1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUMacroFusion.h" 20 #include "AMDGPUTargetObjectFile.h" 21 #include "AMDGPUTargetTransformInfo.h" 22 #include "GCNIterativeScheduler.h" 23 #include "GCNSchedStrategy.h" 24 #include "R600MachineScheduler.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIMachineScheduler.h" 27 #include "TargetInfo/AMDGPUTargetInfo.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/Localizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/TargetPassConfig.h" 36 #include "llvm/IR/LegacyPassManager.h" 37 #include "llvm/IR/PassManager.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/TargetRegistry.h" 41 #include "llvm/Transforms/IPO.h" 42 #include "llvm/Transforms/IPO/AlwaysInliner.h" 43 #include "llvm/Transforms/IPO/GlobalDCE.h" 44 #include "llvm/Transforms/IPO/Internalize.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 #include "llvm/Transforms/Vectorize.h" 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableR600StructurizeCFG( 56 "r600-ir-structurize", 57 cl::desc("Use StructurizeCFG IR pass"), 58 cl::init(true)); 59 60 static cl::opt<bool> EnableSROA( 61 "amdgpu-sroa", 62 cl::desc("Run SROA after promote alloca pass"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 static cl::opt<bool> 67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 68 cl::desc("Run early if-conversion"), 69 cl::init(false)); 70 71 static cl::opt<bool> 72 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 73 cl::desc("Run pre-RA exec mask optimizations"), 74 cl::init(true)); 75 76 static cl::opt<bool> EnableR600IfConvert( 77 "r600-if-convert", 78 cl::desc("Use if conversion pass"), 79 cl::ReallyHidden, 80 cl::init(true)); 81 82 // Option to disable vectorizer for tests. 83 static cl::opt<bool> EnableLoadStoreVectorizer( 84 "amdgpu-load-store-vectorizer", 85 cl::desc("Enable load store vectorizer"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to control global loads scalarization 90 static cl::opt<bool> ScalarizeGlobal( 91 "amdgpu-scalarize-global-loads", 92 cl::desc("Enable global load scalarization"), 93 cl::init(true), 94 cl::Hidden); 95 96 // Option to run internalize pass. 97 static cl::opt<bool> InternalizeSymbols( 98 "amdgpu-internalize-symbols", 99 cl::desc("Enable elimination of non-kernel functions and unused globals"), 100 cl::init(false), 101 cl::Hidden); 102 103 // Option to inline all early. 104 static cl::opt<bool> EarlyInlineAll( 105 "amdgpu-early-inline-all", 106 cl::desc("Inline all functions early"), 107 cl::init(false), 108 cl::Hidden); 109 110 static cl::opt<bool> EnableSDWAPeephole( 111 "amdgpu-sdwa-peephole", 112 cl::desc("Enable SDWA peepholer"), 113 cl::init(true)); 114 115 static cl::opt<bool> EnableDPPCombine( 116 "amdgpu-dpp-combine", 117 cl::desc("Enable DPP combiner"), 118 cl::init(true)); 119 120 // Enable address space based alias analysis 121 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 122 cl::desc("Enable AMDGPU Alias Analysis"), 123 cl::init(true)); 124 125 // Option to run late CFG structurizer 126 static cl::opt<bool, true> LateCFGStructurize( 127 "amdgpu-late-structurize", 128 cl::desc("Enable late CFG structurization"), 129 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 130 cl::Hidden); 131 132 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 133 "amdgpu-function-calls", 134 cl::desc("Enable AMDGPU function call support"), 135 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 136 cl::init(true), 137 cl::Hidden); 138 139 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 140 "amdgpu-fixed-function-abi", 141 cl::desc("Enable all implicit function arguments"), 142 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 143 cl::init(false), 144 cl::Hidden); 145 146 // Enable lib calls simplifications 147 static cl::opt<bool> EnableLibCallSimplify( 148 "amdgpu-simplify-libcall", 149 cl::desc("Enable amdgpu library simplifications"), 150 cl::init(true), 151 cl::Hidden); 152 153 static cl::opt<bool> EnableLowerKernelArguments( 154 "amdgpu-ir-lower-kernel-arguments", 155 cl::desc("Lower kernel argument loads in IR pass"), 156 cl::init(true), 157 cl::Hidden); 158 159 static cl::opt<bool> EnableRegReassign( 160 "amdgpu-reassign-regs", 161 cl::desc("Enable register reassign optimizations on gfx10+"), 162 cl::init(true), 163 cl::Hidden); 164 165 // Enable atomic optimization 166 static cl::opt<bool> EnableAtomicOptimizations( 167 "amdgpu-atomic-optimizations", 168 cl::desc("Enable atomic optimizations"), 169 cl::init(false), 170 cl::Hidden); 171 172 // Enable Mode register optimization 173 static cl::opt<bool> EnableSIModeRegisterPass( 174 "amdgpu-mode-register", 175 cl::desc("Enable mode register pass"), 176 cl::init(true), 177 cl::Hidden); 178 179 // Option is used in lit tests to prevent deadcoding of patterns inspected. 180 static cl::opt<bool> 181 EnableDCEInRA("amdgpu-dce-in-ra", 182 cl::init(true), cl::Hidden, 183 cl::desc("Enable machine DCE inside regalloc")); 184 185 static cl::opt<bool> EnableScalarIRPasses( 186 "amdgpu-scalar-ir-passes", 187 cl::desc("Enable scalar IR passes"), 188 cl::init(true), 189 cl::Hidden); 190 191 static cl::opt<bool> EnableStructurizerWorkarounds( 192 "amdgpu-enable-structurizer-workarounds", 193 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 194 cl::Hidden); 195 196 static cl::opt<bool, true> EnableLowerModuleLDS( 197 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), 198 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), 199 cl::Hidden); 200 201 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 202 // Register the target 203 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 204 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 205 206 PassRegistry *PR = PassRegistry::getPassRegistry(); 207 initializeR600ClauseMergePassPass(*PR); 208 initializeR600ControlFlowFinalizerPass(*PR); 209 initializeR600PacketizerPass(*PR); 210 initializeR600ExpandSpecialInstrsPassPass(*PR); 