1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUMacroFusion.h" 20 #include "AMDGPUTargetObjectFile.h" 21 #include "AMDGPUTargetTransformInfo.h" 22 #include "GCNIterativeScheduler.h" 23 #include "GCNSchedStrategy.h" 24 #include "R600MachineScheduler.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIMachineScheduler.h" 27 #include "TargetInfo/AMDGPUTargetInfo.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/Localizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/TargetPassConfig.h" 36 #include "llvm/IR/LegacyPassManager.h" 37 #include "llvm/IR/PassManager.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/TargetRegistry.h" 41 #include "llvm/Transforms/IPO.h" 42 #include "llvm/Transforms/IPO/AlwaysInliner.h" 43 #include "llvm/Transforms/IPO/GlobalDCE.h" 44 #include "llvm/Transforms/IPO/Internalize.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 #include "llvm/Transforms/Vectorize.h" 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableR600StructurizeCFG( 56 "r600-ir-structurize", 57 cl::desc("Use StructurizeCFG IR pass"), 58 cl::init(true)); 59 60 static cl::opt<bool> EnableSROA( 61 "amdgpu-sroa", 62 cl::desc("Run SROA after promote alloca pass"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 static cl::opt<bool> 67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 68 cl::desc("Run early if-conversion"), 69 cl::init(false)); 70 71 static cl::opt<bool> 72 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 73 cl::desc("Run pre-RA exec mask optimizations"), 74 cl::init(true)); 75 76 static cl::opt<bool> EnableR600IfConvert( 77 "r600-if-convert", 78 cl::desc("Use if conversion pass"), 79 cl::ReallyHidden, 80 cl::init(true)); 81 82 // Option to disable vectorizer for tests. 83 static cl::opt<bool> EnableLoadStoreVectorizer( 84 "amdgpu-load-store-vectorizer", 85 cl::desc("Enable load store vectorizer"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to control global loads scalarization 90 static cl::opt<bool> ScalarizeGlobal( 91 "amdgpu-scalarize-global-loads", 92 cl::desc("Enable global load scalarization"), 93 cl::init(true), 94 cl::Hidden); 95 96 // Option to run internalize pass. 97 static cl::opt<bool> InternalizeSymbols( 98 "amdgpu-internalize-symbols", 99 cl::desc("Enable elimination of non-kernel functions and unused globals"), 100 cl::init(false), 101 cl::Hidden); 102 103 // Option to inline all early. 104 static cl::opt<bool> EarlyInlineAll( 105 "amdgpu-early-inline-all", 106 cl::desc("Inline all functions early"), 107 cl::init(false), 108 cl::Hidden); 109 110 static cl::opt<bool> EnableSDWAPeephole( 111 "amdgpu-sdwa-peephole", 112 cl::desc("Enable SDWA peepholer"), 113 cl::init(true)); 114 115 static cl::opt<bool> EnableDPPCombine( 116 "amdgpu-dpp-combine", 117 cl::desc("Enable DPP combiner"), 118 cl::init(true)); 119 120 // Enable address space based alias analysis 121 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 122 cl::desc("Enable AMDGPU Alias Analysis"), 123 cl::init(true)); 124 125 // Option to run late CFG structurizer 126 static cl::opt<bool, true> LateCFGStructurize( 127 "amdgpu-late-structurize", 128 cl::desc("Enable late CFG structurization"), 129 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 130 cl::Hidden); 131 132 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 133 "amdgpu-function-calls", 134 cl::desc("Enable AMDGPU function call support"), 135 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 136 cl::init(true), 137 cl::Hidden); 138 139 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 140 "amdgpu-fixed-function-abi", 141 cl::desc("Enable all implicit function arguments"), 142 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 143 cl::init(false), 144 cl::Hidden); 145 146 // Enable lib calls simplifications 147 static cl::opt<bool> EnableLibCallSimplify( 148 "amdgpu-simplify-libcall", 149 cl::desc("Enable amdgpu library simplifications"), 150 cl::init(true), 151 cl::Hidden); 152 153 static cl::opt<bool> EnableLowerKernelArguments( 