1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUInstructionSelector.h" 20 #include "AMDGPULegalizerInfo.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPUTargetObjectFile.h" 23 #include "AMDGPUTargetTransformInfo.h" 24 #include "GCNIterativeScheduler.h" 25 #include "GCNSchedStrategy.h" 26 #include "R600MachineScheduler.h" 27 #include "SIMachineFunctionInfo.h" 28 #include "SIMachineScheduler.h" 29 #include "TargetInfo/AMDGPUTargetInfo.h" 30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/LegacyPassManager.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Compiler.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Target/TargetLoweringObjectFile.h" 45 #include "llvm/Transforms/IPO.h" 46 #include "llvm/Transforms/IPO/AlwaysInliner.h" 47 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 48 #include "llvm/Transforms/Scalar.h" 49 #include "llvm/Transforms/Scalar/GVN.h" 50 #include "llvm/Transforms/Utils.h" 51 #include "llvm/Transforms/Vectorize.h" 52 #include <memory> 53 54 using namespace llvm; 55 56 static cl::opt<bool> EnableR600StructurizeCFG( 57 "r600-ir-structurize", 58 cl::desc("Use StructurizeCFG IR pass"), 59 cl::init(true)); 60 61 static cl::opt<bool> EnableSROA( 62 "amdgpu-sroa", 63 cl::desc("Run SROA after promote alloca pass"), 64 cl::ReallyHidden, 65 cl::init(true)); 66 67 static cl::opt<bool> 68 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 69 cl::desc("Run early if-conversion"), 70 cl::init(false)); 71 72 static cl::opt<bool> 73 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 74 cl::desc("Run pre-RA exec mask optimizations"), 75 cl::init(true)); 76 77 static cl::opt<bool> EnableR600IfConvert( 78 "r600-if-convert", 79 cl::desc("Use if conversion pass"), 80 cl::ReallyHidden, 81 cl::init(true)); 82 83 // Option to disable vectorizer for tests. 84 static cl::opt<bool> EnableLoadStoreVectorizer( 85 "amdgpu-load-store-vectorizer", 86 cl::desc("Enable load store vectorizer"), 87 cl::init(true), 88 cl::Hidden); 89 90 // Option to control global loads scalarization 91 static cl::opt<bool> ScalarizeGlobal( 92 "amdgpu-scalarize-global-loads", 93 cl::desc("Enable global load scalarization"), 94 cl::init(true), 95 cl::Hidden); 96 97 // Option to run internalize pass. 98 static cl::opt<bool> InternalizeSymbols( 99 "amdgpu-internalize-symbols", 100 cl::desc("Enable elimination of non-kernel functions and unused globals"), 101 cl::init(false), 102 cl::Hidden); 103 104 // Option to inline all early. 105 static cl::opt<bool> EarlyInlineAll( 106 "amdgpu-early-inline-all", 107 cl::desc("Inline all functions early"), 108 cl::init(false), 109 cl::Hidden); 110 111 static cl::opt<bool> EnableSDWAPeephole( 112 "amdgpu-sdwa-peephole", 113 cl::desc("Enable SDWA peepholer"), 114 cl::init(true)); 115 116 static cl::opt<bool> EnableDPPCombine( 117 "amdgpu-dpp-combine", 118 cl::desc("Enable DPP combiner"), 119 cl::init(true)); 120 121 // Enable address space based alias analysis 122 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 123 cl::desc("Enable AMDGPU Alias Analysis"), 124 cl::init(true)); 125 126 // Option to run late CFG structurizer 127 static cl::opt<bool, true> LateCFGStructurize( 128 "amdgpu-late-structurize", 129 cl::desc("Enable late CFG structurization"), 130 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 131 cl::Hidden); 132 133 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 134 "amdgpu-function-calls", 135 cl::desc("Enable AMDGPU function call support"), 136 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 137 cl::init(true), 138 cl::Hidden); 139 140 // Enable lib calls simplifications 141 static cl::opt<bool> EnableLibCallSimplify( 142 "amdgpu-simplify-libcall", 143 cl::desc("Enable amdgpu library simplifications"), 144 cl::init(true), 145 cl::Hidden); 146 147 static cl::opt<bool> EnableLowerKernelArguments( 148 "amdgpu-ir-lower-kernel-arguments", 149 cl::desc("Lower kernel argument loads in IR pass"), 150 cl::init(true), 151 cl::Hidden); 152 153 static cl::opt<bool> EnableRegReassign( 154 "amdgpu-reassign-regs", 155 cl::desc("Enable register reassign optimizations on gfx10+"), 156 cl::init(true), 157 cl::Hidden); 158 159 // Enable atomic optimization 160 static cl::opt<bool> EnableAtomicOptimizations( 161 "amdgpu-atomic-optimizations", 162 cl::desc("Enable atomic optimizations"), 163 cl::init(false), 164 cl::Hidden); 165 166 // Enable Mode register optimization 167 static cl::opt<bool> EnableSIModeRegisterPass( 168 "amdgpu-mode-register", 169 cl::desc("Enable mode register pass"), 170 cl::init(true), 171 cl::Hidden); 172 173 // Option is used in lit tests to prevent deadcoding of patterns inspected. 