211 initializeR600VectorRegMergerPass(*PR); 212 initializeGlobalISel(*PR); 213 initializeAMDGPUDAGToDAGISelPass(*PR); 214 initializeGCNDPPCombinePass(*PR); 215 initializeSILowerI1CopiesPass(*PR); 216 initializeSILowerSGPRSpillsPass(*PR); 217 initializeSIFixSGPRCopiesPass(*PR); 218 initializeSIFixVGPRCopiesPass(*PR); 219 initializeSIFoldOperandsPass(*PR); 220 initializeSIPeepholeSDWAPass(*PR); 221 initializeSIShrinkInstructionsPass(*PR); 222 initializeSIOptimizeExecMaskingPreRAPass(*PR); 223 initializeSILoadStoreOptimizerPass(*PR); 224 initializeAMDGPUFixFunctionBitcastsPass(*PR); 225 initializeAMDGPUAlwaysInlinePass(*PR); 226 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 227 initializeAMDGPUAnnotateUniformValuesPass(*PR); 228 initializeAMDGPUArgumentUsageInfoPass(*PR); 229 initializeAMDGPUAtomicOptimizerPass(*PR); 230 initializeAMDGPULowerKernelArgumentsPass(*PR); 231 initializeAMDGPULowerKernelAttributesPass(*PR); 232 initializeAMDGPULowerIntrinsicsPass(*PR); 233 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 234 initializeAMDGPUPostLegalizerCombinerPass(*PR); 235 initializeAMDGPUPreLegalizerCombinerPass(*PR); 236 initializeAMDGPURegBankCombinerPass(*PR); 237 initializeAMDGPUPromoteAllocaPass(*PR); 238 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 239 initializeAMDGPUCodeGenPreparePass(*PR); 240 initializeAMDGPULateCodeGenPreparePass(*PR); 241 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 242 initializeAMDGPUPropagateAttributesLatePass(*PR); 243 initializeAMDGPULowerModuleLDSPass(*PR); 244 initializeAMDGPURewriteOutArgumentsPass(*PR); 245 initializeAMDGPUUnifyMetadataPass(*PR); 246 initializeSIAnnotateControlFlowPass(*PR); 247 initializeSIInsertHardClausesPass(*PR); 248 initializeSIInsertWaitcntsPass(*PR); 249 initializeSIModeRegisterPass(*PR); 250 initializeSIWholeQuadModePass(*PR); 251 initializeSILowerControlFlowPass(*PR); 252 initializeSIPreEmitPeepholePass(*PR); 253 initializeSILateBranchLoweringPass(*PR); 254 initializeSIMemoryLegalizerPass(*PR); 255 initializeSIOptimizeExecMaskingPass(*PR); 256 initializeSIPreAllocateWWMRegsPass(*PR); 257 initializeSIFormMemoryClausesPass(*PR); 258 initializeSIPostRABundlerPass(*PR); 259 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 260 initializeAMDGPUAAWrapperPassPass(*PR); 261 initializeAMDGPUExternalAAWrapperPass(*PR); 262 initializeAMDGPUUseNativeCallsPass(*PR); 263 initializeAMDGPUSimplifyLibCallsPass(*PR); 264 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 265 initializeGCNRegBankReassignPass(*PR); 266 initializeGCNNSAReassignPass(*PR); 267 } 268 269 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 270 return std::make_unique<AMDGPUTargetObjectFile>(); 271 } 272 273 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 274 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 275 } 276 277 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 278 return new SIScheduleDAGMI(C); 279 } 280 281 static ScheduleDAGInstrs * 282 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 283 ScheduleDAGMILive *DAG = 284 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 285 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 286 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 287 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 288 return DAG; 289 } 290 291 static ScheduleDAGInstrs * 292 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 293 auto DAG = new GCNIterativeScheduler(C, 294 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 295 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 296 return DAG; 297 } 298 299 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 300 return new GCNIterativeScheduler(C, 301 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 302 } 303 304 static ScheduleDAGInstrs * 305 createIterativeILPMachineScheduler(MachineSchedContext *C) { 306 auto DAG = new GCNIterativeScheduler(C, 307 GCNIterativeScheduler::SCHEDULE_ILP); 308 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 309 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 310 return DAG; 311 } 312 313 static MachineSchedRegistry 314 R600SchedRegistry("r600", "Run R600's custom scheduler", 315 createR600MachineScheduler); 316 317 static MachineSchedRegistry 318 SISchedRegistry("si", "Run SI's custom scheduler", 319 createSIMachineScheduler); 320 321 static MachineSchedRegistry 322 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 323 "Run GCN scheduler to maximize occupancy", 324 createGCNMaxOccupancyMachineScheduler); 325 326 static MachineSchedRegistry 327 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 328 "Run GCN scheduler to maximize occupancy (experimental)", 329 createIterativeGCNMaxOccupancyMachineScheduler); 330 331 static MachineSchedRegistry 332 GCNMinRegSchedRegistry("gcn-minreg", 333 "Run GCN iterative scheduler for minimal register usage (experimental)", 334 createMinRegScheduler); 335 336 static MachineSchedRegistry 337 GCNILPSchedRegistry("gcn-ilp", 338 "Run GCN iterative scheduler for ILP scheduling (experimental)", 339 createIterativeILPMachineScheduler); 340 341 static StringRef computeDataLayout(const Triple &TT) { 342 if (TT.getArch() == Triple::r600) { 343 // 32-bit pointers. 344 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 345 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 346 } 347 348 // 32-bit private, local, and region pointers. 64-bit global, constant and 349 // flat, non-integral buffer fat pointers. 