154 "amdgpu-ir-lower-kernel-arguments", 155 cl::desc("Lower kernel argument loads in IR pass"), 156 cl::init(true), 157 cl::Hidden); 158 159 static cl::opt<bool> EnableRegReassign( 160 "amdgpu-reassign-regs", 161 cl::desc("Enable register reassign optimizations on gfx10+"), 162 cl::init(true), 163 cl::Hidden); 164 165 // Enable atomic optimization 166 static cl::opt<bool> EnableAtomicOptimizations( 167 "amdgpu-atomic-optimizations", 168 cl::desc("Enable atomic optimizations"), 169 cl::init(false), 170 cl::Hidden); 171 172 // Enable Mode register optimization 173 static cl::opt<bool> EnableSIModeRegisterPass( 174 "amdgpu-mode-register", 175 cl::desc("Enable mode register pass"), 176 cl::init(true), 177 cl::Hidden); 178 179 // Option is used in lit tests to prevent deadcoding of patterns inspected. 180 static cl::opt<bool> 181 EnableDCEInRA("amdgpu-dce-in-ra", 182 cl::init(true), cl::Hidden, 183 cl::desc("Enable machine DCE inside regalloc")); 184 185 static cl::opt<bool> EnableScalarIRPasses( 186 "amdgpu-scalar-ir-passes", 187 cl::desc("Enable scalar IR passes"), 188 cl::init(true), 189 cl::Hidden); 190 191 static cl::opt<bool> EnableStructurizerWorkarounds( 192 "amdgpu-enable-structurizer-workarounds", 193 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 194 cl::Hidden); 195 196 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 197 // Register the target 198 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 199 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 200 201 PassRegistry *PR = PassRegistry::getPassRegistry(); 202 initializeR600ClauseMergePassPass(*PR); 203 initializeR600ControlFlowFinalizerPass(*PR); 204 initializeR600PacketizerPass(*PR); 205 initializeR600ExpandSpecialInstrsPassPass(*PR); 206 initializeR600VectorRegMergerPass(*PR); 207 initializeGlobalISel(*PR); 208 initializeAMDGPUDAGToDAGISelPass(*PR); 209 initializeGCNDPPCombinePass(*PR); 210 initializeSILowerI1CopiesPass(*PR); 211 initializeSILowerSGPRSpillsPass(*PR); 212 initializeSIFixSGPRCopiesPass(*PR); 213 initializeSIFixVGPRCopiesPass(*PR); 214 initializeSIFoldOperandsPass(*PR); 215 initializeSIPeepholeSDWAPass(*PR); 216 initializeSIShrinkInstructionsPass(*PR); 217 initializeSIOptimizeExecMaskingPreRAPass(*PR); 218 initializeSILoadStoreOptimizerPass(*PR); 219 initializeAMDGPUFixFunctionBitcastsPass(*PR); 220 initializeAMDGPUAlwaysInlinePass(*PR); 221 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 222 initializeAMDGPUAnnotateUniformValuesPass(*PR); 223 initializeAMDGPUArgumentUsageInfoPass(*PR); 224 initializeAMDGPUAtomicOptimizerPass(*PR); 225 initializeAMDGPULowerKernelArgumentsPass(*PR); 226 initializeAMDGPULowerKernelAttributesPass(*PR); 227 initializeAMDGPULowerIntrinsicsPass(*PR); 228 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 229 initializeAMDGPUPostLegalizerCombinerPass(*PR); 230 initializeAMDGPUPreLegalizerCombinerPass(*PR); 231 initializeAMDGPUPromoteAllocaPass(*PR); 232 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 233 initializeAMDGPUCodeGenPreparePass(*PR); 234 initializeAMDGPULateCodeGenPreparePass(*PR); 235 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 236 initializeAMDGPUPropagateAttributesLatePass(*PR); 237 initializeAMDGPURewriteOutArgumentsPass(*PR); 238 initializeAMDGPUUnifyMetadataPass(*PR); 239 initializeSIAnnotateControlFlowPass(*PR); 240 initializeSIInsertHardClausesPass(*PR); 241 initializeSIInsertWaitcntsPass(*PR); 242 initializeSIModeRegisterPass(*PR); 243 initializeSIWholeQuadModePass(*PR); 244 initializeSILowerControlFlowPass(*PR); 245 initializeSIRemoveShortExecBranchesPass(*PR); 246 initializeSIPreEmitPeepholePass(*PR); 247 initializeSIInsertSkipsPass(*PR); 248 initializeSIMemoryLegalizerPass(*PR); 249 initializeSIOptimizeExecMaskingPass(*PR); 250 initializeSIPreAllocateWWMRegsPass(*PR); 251 initializeSIFormMemoryClausesPass(*PR); 252 initializeSIPostRABundlerPass(*PR); 253 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 254 initializeAMDGPUAAWrapperPassPass(*PR); 255 