174 static cl::opt<bool> 175 EnableDCEInRA("amdgpu-dce-in-ra", 176 cl::init(true), cl::Hidden, 177 cl::desc("Enable machine DCE inside regalloc")); 178 179 static cl::opt<bool> EnableScalarIRPasses( 180 "amdgpu-scalar-ir-passes", 181 cl::desc("Enable scalar IR passes"), 182 cl::init(true), 183 cl::Hidden); 184 185 extern "C" void LLVMInitializeAMDGPUTarget() { 186 // Register the target 187 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 188 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 189 190 PassRegistry *PR = PassRegistry::getPassRegistry(); 191 initializeR600ClauseMergePassPass(*PR); 192 initializeR600ControlFlowFinalizerPass(*PR); 193 initializeR600PacketizerPass(*PR); 194 initializeR600ExpandSpecialInstrsPassPass(*PR); 195 initializeR600VectorRegMergerPass(*PR); 196 initializeGlobalISel(*PR); 197 initializeAMDGPUDAGToDAGISelPass(*PR); 198 initializeGCNDPPCombinePass(*PR); 199 initializeSILowerI1CopiesPass(*PR); 200 initializeSIFixSGPRCopiesPass(*PR); 201 initializeSIFixVGPRCopiesPass(*PR); 202 initializeSIFixupVectorISelPass(*PR); 203 initializeSIFoldOperandsPass(*PR); 204 initializeSIPeepholeSDWAPass(*PR); 205 initializeSIShrinkInstructionsPass(*PR); 206 initializeSIOptimizeExecMaskingPreRAPass(*PR); 207 initializeSILoadStoreOptimizerPass(*PR); 208 initializeAMDGPUFixFunctionBitcastsPass(*PR); 209 initializeAMDGPUAlwaysInlinePass(*PR); 210 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 211 initializeAMDGPUAnnotateUniformValuesPass(*PR); 212 initializeAMDGPUArgumentUsageInfoPass(*PR); 213 initializeAMDGPUAtomicOptimizerPass(*PR); 214 initializeAMDGPULowerKernelArgumentsPass(*PR); 215 initializeAMDGPULowerKernelAttributesPass(*PR); 216 initializeAMDGPULowerIntrinsicsPass(*PR); 217 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 218 initializeAMDGPUPromoteAllocaPass(*PR); 219 initializeAMDGPUCodeGenPreparePass(*PR); 220 initializeAMDGPURewriteOutArgumentsPass(*PR); 221 initializeAMDGPUUnifyMetadataPass(*PR); 222 initializeSIAnnotateControlFlowPass(*PR); 223 initializeSIInsertWaitcntsPass(*PR); 224 initializeSIModeRegisterPass(*PR); 225 initializeSIWholeQuadModePass(*PR); 226 initializeSILowerControlFlowPass(*PR); 227 initializeSIInsertSkipsPass(*PR); 228 initializeSIMemoryLegalizerPass(*PR); 229 initializeSIOptimizeExecMaskingPass(*PR); 230 initializeSIPreAllocateWWMRegsPass(*PR); 231 initializeSIFormMemoryClausesPass(*PR); 232 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 233 initializeAMDGPUAAWrapperPassPass(*PR); 234 initializeAMDGPUExternalAAWrapperPass(*PR); 235 initializeAMDGPUUseNativeCallsPass(*PR); 236 initializeAMDGPUSimplifyLibCallsPass(*PR); 237 initializeAMDGPUInlinerPass(*PR); 238 initializeGCNRegBankReassignPass(*PR); 239 initializeGCNNSAReassignPass(*PR); 240 } 241 242 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 243 return llvm::make_unique<AMDGPUTargetObjectFile>(); 244 } 245 246 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 247 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 248 } 249 250 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 251 return new SIScheduleDAGMI(C); 252 } 253 254 static ScheduleDAGInstrs * 255 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 256 ScheduleDAGMILive *DAG = 257 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 258 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 259 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 260 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 261 return DAG; 262 } 263 264 static ScheduleDAGInstrs * 265 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 266 auto DAG = new GCNIterativeScheduler(C, 267 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 268 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 269 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 270 return DAG; 271 } 272 273 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 274 return new GCNIterativeScheduler(C, 275 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 276 } 277 278 static ScheduleDAGInstrs * 279 createIterativeILPMachineScheduler(MachineSchedContext *C) { 280 auto DAG = new GCNIterativeScheduler(C, 281 GCNIterativeScheduler::SCHEDULE_ILP); 282 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 283 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 284 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 285 return DAG; 286 } 287 288 static MachineSchedRegistry 289 R600SchedRegistry("r600", "Run R600's custom scheduler", 290 createR600MachineScheduler); 291 292 static MachineSchedRegistry 293 SISchedRegistry("si", "Run SI's custom scheduler", 294 createSIMachineScheduler); 295 296 static MachineSchedRegistry 297 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 298 "Run GCN scheduler to maximize occupancy", 299 createGCNMaxOccupancyMachineScheduler); 300 301 static MachineSchedRegistry 302 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 303 "Run GCN scheduler to maximize occupancy (experimental)", 304 createIterativeGCNMaxOccupancyMachineScheduler); 305 306 static MachineSchedRegistry 307 GCNMinRegSchedRegistry("gcn-minreg", 308 "Run GCN iterative scheduler for minimal register usage (experimental)", 309 createMinRegScheduler); 310 311 static MachineSchedRegistry 312 GCNILPSchedRegistry("gcn-ilp", 313 "Run GCN iterative scheduler for ILP scheduling (experimental)", 314 createIterativeILPMachineScheduler); 315 316 static StringRef computeDataLayout(const Triple &TT) { 317 if (TT.getArch() == Triple::r600) { 318 // 32-bit pointers. 319 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 320 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 321 } 322 323 // 32-bit private, local, and region pointers. 64-bit global, constant and 324 // flat, non-integral buffer fat pointers. 325 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 326 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 327 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 328 "-ni:7"; 329 } 330 331 LLVM_READNONE 332 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 333 if (!GPU.empty()) 334 return GPU; 335 336 // Need to default to a target with flat support for HSA. 337 if (TT.getArch() == Triple::amdgcn) 338 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 339 340 return "r600"; 341 } 342 343 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 344 // The AMDGPU toolchain only supports generating shared objects, so we 345 // must always use PIC. 346 return Reloc::PIC_; 347 } 348 349 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 350 StringRef CPU, StringRef FS, 351 TargetOptions Options, 352 Optional<Reloc::Model> RM, 353 Optional<CodeModel::Model> CM, 354 CodeGenOpt::Level OptLevel) 355 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 356 FS, Options, getEffectiveRelocModel(RM), 357 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 358 TLOF(createTLOF(getTargetTriple())) { 359 initAsmInfo(); 360 } 361 362 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 363 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 364 365 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 366 367 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 368 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 369 return GPUAttr.hasAttribute(Attribute::None) ? 370 getTargetCPU() : GPUAttr.getValueAsString(); 371 } 372 373 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 374 Attribute FSAttr = F.getFnAttribute("target-features"); 375 376 return FSAttr.hasAttribute(Attribute::None) ? 377 getTargetFeatureString() : 378 FSAttr.getValueAsString(); 379 } 380 381 /// Predicate for Internalize pass. 382 static bool mustPreserveGV(const GlobalValue &GV) { 383 if (const Function *F = dyn_cast<Function>(&GV)) 384 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 385 386 return !GV.use_empty(); 387 } 388 389 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 390 Builder.DivergentTarget = true; 391 392 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 393 bool Internalize = InternalizeSymbols; 394 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 395 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 396 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 397 398 if (EnableFunctionCalls) { 399 delete Builder.Inliner; 400 Builder.Inliner = createAMDGPUFunctionInliningPass(); 401 } 402 403 Builder.addExtension( 404 