350 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 351 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 352 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 353 "-ni:7"; 354 } 355 356 LLVM_READNONE 357 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 358 if (!GPU.empty()) 359 return GPU; 360 361 // Need to default to a target with flat support for HSA. 362 if (TT.getArch() == Triple::amdgcn) 363 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 364 365 return "r600"; 366 } 367 368 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 369 // The AMDGPU toolchain only supports generating shared objects, so we 370 // must always use PIC. 371 return Reloc::PIC_; 372 } 373 374 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 375 StringRef CPU, StringRef FS, 376 TargetOptions Options, 377 Optional<Reloc::Model> RM, 378 Optional<CodeModel::Model> CM, 379 CodeGenOpt::Level OptLevel) 380 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 381 FS, Options, getEffectiveRelocModel(RM), 382 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 383 TLOF(createTLOF(getTargetTriple())) { 384 initAsmInfo(); 385 if (TT.getArch() == Triple::amdgcn) { 386 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 387 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 388 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 389 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 390 } 391 } 392 393 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 394 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 395 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 396 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; 397 398 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 399 400 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 401 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 402 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 403 } 404 405 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 406 Attribute FSAttr = F.getFnAttribute("target-features"); 407 408 return FSAttr.isValid() ? FSAttr.getValueAsString() 409 : getTargetFeatureString(); 410 } 411 412 /// Predicate for Internalize pass. 413 static bool mustPreserveGV(const GlobalValue &GV) { 414 if (const Function *F = dyn_cast<Function>(&GV)) 415 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 416 417 return !GV.use_empty(); 418 } 419 420 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 421 Builder.DivergentTarget = true; 422 423 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 424 bool Internalize = InternalizeSymbols; 425 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 426 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 427 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 428 429 if (EnableFunctionCalls) { 430 delete Builder.Inliner; 431 Builder.Inliner = createFunctionInliningPass(); 432 } 433 434 Builder.addExtension( 435 PassManagerBuilder::EP_ModuleOptimizerEarly, 436 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 437 legacy::PassManagerBase &PM) { 438 if (AMDGPUAA) { 439 PM.add(createAMDGPUAAWrapperPass()); 440 PM.add(createAMDGPUExternalAAWrapperPass()); 441 } 442 PM.add(createAMDGPUUnifyMetadataPass()); 443 PM.add(createAMDGPUPrintfRuntimeBinding()); 444 if (Internalize) 445 PM.add(createInternalizePass(mustPreserveGV)); 446 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 447 if (Internalize) 448 PM.add(createGlobalDCEPass()); 449 if (EarlyInline) 450 PM.add(createAMDGPUAlwaysInlinePass(false)); 451 }); 452 453 Builder.addExtension( 454 PassManagerBuilder::EP_EarlyAsPossible, 455 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 456 legacy::PassManagerBase &PM) { 457 if (AMDGPUAA) { 458 PM.add(createAMDGPUAAWrapperPass()); 459 PM.add(createAMDGPUExternalAAWrapperPass()); 460 } 461 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 462 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 463 if (LibCallSimplify) 464 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 465 }); 466 467 Builder.addExtension( 468 PassManagerBuilder::EP_CGSCCOptimizerLate, 469 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 470 // Add infer address spaces pass to the opt pipeline after inlining 471 // but before SROA to increase SROA opportunities. 472 PM.add(createInferAddressSpacesPass()); 473 474 // This should run after inlining to have any chance of doing anything, 475 // and before other cleanup optimizations. 476 PM.add(createAMDGPULowerKernelAttributesPass()); 477 478 // Promote alloca to vector before SROA and loop unroll. If we manage 479 // to eliminate allocas before unroll we may choose to unroll less. 480 if (EnableOpt) 481 PM.add(createAMDGPUPromoteAllocaToVector()); 482 }); 483 } 484 485 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 486 AAM.registerFunctionAnalysis<AMDGPUAA>(); 487 } 488 489 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB, 490 bool DebugPassManager) { 491 PB.registerPipelineParsingCallback( 492 [this](StringRef PassName, ModulePassManager &PM, 493 ArrayRef<PassBuilder::PipelineElement>) { 494 if (PassName == "amdgpu-propagate-attributes-late") { 495 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 496 return true; 497 } 498 if (PassName == "amdgpu-unify-metadata") { 499 PM.addPass(AMDGPUUnifyMetadataPass()); 500 return true; 501 } 502 if (PassName == "amdgpu-printf-runtime-binding") { 503 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 504 return true; 505 } 506 if (PassName == "amdgpu-always-inline") { 507 PM.addPass(AMDGPUAlwaysInlinePass()); 508 return true; 509 } 510 if (PassName == "amdgpu-lower-module-lds") { 511 PM.addPass(AMDGPULowerModuleLDSPass()); 512 return true; 513 } 514 return false; 515 }); 516 PB.registerPipelineParsingCallback( 517 [this](StringRef PassName, FunctionPassManager &PM, 518 ArrayRef<PassBuilder::PipelineElement>) { 519 if (PassName == "amdgpu-simplifylib") { 520 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 521 return true; 522 } 523 if (PassName == "amdgpu-usenative") { 524 PM.addPass(AMDGPUUseNativeCallsPass()); 525 return true; 526 } 527 if (PassName == "amdgpu-promote-alloca") { 528 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 529 return true; 530 } 531 if (PassName == "amdgpu-promote-alloca-to-vector") { 532 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 533 return true; 534 } 535 if (PassName == "amdgpu-lower-kernel-attributes") { 