuilder::EP_ModuleOptimizerEarly, 364 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 365 legacy::PassManagerBase &PM) { 366 if (AMDGPUAA) { 367 PM.add(createAMDGPUAAWrapperPass()); 368 PM.add(createAMDGPUExternalAAWrapperPass()); 369 } 370 PM.add(createAMDGPUUnifyMetadataPass()); 371 if (Internalize) { 372 PM.add(createInternalizePass(mustPreserveGV)); 373 PM.add(createGlobalDCEPass()); 374 } 375 if (EarlyInline) 376 PM.add(createAMDGPUAlwaysInlinePass(false)); 377 }); 378 379 const auto &Opt = Options; 380 Builder.addExtension( 381 PassManagerBuilder::EP_EarlyAsPossible, 382 [AMDGPUAA, LibCallSimplify, &Opt](const PassManagerBuilder &, 383 legacy::PassManagerBase &PM) { 384 if (AMDGPUAA) { 385 PM.add(createAMDGPUAAWrapperPass()); 386 PM.add(createAMDGPUExternalAAWrapperPass()); 387 } 388 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 389 if (LibCallSimplify) 390 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt)); 391 }); 392 393 Builder.addExtension( 394 PassManagerBuilder::EP_CGSCCOptimizerLate, 395 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 396 // Add infer address spaces pass to the opt pipeline after inlining 397 // but before SROA to increase SROA opportunities. 398 PM.add(createInferAddressSpacesPass()); 399 400 // This should run after inlining to have any chance of doing anything, 401 // and before other cleanup optimizations. 402 PM.add(createAMDGPULowerKernelAttributesPass()); 403 }); 404 } 405 406 //===----------------------------------------------------------------------===// 407 // R600 Target Machine (R600 -> Cayman) 408 //===----------------------------------------------------------------------===// 409 410 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 411 StringRef CPU, StringRef FS, 412 TargetOptions Options, 413 Optional<Reloc::Model> RM, 414 Optional<CodeModel::Model> CM, 415 CodeGenOpt::Level OL, bool JIT) 416 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 417 setRequiresStructuredCFG(true); 418 } 419 420 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 421 const Function &F) const { 422 StringRef GPU = getGPUName(F); 423 StringRef FS = getFeatureString(F); 424 425 SmallString<128> SubtargetKey(GPU); 426 SubtargetKey.append(FS); 427 428 auto &I = SubtargetMap[SubtargetKey]; 429 if (!I) { 430 // This needs to be done before we create a new subtarget since any 431 // creation will depend on the TM and the code generation flags on the 432 // function that reside in TargetOptions. 433 resetTargetOptions(F); 434 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 435 } 436 437 return I.get(); 438 } 439 440 TargetTransformInfo 441 R600TargetMachine::getTargetTransformInfo(const Function &F) { 442 return TargetTransformInfo(R600TTIImpl(this, F)); 443 } 444 445 //===----------------------------------------------------------------------===// 446 // GCN Target Machine (SI+) 447 //===----------------------------------------------------------------------===// 448 449 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 450 StringRef CPU, StringRef FS, 451 TargetOptions Options, 452 Optional<Reloc::Model> RM, 453 Optional<CodeModel::Model> CM, 454 CodeGenOpt::Level OL, bool JIT) 455 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 456 457 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 458 StringRef GPU = getGPUName(F); 459 StringRef FS = getFeatureString(F); 460 461 SmallString<128> SubtargetKey(GPU); 462 SubtargetKey.append(FS); 463 464 auto &I = SubtargetMap[SubtargetKey]; 465 if (!I) { 466 // This needs to be done before we create a new subtarget since any 467 // creation will depend on the TM and the code generation flags on the 468 // function that reside in TargetOptions. 469 resetTargetOptions(F); 470 I = llvm::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 471 } 472 473 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 474 475 return I.get(); 476 } 477 478 TargetTransformInfo 479 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 480 return TargetTransformInfo(GCNTTIImpl(this, F)); 481 } 482 483 //===----------------------------------------------------------------------===// 484 // AMDGPU Pass Setup 485 //===----------------------------------------------------------------------===// 486 487 namespace { 488 489 class AMDGPUPassConfig : public TargetPassConfig { 490 public: 491 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 492 : TargetPassConfig(TM, PM) { 493 // Exceptions and StackMaps are not supported, so these passes will never do 494 // anything. 