PassManagerBuilder::EP_ModuleOptimizerEarly, 405 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 406 legacy::PassManagerBase &PM) { 407 if (AMDGPUAA) { 408 PM.add(createAMDGPUAAWrapperPass()); 409 PM.add(createAMDGPUExternalAAWrapperPass()); 410 } 411 PM.add(createAMDGPUUnifyMetadataPass()); 412 if (Internalize) { 413 PM.add(createInternalizePass(mustPreserveGV)); 414 PM.add(createGlobalDCEPass()); 415 } 416 if (EarlyInline) 417 PM.add(createAMDGPUAlwaysInlinePass(false)); 418 }); 419 420 const auto &Opt = Options; 421 Builder.addExtension( 422 PassManagerBuilder::EP_EarlyAsPossible, 423 [AMDGPUAA, LibCallSimplify, &Opt](const PassManagerBuilder &, 424 legacy::PassManagerBase &PM) { 425 if (AMDGPUAA) { 426 PM.add(createAMDGPUAAWrapperPass()); 427 PM.add(createAMDGPUExternalAAWrapperPass()); 428 } 429 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 430 if (LibCallSimplify) 431 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt)); 432 }); 433 434 Builder.addExtension( 435 PassManagerBuilder::EP_CGSCCOptimizerLate, 436 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 437 // Add infer address spaces pass to the opt pipeline after inlining 438 // but before SROA to increase SROA opportunities. 439 PM.add(createInferAddressSpacesPass()); 440 441 // This should run after inlining to have any chance of doing anything, 442 // and before other cleanup optimizations. 443 PM.add(createAMDGPULowerKernelAttributesPass()); 444 }); 445 } 446 447 //===----------------------------------------------------------------------===// 448 // R600 Target Machine (R600 -> Cayman) 449 //===----------------------------------------------------------------------===// 450 451 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 452 StringRef CPU, StringRef FS, 453 TargetOptions Options, 454 Optional<Reloc::Model> RM, 455 Optional<CodeModel::Model> CM, 456 CodeGenOpt::Level OL, bool JIT) 457 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 458 setRequiresStructuredCFG(true); 459 460 // Override the default since calls aren't supported for r600. 461 if (EnableFunctionCalls && 462 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 463 EnableFunctionCalls = false; 464 } 465 466 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 467 const Function &F) const { 468 StringRef GPU = getGPUName(F); 469 StringRef FS = getFeatureString(F); 470 471 SmallString<128> SubtargetKey(GPU); 472 SubtargetKey.append(FS); 473 474 auto &I = SubtargetMap[SubtargetKey]; 475 if (!I) { 476 // This needs to be done before we create a new subtarget since any 477 // creation will depend on the TM and the code generation flags on the 478 // function that reside in TargetOptions. 479 resetTargetOptions(F); 480 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 481 } 482 483 return I.get(); 484 } 485 486 TargetTransformInfo 487 R600TargetMachine::getTargetTransformInfo(const Function &F) { 488 return TargetTransformInfo(R600TTIImpl(this, F)); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // GCN Target Machine (SI+) 493 //===----------------------------------------------------------------------===// 494 495 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 496 StringRef CPU, StringRef FS, 497 TargetOptions Options, 498 Optional<Reloc::Model> RM, 499 Optional<CodeModel::Model> CM, 500 CodeGenOpt::Level OL, bool JIT) 501 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 502 503 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 504 StringRef GPU = getGPUName(F); 505 StringRef FS = getFeatureString(F); 506 507 SmallString<128> SubtargetKey(GPU); 508 SubtargetKey.append(FS); 509 510 auto &I = SubtargetMap[SubtargetKey]; 511 if (!I) { 512 // This needs to be done before we create a new subtarget since any 513 // creation will depend on the TM and the code generation flags on the 514 // function that reside in TargetOptions. 515 resetTargetOptions(F); 516 I = llvm::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 517 } 518 519 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 520 521 return I.get(); 522 } 523 524 TargetTransformInfo 525 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 526 return TargetTransformInfo(GCNTTIImpl(this, F)); 527 } 528 529 //===----------------------------------------------------------------------===// 530 // AMDGPU Pass Setup 531 //===----------------------------------------------------------------------===// 532 533 namespace { 534 535 class AMDGPUPassConfig : public TargetPassConfig { 536 public: 537 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 538 : TargetPassConfig(TM, PM) { 539 // Exceptions and StackMaps are not supported, so these passes will never do 540 // anything. 