536 PM.addPass(AMDGPULowerKernelAttributesPass()); 537 return true; 538 } 539 if (PassName == "amdgpu-propagate-attributes-early") { 540 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 541 return true; 542 } 543 return false; 544 }); 545 546 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 547 FAM.registerPass([&] { return AMDGPUAA(); }); 548 }); 549 550 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 551 if (AAName == "amdgpu-aa") { 552 AAM.registerFunctionAnalysis<AMDGPUAA>(); 553 return true; 554 } 555 return false; 556 }); 557 558 PB.registerPipelineStartEPCallback([this, DebugPassManager]( 559 ModulePassManager &PM, 560 PassBuilder::OptimizationLevel Level) { 561 FunctionPassManager FPM(DebugPassManager); 562 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 563 FPM.addPass(AMDGPUUseNativeCallsPass()); 564 if (EnableLibCallSimplify && Level != PassBuilder::OptimizationLevel::O0) 565 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 566 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 567 }); 568 569 PB.registerPipelineEarlySimplificationEPCallback( 570 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) { 571 if (Level == PassBuilder::OptimizationLevel::O0) 572 return; 573 574 PM.addPass(AMDGPUUnifyMetadataPass()); 575 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 576 577 if (InternalizeSymbols) { 578 // Global variables may have dead uses which need to be removed. 579 // Otherwise these useless global variables will not get internalized. 580 PM.addPass(GlobalDCEPass()); 581 PM.addPass(InternalizePass(mustPreserveGV)); 582 } 583 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 584 if (InternalizeSymbols) { 585 PM.addPass(GlobalDCEPass()); 586 } 587 if (EarlyInlineAll && !EnableFunctionCalls) 588 PM.addPass(AMDGPUAlwaysInlinePass()); 589 }); 590 591 PB.registerCGSCCOptimizerLateEPCallback( 592 [this, DebugPassManager](CGSCCPassManager &PM, 593 PassBuilder::OptimizationLevel Level) { 594 if (Level == PassBuilder::OptimizationLevel::O0) 595 return; 596 597 FunctionPassManager FPM(DebugPassManager); 598 599 // Add infer address spaces pass to the opt pipeline after inlining 600 // but before SROA to increase SROA opportunities. 601 FPM.addPass(InferAddressSpacesPass()); 602 603 // This should run after inlining to have any chance of doing 604 // anything, and before other cleanup optimizations. 605 FPM.addPass(AMDGPULowerKernelAttributesPass()); 606 607 if (Level != PassBuilder::OptimizationLevel::O0) { 608 // Promote alloca to vector before SROA and loop unroll. If we 609 // manage to eliminate allocas before unroll we may choose to unroll 610 // less. 611 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 612 } 613 614 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 615 }); 616 } 617 618 //===----------------------------------------------------------------------===// 619 // R600 Target Machine (R600 -> Cayman) 620 //===----------------------------------------------------------------------===// 621 622 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 623 StringRef CPU, StringRef FS, 624 TargetOptions Options, 625 Optional<Reloc::Model> RM, 626 Optional<CodeModel::Model> CM, 627 CodeGenOpt::Level OL, bool JIT) 628 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 629 setRequiresStructuredCFG(true); 630 631 // Override the default since calls aren't supported for r600. 632 if (EnableFunctionCalls && 633 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 634 EnableFunctionCalls = false; 635 } 636 637 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 638 const Function &F) const { 639 StringRef GPU = getGPUName(F); 640 StringRef FS = getFeatureString(F); 641 642 SmallString<128> SubtargetKey(GPU); 643 SubtargetKey.append(FS); 644 645 auto &I = SubtargetMap[SubtargetKey]; 646 if (!I) { 647 // This needs to be done before we create a new subtarget since any 648 // creation will depend on the TM and the code generation flags on the 649 // function that reside in TargetOptions. 650 resetTargetOptions(F); 651 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 652 } 653 654 return I.get(); 655 } 656 657 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 658 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 659 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 660 AddrSpace == AMDGPUAS::REGION_ADDRESS) 661 ? -1 662 : 0; 663 } 664 665 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 666 unsigned DestAS) const { 667 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 668 AMDGPU::isFlatGlobalAddrSpace(DestAS); 669 } 670 671 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 672 const auto *LD = dyn_cast<LoadInst>(V); 673 if (!LD) 674 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 675 676 // It must be a generic pointer loaded. 677 assert(V->getType()->isPointerTy() && 678 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 679 680 const auto *Ptr = LD->getPointerOperand(); 681 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 682 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 683 // For a generic pointer loaded from the constant memory, it could be assumed 684 // as a global pointer since the constant memory is only populated on the 685 // host side. As implied by the offload programming model, only global 686 // pointers could be referenced on the host side. 687 return AMDGPUAS::GLOBAL_ADDRESS; 688 } 689 690 TargetTransformInfo 691 R600TargetMachine::getTargetTransformInfo(const Function &F) { 692 return TargetTransformInfo(R600TTIImpl(this, F)); 693 } 694 695 //===----------------------------------------------------------------------===// 696 // GCN Target Machine (SI+) 697 //===----------------------------------------------------------------------===// 698 699 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 700 StringRef CPU, StringRef FS, 701 TargetOptions Options, 702 Optional<Reloc::Model> RM, 703 Optional<CodeModel::Model> CM, 704 CodeGenOpt::Level OL, bool JIT) 705 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 706 707 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 708 StringRef GPU = getGPUName(F); 709 StringRef FS = getFeatureString(F); 710 711 SmallString<128> SubtargetKey(GPU); 712 SubtargetKey.append(FS); 713 714 auto &I = SubtargetMap[SubtargetKey]; 715 if (!I) { 716 // This needs to be done before we create a new subtarget since any 717 // creation will depend on the TM and the code generation flags on the 718 // function that reside in TargetOptions. 