495 disablePass(&StackMapLivenessID); 496 disablePass(&FuncletLayoutID); 497 } 498 499 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 500 return getTM<AMDGPUTargetMachine>(); 501 } 502 503 ScheduleDAGInstrs * 504 createMachineScheduler(MachineSchedContext *C) const override { 505 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 506 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 507 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 508 return DAG; 509 } 510 511 void addEarlyCSEOrGVNPass(); 512 void addStraightLineScalarOptimizationPasses(); 513 void addIRPasses() override; 514 void addCodeGenPrepare() override; 515 bool addPreISel() override; 516 bool addInstSelector() override; 517 bool addGCPasses() override; 518 }; 519 520 class R600PassConfig final : public AMDGPUPassConfig { 521 public: 522 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 523 : AMDGPUPassConfig(TM, PM) {} 524 525 ScheduleDAGInstrs *createMachineScheduler( 526 MachineSchedContext *C) const override { 527 return createR600MachineScheduler(C); 528 } 529 530 bool addPreISel() override; 531 bool addInstSelector() override; 532 void addPreRegAlloc() override; 533 void addPreSched2() override; 534 void addPreEmitPass() override; 535 }; 536 537 class GCNPassConfig final : public AMDGPUPassConfig { 538 public: 539 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 540 : AMDGPUPassConfig(TM, PM) { 541 // It is necessary to know the register usage of the entire call graph. We 542 // allow calls without EnableAMDGPUFunctionCalls if they are marked 543 // noinline, so this is always required. 544 setRequiresCodeGenSCCOrder(true); 545 } 546 547 GCNTargetMachine &getGCNTargetMachine() const { 548 return getTM<GCNTargetMachine>(); 549 } 550 551 ScheduleDAGInstrs * 552 createMachineScheduler(MachineSchedContext *C) const override; 553 554 bool addPreISel() override; 555 void addMachineSSAOptimization() override; 556 bool addILPOpts() override; 557 bool addInstSelector() override; 558 bool addIRTranslator() override; 559 bool addLegalizeMachineIR() override; 560 bool addRegBankSelect() override; 561 bool addGlobalInstructionSelect() override; 562 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 563 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 564 void addPreRegAlloc() override; 565 void addPostRegAlloc() override; 566 void addPreSched2() override; 567 void addPreEmitPass() override; 568 }; 569 570 } // end anonymous namespace 571 572 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 573 if (getOptLevel() == CodeGenOpt::Aggressive) 574 addPass(createGVNPass()); 575 else 576 addPass(createEarlyCSEPass()); 577 } 578 579 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 580 addPass(createLICMPass()); 581 addPass(createSeparateConstOffsetFromGEPPass()); 582 addPass(createSpeculativeExecutionPass()); 583 // ReassociateGEPs exposes more opportunites for SLSR. See 584 // the example in reassociate-geps-and-slsr.ll. 585 addPass(createStraightLineStrengthReducePass()); 586 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 587 // EarlyCSE can reuse. 588 addEarlyCSEOrGVNPass(); 589 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 590 addPass(createNaryReassociatePass()); 591 // NaryReassociate on GEPs creates redundant common expressions, so run 592 // EarlyCSE after it. 593 addPass(createEarlyCSEPass()); 594 } 595 596 void AMDGPUPassConfig::addIRPasses() { 597 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 598 599 // There is no reason to run these. 600 disablePass(&StackMapLivenessID); 601 disablePass(&FuncletLayoutID); 602 disablePass(&PatchableFunctionID); 603 604 addPass(createAMDGPULowerIntrinsicsPass()); 605 606 if (TM.getTargetTriple().getArch() == Triple::r600 || 607 !EnableAMDGPUFunctionCalls) { 608 // Function calls are not supported, so make sure we inline everything. 609 addPass(createAMDGPUAlwaysInlinePass()); 610 addPass(createAlwaysInlinerLegacyPass()); 611 // We need to add the barrier noop pass, otherwise adding the function 612 // inlining pass will cause all of the PassConfigs passes to be run 613 // one function at a time, which means if we have a nodule with two 614 // functions, then we will generate code for the first function 615 // without ever running any passes on the second. 