541 disablePass(&StackMapLivenessID); 542 disablePass(&FuncletLayoutID); 543 } 544 545 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 546 return getTM<AMDGPUTargetMachine>(); 547 } 548 549 ScheduleDAGInstrs * 550 createMachineScheduler(MachineSchedContext *C) const override { 551 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 552 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 553 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 554 return DAG; 555 } 556 557 void addEarlyCSEOrGVNPass(); 558 void addStraightLineScalarOptimizationPasses(); 559 void addIRPasses() override; 560 void addCodeGenPrepare() override; 561 bool addPreISel() override; 562 bool addInstSelector() override; 563 bool addGCPasses() override; 564 565 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 566 }; 567 568 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 569 return getStandardCSEConfigForOpt(TM->getOptLevel()); 570 } 571 572 class R600PassConfig final : public AMDGPUPassConfig { 573 public: 574 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 575 : AMDGPUPassConfig(TM, PM) {} 576 577 ScheduleDAGInstrs *createMachineScheduler( 578 MachineSchedContext *C) const override { 579 return createR600MachineScheduler(C); 580 } 581 582 bool addPreISel() override; 583 bool addInstSelector() override; 584 void addPreRegAlloc() override; 585 void addPreSched2() override; 586 void addPreEmitPass() override; 587 }; 588 589 class GCNPassConfig final : public AMDGPUPassConfig { 590 public: 591 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 592 : AMDGPUPassConfig(TM, PM) { 593 // It is necessary to know the register usage of the entire call graph. We 594 // allow calls without EnableAMDGPUFunctionCalls if they are marked 595 // noinline, so this is always required. 596 setRequiresCodeGenSCCOrder(true); 597 } 598 599 GCNTargetMachine &getGCNTargetMachine() const { 600 return getTM<GCNTargetMachine>(); 601 } 602 603 ScheduleDAGInstrs * 604 createMachineScheduler(MachineSchedContext *C) const override; 605 606 bool addPreISel() override; 607 void addMachineSSAOptimization() override; 608 bool addILPOpts() override; 609 bool addInstSelector() override; 610 bool addIRTranslator() override; 611 bool addLegalizeMachineIR() override; 612 bool addRegBankSelect() override; 613 bool addGlobalInstructionSelect() override; 614 void addFastRegAlloc() override; 615 void addOptimizedRegAlloc() override; 616 void addPreRegAlloc() override; 617 bool addPreRewrite() override; 618 void addPostRegAlloc() override; 619 void addPreSched2() override; 620 void addPreEmitPass() override; 621 }; 622 623 } // end anonymous namespace 624 625 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 626 if (getOptLevel() == CodeGenOpt::Aggressive) 627 addPass(createGVNPass()); 628 else 629 addPass(createEarlyCSEPass()); 630 } 631 632 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 633 addPass(createLICMPass()); 634 addPass(createSeparateConstOffsetFromGEPPass()); 635 addPass(createSpeculativeExecutionPass()); 636 // ReassociateGEPs exposes more opportunites for SLSR. See 637 // the example in reassociate-geps-and-slsr.ll. 638 addPass(createStraightLineStrengthReducePass()); 639 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 640 // EarlyCSE can reuse. 641 addEarlyCSEOrGVNPass(); 642 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 643 addPass(createNaryReassociatePass()); 644 // NaryReassociate on GEPs creates redundant common expressions, so run 645 // EarlyCSE after it. 646 addPass(createEarlyCSEPass()); 647 } 648 649 void AMDGPUPassConfig::addIRPasses() { 650 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 651 652 // There is no reason to run these. 653 disablePass(&StackMapLivenessID); 654 disablePass(&FuncletLayoutID); 655 disablePass(&PatchableFunctionID); 656 657 addPass(createAtomicExpandPass()); 658 659 // This must occur before inlining, as the inliner will not look through 660 // bitcast calls. 