719 resetTargetOptions(F); 720 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 721 } 722 723 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 724 725 return I.get(); 726 } 727 728 TargetTransformInfo 729 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 730 return TargetTransformInfo(GCNTTIImpl(this, F)); 731 } 732 733 //===----------------------------------------------------------------------===// 734 // AMDGPU Pass Setup 735 //===----------------------------------------------------------------------===// 736 737 namespace { 738 739 class AMDGPUPassConfig : public TargetPassConfig { 740 public: 741 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 742 : TargetPassConfig(TM, PM) { 743 // Exceptions and StackMaps are not supported, so these passes will never do 744 // anything. 745 disablePass(&StackMapLivenessID); 746 disablePass(&FuncletLayoutID); 747 } 748 749 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 750 return getTM<AMDGPUTargetMachine>(); 751 } 752 753 ScheduleDAGInstrs * 754 createMachineScheduler(MachineSchedContext *C) const override { 755 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 756 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 757 return DAG; 758 } 759 760 void addEarlyCSEOrGVNPass(); 761 void addStraightLineScalarOptimizationPasses(); 762 void addIRPasses() override; 763 void addCodeGenPrepare() override; 764 bool addPreISel() override; 765 bool addInstSelector() override; 766 bool addGCPasses() override; 767 768 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 769 }; 770 771 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 772 return getStandardCSEConfigForOpt(TM->getOptLevel()); 773 } 774 775 class R600PassConfig final : public AMDGPUPassConfig { 776 public: 777 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 778 : AMDGPUPassConfig(TM, PM) {} 779 780 ScheduleDAGInstrs *createMachineScheduler( 781 MachineSchedContext *C) const override { 782 return createR600MachineScheduler(C); 783 } 784 785 bool addPreISel() override; 786 bool addInstSelector() override; 787 void addPreRegAlloc() override; 788 void addPreSched2() override; 789 void addPreEmitPass() override; 790 }; 791 792 class GCNPassConfig final : public AMDGPUPassConfig { 793 public: 794 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 795 : AMDGPUPassConfig(TM, PM) { 796 // It is necessary to know the register usage of the entire call graph. We 797 // allow calls without EnableAMDGPUFunctionCalls if they are marked 798 // noinline, so this is always required. 799 setRequiresCodeGenSCCOrder(true); 800 } 801 802 GCNTargetMachine &getGCNTargetMachine() const { 803 return getTM<GCNTargetMachine>(); 804 } 805 806 ScheduleDAGInstrs * 807 createMachineScheduler(MachineSchedContext *C) const override; 808 809 bool addPreISel() override; 810 void addMachineSSAOptimization() override; 811 bool addILPOpts() override; 812 bool addInstSelector() override; 813 bool addIRTranslator() override; 814 void addPreLegalizeMachineIR() override; 815 bool addLegalizeMachineIR() override; 816 void addPreRegBankSelect() override; 817 bool addRegBankSelect() override; 818 void addPreGlobalInstructionSelect() override; 819 bool addGlobalInstructionSelect() override; 820 void addFastRegAlloc() override; 821 void addOptimizedRegAlloc() override; 822 void addPreRegAlloc() override; 823 bool addPreRewrite() override; 824 void addPostRegAlloc() override; 825 void addPreSched2() override; 826 void addPreEmitPass() override; 827 }; 828 829 } // end anonymous namespace 830 831 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 832 if (getOptLevel() == CodeGenOpt::Aggressive) 833 addPass(createGVNPass()); 834 else 835 addPass(createEarlyCSEPass()); 836 } 837 838 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 839 addPass(createLICMPass()); 840 addPass(createSeparateConstOffsetFromGEPPass()); 841 addPass(createSpeculativeExecutionPass()); 842 // ReassociateGEPs exposes more opportunites for SLSR. See 843 // the example in reassociate-geps-and-slsr.ll. 844 addPass(createStraightLineStrengthReducePass()); 845 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 846 // EarlyCSE can reuse. 847 addEarlyCSEOrGVNPass(); 848 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 849 addPass(createNaryReassociatePass()); 850 // NaryReassociate on GEPs creates redundant common expressions, so run 851 // EarlyCSE after it. 852 addPass(createEarlyCSEPass()); 853 } 854 855 void AMDGPUPassConfig::addIRPasses() { 856 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 857 858 // There is no reason to run these. 859 disablePass(&StackMapLivenessID); 860 disablePass(&FuncletLayoutID); 861 disablePass(&PatchableFunctionID); 862 863 addPass(createAMDGPUPrintfRuntimeBinding()); 864 865 // This must occur before inlining, as the inliner will not look through 866 // bitcast calls. 867 addPass(createAMDGPUFixFunctionBitcastsPass()); 868 869 // A call to propagate attributes pass in the backend in case opt was not run. 870 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 871 872 addPass(createAtomicExpandPass()); 873 874 875 addPass(createAMDGPULowerIntrinsicsPass()); 876 877 // Function calls are not supported, so make sure we inline everything. 