616 addPass(createBarrierNoopPass()); 617 } 618 619 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 620 // TODO: May want to move later or split into an early and late one. 621 622 addPass(createAMDGPUCodeGenPreparePass()); 623 } 624 625 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 626 if (TM.getTargetTriple().getArch() == Triple::r600) 627 addPass(createR600OpenCLImageTypeLoweringPass()); 628 629 // Replace OpenCL enqueued block function pointers with global variables. 630 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 631 632 if (TM.getOptLevel() > CodeGenOpt::None) { 633 addPass(createInferAddressSpacesPass()); 634 addPass(createAMDGPUPromoteAlloca()); 635 636 if (EnableSROA) 637 addPass(createSROAPass()); 638 639 addStraightLineScalarOptimizationPasses(); 640 641 if (EnableAMDGPUAliasAnalysis) { 642 addPass(createAMDGPUAAWrapperPass()); 643 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 644 AAResults &AAR) { 645 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 646 AAR.addAAResult(WrapperPass->getResult()); 647 })); 648 } 649 } 650 651 TargetPassConfig::addIRPasses(); 652 653 // EarlyCSE is not always strong enough to clean up what LSR produces. For 654 // example, GVN can combine 655 // 656 // %0 = add %a, %b 657 // %1 = add %b, %a 658 // 659 // and 660 // 661 // %0 = shl nsw %a, 2 662 // %1 = shl %a, 2 663 // 664 // but EarlyCSE can do neither of them. 665 if (getOptLevel() != CodeGenOpt::None) 666 addEarlyCSEOrGVNPass(); 667 } 668 669 void AMDGPUPassConfig::addCodeGenPrepare() { 670 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 671 EnableLowerKernelArguments) 672 addPass(createAMDGPULowerKernelArgumentsPass()); 673 674 TargetPassConfig::addCodeGenPrepare(); 675 676 if (EnableLoadStoreVectorizer) 677 addPass(createLoadStoreVectorizerPass()); 678 } 679 680 bool AMDGPUPassConfig::addPreISel() { 681 addPass(createFlattenCFGPass()); 682 return false; 683 } 684 685 bool AMDGPUPassConfig::addInstSelector() { 686 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 687 return false; 688 } 689 690 bool AMDGPUPassConfig::addGCPasses() { 691 // Do nothing. GC is not supported. 692 return false; 693 } 694 695 //===----------------------------------------------------------------------===// 696 // R600 Pass Setup 697 //===----------------------------------------------------------------------===// 698 699 bool R600PassConfig::addPreISel() { 700 AMDGPUPassConfig::addPreISel(); 701 702 if (EnableR600StructurizeCFG) 703 addPass(createStructurizeCFGPass()); 704 return false; 705 } 706 707 bool R600PassConfig::addInstSelector() { 708 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 709 return false; 710 } 711 712 void R600PassConfig::addPreRegAlloc() { 713 addPass(createR600VectorRegMerger()); 714 } 715 716 void R600PassConfig::addPreSched2() { 717 addPass(createR600EmitClauseMarkers(), false); 718 if (EnableR600IfConvert) 719 addPass(&IfConverterID, false); 720 addPass(createR600ClauseMergePass(), false); 721 } 722 723 void R600PassConfig::addPreEmitPass() { 724 addPass(createAMDGPUCFGStructurizerPass(), false); 725 addPass(createR600ExpandSpecialInstrsPass(), false); 726 addPass(&FinalizeMachineBundlesID, false); 727 addPass(createR600Packetizer(), false); 728 addPass(createR600ControlFlowFinalizer(), false); 729 } 730 731 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 732 return new R600PassConfig(*this, PM); 733 } 734 735 //===----------------------------------------------------------------------===// 736 // GCN Pass Setup 737 //===----------------------------------------------------------------------===// 738 739 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 740 MachineSchedContext *C) const { 741 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 742 if (ST.enableSIScheduler()) 743 return createSIMachineScheduler(C); 744 return createGCNMaxOccupancyMachineScheduler(C); 745 } 746 747 bool GCNPassConfig::addPreISel() { 748 AMDGPUPassConfig::addPreISel(); 749 750 // FIXME: We need to run a pass to propagate the attributes when calls are 751 // supported. 752 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 753 754 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 755 // regions formed by them. 756 addPass(&AMDGPUUnifyDivergentExitNodesID); 757 if (!LateCFGStructurize) { 758 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 759 } 760 addPass(createSinkingPass()); 761 addPass(createAMDGPUAnnotateUniformValues()); 762 if (!LateCFGStructurize) { 763 addPass(createSIAnnotateControlFlowPass()); 764 } 765 766 return false; 767 } 768 769 void GCNPassConfig::addMachineSSAOptimization() { 770 TargetPassConfig::addMachineSSAOptimization(); 771 772 // We want to fold operands after PeepholeOptimizer has run (or as part of 773 // it), because it will eliminate extra copies making it easier to fold the 774 // real source operand. We want to eliminate dead instructions after, so that 775 // we see fewer uses of the copies. We then need to clean up the dead 776 // instructions leftover after the operands are folded as well. 777 // 778 // XXX - Can we get away without running DeadMachineInstructionElim again? 