661 addPass(createAMDGPUFixFunctionBitcastsPass()); 662 663 addPass(createAMDGPULowerIntrinsicsPass()); 664 665 // Function calls are not supported, so make sure we inline everything. 666 addPass(createAMDGPUAlwaysInlinePass()); 667 addPass(createAlwaysInlinerLegacyPass()); 668 // We need to add the barrier noop pass, otherwise adding the function 669 // inlining pass will cause all of the PassConfigs passes to be run 670 // one function at a time, which means if we have a nodule with two 671 // functions, then we will generate code for the first function 672 // without ever running any passes on the second. 673 addPass(createBarrierNoopPass()); 674 675 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 676 // TODO: May want to move later or split into an early and late one. 677 678 addPass(createAMDGPUCodeGenPreparePass()); 679 } 680 681 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 682 if (TM.getTargetTriple().getArch() == Triple::r600) 683 addPass(createR600OpenCLImageTypeLoweringPass()); 684 685 // Replace OpenCL enqueued block function pointers with global variables. 686 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 687 688 if (TM.getOptLevel() > CodeGenOpt::None) { 689 addPass(createInferAddressSpacesPass()); 690 addPass(createAMDGPUPromoteAlloca()); 691 692 if (EnableSROA) 693 addPass(createSROAPass()); 694 695 if (EnableScalarIRPasses) 696 addStraightLineScalarOptimizationPasses(); 697 698 if (EnableAMDGPUAliasAnalysis) { 699 addPass(createAMDGPUAAWrapperPass()); 700 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 701 AAResults &AAR) { 702 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 703 AAR.addAAResult(WrapperPass->getResult()); 704 })); 705 } 706 } 707 708 TargetPassConfig::addIRPasses(); 709 710 // EarlyCSE is not always strong enough to clean up what LSR produces. For 711 // example, GVN can combine 712 // 713 // %0 = add %a, %b 714 // %1 = add %b, %a 715 // 716 // and 717 // 718 // %0 = shl nsw %a, 2 719 // %1 = shl %a, 2 720 // 721 // but EarlyCSE can do neither of them. 722 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 723 addEarlyCSEOrGVNPass(); 724 } 725 726 void AMDGPUPassConfig::addCodeGenPrepare() { 727 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 728 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 729 730 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 731 EnableLowerKernelArguments) 732 addPass(createAMDGPULowerKernelArgumentsPass()); 733 734 TargetPassConfig::addCodeGenPrepare(); 735 736 if (EnableLoadStoreVectorizer) 737 addPass(createLoadStoreVectorizerPass()); 738 } 739 740 bool AMDGPUPassConfig::addPreISel() { 741 addPass(createLowerSwitchPass()); 742 addPass(createFlattenCFGPass()); 743 return false; 744 } 745 746 bool AMDGPUPassConfig::addInstSelector() { 747 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 748 return false; 749 } 750 751 bool AMDGPUPassConfig::addGCPasses() { 752 // Do nothing. GC is not supported. 753 return false; 754 } 755 756 //===----------------------------------------------------------------------===// 757 // R600 Pass Setup 758 //===----------------------------------------------------------------------===// 759 760 bool R600PassConfig::addPreISel() { 761 AMDGPUPassConfig::addPreISel(); 762 763 if (EnableR600StructurizeCFG) 764 addPass(createStructurizeCFGPass()); 765 return false; 766 } 767 768 bool R600PassConfig::addInstSelector() { 769 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 770 return false; 771 } 772 773 void R600PassConfig::addPreRegAlloc() { 774 addPass(createR600VectorRegMerger()); 775 } 776 777 void R600PassConfig::addPreSched2() { 778 addPass(createR600EmitClauseMarkers(), false); 779 if (EnableR600IfConvert) 780 addPass(&IfConverterID, false); 781 addPass(createR600ClauseMergePass(), false); 782 } 783 784 void R600PassConfig::addPreEmitPass() { 785 addPass(createAMDGPUCFGStructurizerPass(), false); 786 addPass(createR600ExpandSpecialInstrsPass(), false); 787 addPass(&FinalizeMachineBundlesID, false); 788 addPass(createR600Packetizer(), false); 789 addPass(createR600ControlFlowFinalizer(), false); 790 } 791 792 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 793 return new R600PassConfig(*this, PM); 794 } 795 796 //===----------------------------------------------------------------------===// 797 // GCN Pass Setup 798 //===----------------------------------------------------------------------===// 799 800 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 801 MachineSchedContext *C) const { 802 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 803 if (ST.enableSIScheduler()) 804 return createSIMachineScheduler(C); 805 return createGCNMaxOccupancyMachineScheduler(C); 806 } 807 808 bool GCNPassConfig::addPreISel() { 809 AMDGPUPassConfig::addPreISel(); 810 811 if (EnableAtomicOptimizations) { 812 addPass(createAMDGPUAtomicOptimizerPass()); 813 } 814 815 // FIXME: We need to run a pass to propagate the attributes when calls are 816 // supported. 