878 addPass(createAMDGPUAlwaysInlinePass()); 879 addPass(createAlwaysInlinerLegacyPass()); 880 // We need to add the barrier noop pass, otherwise adding the function 881 // inlining pass will cause all of the PassConfigs passes to be run 882 // one function at a time, which means if we have a nodule with two 883 // functions, then we will generate code for the first function 884 // without ever running any passes on the second. 885 addPass(createBarrierNoopPass()); 886 887 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 888 if (TM.getTargetTriple().getArch() == Triple::r600) 889 addPass(createR600OpenCLImageTypeLoweringPass()); 890 891 // Replace OpenCL enqueued block function pointers with global variables. 892 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 893 894 // Can increase LDS used by kernel so runs before PromoteAlloca 895 if (EnableLowerModuleLDS) 896 addPass(createAMDGPULowerModuleLDSPass()); 897 898 if (TM.getOptLevel() > CodeGenOpt::None) { 899 addPass(createInferAddressSpacesPass()); 900 addPass(createAMDGPUPromoteAlloca()); 901 902 if (EnableSROA) 903 addPass(createSROAPass()); 904 905 if (EnableScalarIRPasses) 906 addStraightLineScalarOptimizationPasses(); 907 908 if (EnableAMDGPUAliasAnalysis) { 909 addPass(createAMDGPUAAWrapperPass()); 910 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 911 AAResults &AAR) { 912 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 913 AAR.addAAResult(WrapperPass->getResult()); 914 })); 915 } 916 } 917 918 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 919 // TODO: May want to move later or split into an early and late one. 920 addPass(createAMDGPUCodeGenPreparePass()); 921 } 922 923 TargetPassConfig::addIRPasses(); 924 925 // EarlyCSE is not always strong enough to clean up what LSR produces. For 926 // example, GVN can combine 927 // 928 // %0 = add %a, %b 929 // %1 = add %b, %a 930 // 931 // and 932 // 933 // %0 = shl nsw %a, 2 934 // %1 = shl %a, 2 935 // 936 // but EarlyCSE can do neither of them. 937 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 938 addEarlyCSEOrGVNPass(); 939 } 940 941 void AMDGPUPassConfig::addCodeGenPrepare() { 942 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 943 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 944 945 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 946 EnableLowerKernelArguments) 947 addPass(createAMDGPULowerKernelArgumentsPass()); 948 949 addPass(&AMDGPUPerfHintAnalysisID); 950 951 TargetPassConfig::addCodeGenPrepare(); 952 953 if (EnableLoadStoreVectorizer) 954 addPass(createLoadStoreVectorizerPass()); 955 956 // LowerSwitch pass may introduce unreachable blocks that can 957 // cause unexpected behavior for subsequent passes. Placing it 958 // here seems better that these blocks would get cleaned up by 959 // UnreachableBlockElim inserted next in the pass flow. 960 addPass(createLowerSwitchPass()); 961 } 962 963 bool AMDGPUPassConfig::addPreISel() { 964 addPass(createFlattenCFGPass()); 965 return false; 966 } 967 968 bool AMDGPUPassConfig::addInstSelector() { 969 // Defer the verifier until FinalizeISel. 970 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 971 return false; 972 } 973 974 bool AMDGPUPassConfig::addGCPasses() { 975 // Do nothing. GC is not supported. 976 return false; 977 } 978 979 //===----------------------------------------------------------------------===// 980 // R600 Pass Setup 981 //===----------------------------------------------------------------------===// 982 983 bool R600PassConfig::addPreISel() { 984 AMDGPUPassConfig::addPreISel(); 985 986 if (EnableR600StructurizeCFG) 987 addPass(createStructurizeCFGPass()); 988 return false; 989 } 990 991 bool R600PassConfig::addInstSelector() { 992 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 993 return false; 994 } 995 996 void R600PassConfig::addPreRegAlloc() { 997 addPass(createR600VectorRegMerger()); 998 } 999 1000 void R600PassConfig::addPreSched2() { 1001 addPass(createR600EmitClauseMarkers(), false); 1002 if (EnableR600IfConvert) 1003 addPass(&IfConverterID, false); 1004 addPass(createR600ClauseMergePass(), false); 1005 } 1006 1007 void R600PassConfig::addPreEmitPass() { 1008 addPass(createAMDGPUCFGStructurizerPass(), false); 1009 addPass(createR600ExpandSpecialInstrsPass(), false); 1010 addPass(&FinalizeMachineBundlesID, false); 1011 addPass(createR600Packetizer(), false); 1012 addPass(createR600ControlFlowFinalizer(), false); 1013 } 1014 1015 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 1016 return new R600PassConfig(*this, PM); 1017 } 1018 1019 //===----------------------------------------------------------------------===// 1020 // GCN Pass Setup 1021 //===----------------------------------------------------------------------===// 1022 1023 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1024 MachineSchedContext *C) const { 1025 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1026 if (ST.enableSIScheduler()) 1027 return createSIMachineScheduler(C); 1028 return createGCNMaxOccupancyMachineScheduler(C); 1029 } 1030 1031 bool GCNPassConfig::addPreISel() { 1032 AMDGPUPassConfig::addPreISel(); 1033 1034 addPass(createAMDGPULateCodeGenPreparePass()); 1035 if (EnableAtomicOptimizations) { 1036 addPass(createAMDGPUAtomicOptimizerPass()); 1037 } 1038 1039 // FIXME: We need to run a pass to propagate the attributes when calls are 1040 // supported. 1041 1042 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1043 // regions formed by them. 1044 addPass(&AMDGPUUnifyDivergentExitNodesID); 1045 if (!LateCFGStructurize) { 1046 if (EnableStructurizerWorkarounds) { 1047 addPass(createFixIrreduciblePass()); 1048 addPass(createUnifyLoopExitsPass()); 1049 } 1050 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1051 } 1052 addPass(createSinkingPass()); 1053 addPass(createAMDGPUAnnotateUniformValues()); 1054 if (!LateCFGStructurize) { 1055 addPass(createSIAnnotateControlFlowPass()); 1056 } 1057 addPass(createLCSSAPass()); 1058 1059 return false; 1060 } 1061 1062 void GCNPassConfig::addMachineSSAOptimization() { 1063 TargetPassConfig::addMachineSSAOptimization(); 1064 1065 // We want to fold operands after PeepholeOptimizer has run (or as part of 1066 // it), because it will eliminate extra copies making it easier to fold the 1067 // real source operand. We want to eliminate dead instructions after, so that 1068 // we see fewer uses of the copies. We then need to clean up the dead 1069 // instructions leftover after the operands are folded as well. 1070 // 1071 // XXX - Can we get away without running DeadMachineInstructionElim again? 