779 addPass(&SIFoldOperandsID); 780 addPass(&DeadMachineInstructionElimID); 781 addPass(&SILoadStoreOptimizerID); 782 if (EnableSDWAPeephole) { 783 addPass(&SIPeepholeSDWAID); 784 addPass(&EarlyMachineLICMID); 785 addPass(&MachineCSEID); 786 addPass(&SIFoldOperandsID); 787 addPass(&DeadMachineInstructionElimID); 788 } 789 addPass(createSIShrinkInstructionsPass()); 790 } 791 792 bool GCNPassConfig::addILPOpts() { 793 if (EnableEarlyIfConversion) 794 addPass(&EarlyIfConverterID); 795 796 TargetPassConfig::addILPOpts(); 797 return false; 798 } 799 800 bool GCNPassConfig::addInstSelector() { 801 AMDGPUPassConfig::addInstSelector(); 802 addPass(createSILowerI1CopiesPass()); 803 addPass(&SIFixSGPRCopiesID); 804 return false; 805 } 806 807 bool GCNPassConfig::addIRTranslator() { 808 addPass(new IRTranslator()); 809 return false; 810 } 811 812 bool GCNPassConfig::addLegalizeMachineIR() { 813 addPass(new Legalizer()); 814 return false; 815 } 816 817 bool GCNPassConfig::addRegBankSelect() { 818 addPass(new RegBankSelect()); 819 return false; 820 } 821 822 bool GCNPassConfig::addGlobalInstructionSelect() { 823 addPass(new InstructionSelect()); 824 return false; 825 } 826 827 void GCNPassConfig::addPreRegAlloc() { 828 if (LateCFGStructurize) { 829 addPass(createAMDGPUMachineCFGStructurizerPass()); 830 } 831 addPass(createSIWholeQuadModePass()); 832 } 833 834 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 835 // FIXME: We have to disable the verifier here because of PHIElimination + 836 // TwoAddressInstructions disabling it. 837 838 // This must be run immediately after phi elimination and before 839 // TwoAddressInstructions, otherwise the processing of the tied operand of 840 // SI_ELSE will introduce a copy of the tied operand source after the else. 841 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 842 843 // This must be run after SILowerControlFlow, since it needs to use the 844 // machine-level CFG, but before register allocation. 845 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 846 847 TargetPassConfig::addFastRegAlloc(RegAllocPass); 848 } 849 850 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 851 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 852 853 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 854 855 // This must be run immediately after phi elimination and before 856 // TwoAddressInstructions, otherwise the processing of the tied operand of 857 // SI_ELSE will introduce a copy of the tied operand source after the else. 858 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 859 860 // This must be run after SILowerControlFlow, since it needs to use the 861 // machine-level CFG, but before register allocation. 862 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 863 864 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 865 } 866 867 void GCNPassConfig::addPostRegAlloc() { 868 addPass(&SIFixVGPRCopiesID); 869 addPass(&SIOptimizeExecMaskingID); 870 TargetPassConfig::addPostRegAlloc(); 871 } 872 873 void GCNPassConfig::addPreSched2() { 874 } 875 876 void GCNPassConfig::addPreEmitPass() { 877 addPass(createSIMemoryLegalizerPass()); 878 addPass(createSIInsertWaitcntsPass()); 879 addPass(createSIShrinkInstructionsPass()); 880 881 // The hazard recognizer that runs as part of the post-ra scheduler does not 882 // guarantee to be able handle all hazards correctly. This is because if there 883 // are multiple scheduling regions in a basic block, the regions are scheduled 884 // bottom up, so when we begin to schedule a region we don't know what 885 // instructions were emitted directly before it. 886 // 887 // Here we add a stand-alone hazard recognizer pass which can handle all 888 // cases. 889 // 890 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 891 // be better for it to emit S_NOP <N> when possible. 892 addPass(&PostRAHazardRecognizerID); 893 894 addPass(&SIInsertSkipsPassID); 895 addPass(createSIDebuggerInsertNopsPass()); 896 addPass(&BranchRelaxationPassID); 897 } 898 899 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 900 return new GCNPassConfig(*this, PM); 901 } 902