817 818 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 819 // regions formed by them. 820 addPass(&AMDGPUUnifyDivergentExitNodesID); 821 if (!LateCFGStructurize) { 822 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 823 } 824 addPass(createSinkingPass()); 825 addPass(createAMDGPUAnnotateUniformValues()); 826 if (!LateCFGStructurize) { 827 addPass(createSIAnnotateControlFlowPass()); 828 } 829 830 return false; 831 } 832 833 void GCNPassConfig::addMachineSSAOptimization() { 834 TargetPassConfig::addMachineSSAOptimization(); 835 836 // We want to fold operands after PeepholeOptimizer has run (or as part of 837 // it), because it will eliminate extra copies making it easier to fold the 838 // real source operand. We want to eliminate dead instructions after, so that 839 // we see fewer uses of the copies. We then need to clean up the dead 840 // instructions leftover after the operands are folded as well. 841 // 842 // XXX - Can we get away without running DeadMachineInstructionElim again? 843 addPass(&SIFoldOperandsID); 844 if (EnableDPPCombine) 845 addPass(&GCNDPPCombineID); 846 addPass(&DeadMachineInstructionElimID); 847 addPass(&SILoadStoreOptimizerID); 848 if (EnableSDWAPeephole) { 849 addPass(&SIPeepholeSDWAID); 850 addPass(&EarlyMachineLICMID); 851 addPass(&MachineCSEID); 852 addPass(&SIFoldOperandsID); 853 addPass(&DeadMachineInstructionElimID); 854 } 855 addPass(createSIShrinkInstructionsPass()); 856 } 857 858 bool GCNPassConfig::addILPOpts() { 859 if (EnableEarlyIfConversion) 860 addPass(&EarlyIfConverterID); 861 862 TargetPassConfig::addILPOpts(); 863 return false; 864 } 865 866 bool GCNPassConfig::addInstSelector() { 867 AMDGPUPassConfig::addInstSelector(); 868 addPass(&SIFixSGPRCopiesID); 869 addPass(createSILowerI1CopiesPass()); 870 addPass(createSIFixupVectorISelPass()); 871 addPass(createSIAddIMGInitPass()); 872 return false; 873 } 874 875 bool GCNPassConfig::addIRTranslator() { 876 addPass(new IRTranslator()); 877 return false; 878 } 879 880 bool GCNPassConfig::addLegalizeMachineIR() { 881 addPass(new Legalizer()); 882 return false; 883 } 884 885 bool GCNPassConfig::addRegBankSelect() { 886 addPass(new RegBankSelect()); 887 return false; 888 } 889 890 bool GCNPassConfig::addGlobalInstructionSelect() { 891 addPass(new InstructionSelect()); 892 return false; 893 } 894 895 void GCNPassConfig::addPreRegAlloc() { 896 if (LateCFGStructurize) { 897 addPass(createAMDGPUMachineCFGStructurizerPass()); 898 } 899 addPass(createSIWholeQuadModePass()); 900 } 901 902 void GCNPassConfig::addFastRegAlloc() { 903 // FIXME: We have to disable the verifier here because of PHIElimination + 904 // TwoAddressInstructions disabling it. 905 906 // This must be run immediately after phi elimination and before 907 // TwoAddressInstructions, otherwise the processing of the tied operand of 908 // SI_ELSE will introduce a copy of the tied operand source after the else. 909 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 910 911 // This must be run just after RegisterCoalescing. 912 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 913 914 TargetPassConfig::addFastRegAlloc(); 915 } 916 917 void GCNPassConfig::addOptimizedRegAlloc() { 918 if (OptExecMaskPreRA) { 919 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 920 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 921 } else { 922 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 923 } 924 925 // This must be run immediately after phi elimination and before 926 // TwoAddressInstructions, otherwise the processing of the tied operand of 927 // SI_ELSE will introduce a copy of the tied operand source after the else. 928 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 929 930 // This must be run just after RegisterCoalescing. 