1072 addPass(&SIFoldOperandsID); 1073 if (EnableDPPCombine) 1074 addPass(&GCNDPPCombineID); 1075 addPass(&SILoadStoreOptimizerID); 1076 if (EnableSDWAPeephole) { 1077 addPass(&SIPeepholeSDWAID); 1078 addPass(&EarlyMachineLICMID); 1079 addPass(&MachineCSEID); 1080 addPass(&SIFoldOperandsID); 1081 } 1082 addPass(&DeadMachineInstructionElimID); 1083 addPass(createSIShrinkInstructionsPass()); 1084 } 1085 1086 bool GCNPassConfig::addILPOpts() { 1087 if (EnableEarlyIfConversion) 1088 addPass(&EarlyIfConverterID); 1089 1090 TargetPassConfig::addILPOpts(); 1091 return false; 1092 } 1093 1094 bool GCNPassConfig::addInstSelector() { 1095 AMDGPUPassConfig::addInstSelector(); 1096 addPass(&SIFixSGPRCopiesID); 1097 addPass(createSILowerI1CopiesPass()); 1098 return false; 1099 } 1100 1101 bool GCNPassConfig::addIRTranslator() { 1102 addPass(new IRTranslator(getOptLevel())); 1103 return false; 1104 } 1105 1106 void GCNPassConfig::addPreLegalizeMachineIR() { 1107 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1108 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1109 addPass(new Localizer()); 1110 } 1111 1112 bool GCNPassConfig::addLegalizeMachineIR() { 1113 addPass(new Legalizer()); 1114 return false; 1115 } 1116 1117 void GCNPassConfig::addPreRegBankSelect() { 1118 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1119 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1120 } 1121 1122 bool GCNPassConfig::addRegBankSelect() { 1123 addPass(new RegBankSelect()); 1124 return false; 1125 } 1126 1127 void GCNPassConfig::addPreGlobalInstructionSelect() { 1128 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1129 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1130 } 1131 1132 bool GCNPassConfig::addGlobalInstructionSelect() { 1133 addPass(new InstructionSelect(getOptLevel())); 1134 return false; 1135 } 1136 1137 void GCNPassConfig::addPreRegAlloc() { 1138 if (LateCFGStructurize) { 1139 addPass(createAMDGPUMachineCFGStructurizerPass()); 1140 } 1141 } 1142 1143 void GCNPassConfig::addFastRegAlloc() { 1144 // FIXME: We have to disable the verifier here because of PHIElimination + 1145 // TwoAddressInstructions disabling it. 1146 1147 // This must be run immediately after phi elimination and before 1148 // TwoAddressInstructions, otherwise the processing of the tied operand of 1149 // SI_ELSE will introduce a copy of the tied operand source after the else. 1150 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1151 1152 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1153 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1154 1155 TargetPassConfig::addFastRegAlloc(); 1156 } 1157 1158 void GCNPassConfig::addOptimizedRegAlloc() { 1159 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1160 // instructions that cause scheduling barriers. 1161 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1162 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1163 1164 if (OptExecMaskPreRA) 1165 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1166 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1167 1168 // This must be run immediately after phi elimination and before 1169 // TwoAddressInstructions, otherwise the processing of the tied operand of 1170 // SI_ELSE will introduce a copy of the tied operand source after the else. 1171 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1172 1173 if (EnableDCEInRA) 1174 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1175 1176 TargetPassConfig::addOptimizedRegAlloc(); 1177 } 1178 1179 bool GCNPassConfig::addPreRewrite() { 1180 if (EnableRegReassign) { 1181 addPass(&GCNNSAReassignID); 1182 addPass(createGCNRegBankReassignPass(AMDGPU::RM_BOTH)); 1183 } 1184 return true; 1185 } 1186 1187 void GCNPassConfig::addPostRegAlloc() { 1188 addPass(&SIFixVGPRCopiesID); 1189 if (getOptLevel() > CodeGenOpt::None) 1190 addPass(&SIOptimizeExecMaskingID); 1191 TargetPassConfig::addPostRegAlloc(); 1192 1193 // Equivalent of PEI for SGPRs. 1194 addPass(&SILowerSGPRSpillsID); 1195 } 1196 1197 void GCNPassConfig::addPreSched2() { 1198 addPass(&SIPostRABundlerID); 1199 } 1200 1201 void GCNPassConfig::addPreEmitPass() { 1202 addPass(createSIMemoryLegalizerPass()); 1203 addPass(createSIInsertWaitcntsPass()); 1204 addPass(createSIShrinkInstructionsPass()); 1205 addPass(createSIModeRegisterPass()); 1206 1207 if (getOptLevel() > CodeGenOpt::None) 1208 addPass(&SIInsertHardClausesID); 1209 1210 addPass(&SILateBranchLoweringPassID); 1211 if (getOptLevel() > CodeGenOpt::None) 1212 addPass(&SIPreEmitPeepholeID); 1213 // The hazard recognizer that runs as part of the post-ra scheduler does not 1214 // guarantee to be able handle all hazards correctly. This is because if there 1215 // are multiple scheduling regions in a basic block, the regions are scheduled 1216 // bottom up, so when we begin to schedule a region we don't know what 1217 // instructions were emitted directly before it. 1218 // 1219 // Here we add a stand-alone hazard recognizer pass which can handle all 1220 // cases. 