931 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 932 933 if (EnableDCEInRA) 934 insertPass(&RenameIndependentSubregsID, &DeadMachineInstructionElimID); 935 936 TargetPassConfig::addOptimizedRegAlloc(); 937 } 938 939 bool GCNPassConfig::addPreRewrite() { 940 if (EnableRegReassign) { 941 addPass(&GCNNSAReassignID); 942 addPass(&GCNRegBankReassignID); 943 } 944 return true; 945 } 946 947 void GCNPassConfig::addPostRegAlloc() { 948 addPass(&SIFixVGPRCopiesID); 949 if (getOptLevel() > CodeGenOpt::None) 950 addPass(&SIOptimizeExecMaskingID); 951 TargetPassConfig::addPostRegAlloc(); 952 } 953 954 void GCNPassConfig::addPreSched2() { 955 } 956 957 void GCNPassConfig::addPreEmitPass() { 958 addPass(createSIMemoryLegalizerPass()); 959 addPass(createSIInsertWaitcntsPass()); 960 addPass(createSIShrinkInstructionsPass()); 961 addPass(createSIModeRegisterPass()); 962 963 // The hazard recognizer that runs as part of the post-ra scheduler does not 964 // guarantee to be able handle all hazards correctly. This is because if there 965 // are multiple scheduling regions in a basic block, the regions are scheduled 966 // bottom up, so when we begin to schedule a region we don't know what 967 // instructions were emitted directly before it. 968 // 969 // Here we add a stand-alone hazard recognizer pass which can handle all 970 // cases. 971 // 972 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 973 // be better for it to emit S_NOP <N> when possible. 974 addPass(&PostRAHazardRecognizerID); 975 976 addPass(&SIInsertSkipsPassID); 977 addPass(&BranchRelaxationPassID); 978 } 979 980 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 981 return new GCNPassConfig(*this, PM); 982 } 983 984 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 985 return new yaml::SIMachineFunctionInfo(); 986 } 987 988 yaml::MachineFunctionInfo * 989 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 990 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 991 return new yaml::SIMachineFunctionInfo(*MFI, 992 *MF.getSubtarget().getRegisterInfo()); 993 } 994 995 bool GCNTargetMachine::parseMachineFunctionInfo( 996 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 997 SMDiagnostic &Error, SMRange &SourceRange) const { 998 const yaml::SIMachineFunctionInfo &YamlMFI = 999 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1000 MachineFunction &MF = PFS.MF; 1001 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1002 1003 MFI->initializeBaseYamlFields(YamlMFI); 1004 1005 auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) { 1006 if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) { 1007 SourceRange = RegName.SourceRange; 1008 return true; 1009 } 1010 1011 return false; 1012 }; 1013 1014 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1015 // Create a diagnostic for a the register string literal. 1016 const MemoryBuffer &Buffer = 1017 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1018 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1019 RegName.Value.size(), SourceMgr::DK_Error, 1020 "incorrect register class for field", RegName.Value, 1021 None, None); 1022 SourceRange = RegName.SourceRange; 1023 return true; 1024 }; 1025 1026 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1027 parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) || 1028 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1029 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1030 return true; 1031 1032 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1033 !AMDGPU::SReg_128RegClass.contains(MFI->ScratchRSrcReg)) { 1034 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1035 } 1036 1037 if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG && 1038 !AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) { 1039 return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg); 1040 } 1041 1042 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1043 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1044 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1045 } 1046 1047 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1048 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1049 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1050 } 1051 1052 return false; 1053 } 1054