1221 addPass(&PostRAHazardRecognizerID); 1222 addPass(&BranchRelaxationPassID); 1223 } 1224 1225 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1226 return new GCNPassConfig(*this, PM); 1227 } 1228 1229 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1230 return new yaml::SIMachineFunctionInfo(); 1231 } 1232 1233 yaml::MachineFunctionInfo * 1234 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1235 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1236 return new yaml::SIMachineFunctionInfo(*MFI, 1237 *MF.getSubtarget().getRegisterInfo()); 1238 } 1239 1240 bool GCNTargetMachine::parseMachineFunctionInfo( 1241 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1242 SMDiagnostic &Error, SMRange &SourceRange) const { 1243 const yaml::SIMachineFunctionInfo &YamlMFI = 1244 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1245 MachineFunction &MF = PFS.MF; 1246 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1247 1248 MFI->initializeBaseYamlFields(YamlMFI); 1249 1250 if (MFI->Occupancy == 0) { 1251 // Fixup the subtarget dependent default value. 1252 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1253 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1254 } 1255 1256 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1257 Register TempReg; 1258 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1259 SourceRange = RegName.SourceRange; 1260 return true; 1261 } 1262 RegVal = TempReg; 1263 1264 return false; 1265 }; 1266 1267 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1268 // Create a diagnostic for a the register string literal. 1269 const MemoryBuffer &Buffer = 1270 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1271 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1272 RegName.Value.size(), SourceMgr::DK_Error, 1273 "incorrect register class for field", RegName.Value, 1274 None, None); 1275 SourceRange = RegName.SourceRange; 1276 return true; 1277 }; 1278 1279 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1280 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1281 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1282 return true; 1283 1284 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1285 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1286 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1287 } 1288 1289 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1290 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1291 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1292 } 1293 1294 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1295 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1296 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1297 } 1298 1299 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1300 const TargetRegisterClass &RC, 1301 ArgDescriptor &Arg, unsigned UserSGPRs, 1302 unsigned SystemSGPRs) { 1303 // Skip parsing if it's not present. 1304 if (!A) 1305 return false; 1306 1307 if (A->IsRegister) { 1308 Register Reg; 1309 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1310 SourceRange = A->RegisterName.SourceRange; 1311 return true; 1312 } 1313 if (!RC.contains(Reg)) 1314 return diagnoseRegisterClass(A->RegisterName); 1315 Arg = ArgDescriptor::createRegister(Reg); 1316 } else 1317 Arg = ArgDescriptor::createStack(A->StackOffset); 1318 // Check and apply the optional mask. 1319 if (A->Mask) 1320 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1321 1322 MFI->NumUserSGPRs += UserSGPRs; 1323 MFI->NumSystemSGPRs += SystemSGPRs; 1324 return false; 1325 }; 1326 1327 if (YamlMFI.ArgInfo && 1328 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1329 AMDGPU::SGPR_128RegClass, 1330 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1331 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1332 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1333 2, 0) || 1334 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1335 MFI->ArgInfo.QueuePtr, 2, 0) || 1336 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1337 AMDGPU::SReg_64RegClass, 1338 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1339 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1340 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1341 2, 0) || 1342 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1343 AMDGPU::SReg_64RegClass, 1344 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1345 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1346 AMDGPU::SGPR_32RegClass, 1347 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1348 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1349 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1350 0, 1) || 1351 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1352 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1353 0, 1) || 1354 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1355 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1356 0, 1) || 1357 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1358 AMDGPU::SGPR_32RegClass, 1359 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1360 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1361 AMDGPU::SGPR_32RegClass, 1362 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1363 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1364 AMDGPU::SReg_64RegClass, 1365 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1366 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1367 AMDGPU::SReg_64RegClass, 1368 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1369 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1370 AMDGPU::VGPR_32RegClass, 1371 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1372 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1373 AMDGPU::VGPR_32RegClass, 1374 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1375 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1376 AMDGPU::VGPR_32RegClass, 1377 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1378 return true; 1379 1380 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1381 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1382 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1383 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1384 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1385 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1386 1387 return false; 1388 } 1389