initializeAMDGPUExternalAAWrapperPass(*PR); 256 initializeAMDGPUUseNativeCallsPass(*PR); 257 initializeAMDGPUSimplifyLibCallsPass(*PR); 258 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 259 initializeGCNRegBankReassignPass(*PR); 260 initializeGCNNSAReassignPass(*PR); 261 initializeSIAddIMGInitPass(*PR); 262 } 263 264 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 265 return std::make_unique<AMDGPUTargetObjectFile>(); 266 } 267 268 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 269 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 270 } 271 272 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 273 return new SIScheduleDAGMI(C); 274 } 275 276 static ScheduleDAGInstrs * 277 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 278 ScheduleDAGMILive *DAG = 279 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 280 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 281 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 282 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 283 return DAG; 284 } 285 286 static ScheduleDAGInstrs * 287 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 288 auto DAG = new GCNIterativeScheduler(C, 289 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 290 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 291 return DAG; 292 } 293 294 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 295 return new GCNIterativeScheduler(C, 296 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 297 } 298 299 static ScheduleDAGInstrs * 300 createIterativeILPMachineScheduler(MachineSchedContext *C) { 301 auto DAG = new GCNIterativeScheduler(C, 302 GCNIterativeScheduler::SCHEDULE_ILP); 303 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 304 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 305 return DAG; 306 } 307 308 static MachineSchedRegistry 309 R600SchedRegistry("r600", "Run R600's custom scheduler", 310 createR600MachineScheduler); 311 312 static MachineSchedRegistry 313 SISchedRegistry("si", "Run SI's custom scheduler", 314 createSIMachineScheduler); 315 316 static MachineSchedRegistry 317 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 318 "Run GCN scheduler to maximize occupancy", 319 createGCNMaxOccupancyMachineScheduler); 320 321 static MachineSchedRegistry 322 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 323 "Run GCN scheduler to maximize occupancy (experimental)", 324 createIterativeGCNMaxOccupancyMachineScheduler); 325 326 static MachineSchedRegistry 327 GCNMinRegSchedRegistry("gcn-minreg", 328 "Run GCN iterative scheduler for minimal register usage (experimental)", 329 createMinRegScheduler); 330 331 static MachineSchedRegistry 332 GCNILPSchedRegistry("gcn-ilp", 333 "Run GCN iterative scheduler for ILP scheduling (experimental)", 334 createIterativeILPMachineScheduler); 335 336 static StringRef computeDataLayout(const Triple &TT) { 337 if (TT.getArch() == Triple::r600) { 338 // 32-bit pointers. 339 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 340 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 341 } 342 343 // 32-bit private, local, and region pointers. 64-bit global, constant and 344 // flat, non-integral buffer fat pointers. 345 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 346 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 347 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 348 "-ni:7"; 349 } 350 351 LLVM_READNONE 352 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 353 if (!GPU.empty()) 354 return GPU; 355 356 // Need to default to a target with flat support for HSA. 357 if (TT.getArch() == Triple::amdgcn) 358 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 359 360 return "r600"; 361 } 362 363 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 364 // The AMDGPU toolchain only supports generating shared objects, so we 365 // must always use PIC. 366 return Reloc::PIC_; 367 } 368 369 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 370 StringRef CPU, StringRef FS, 371 TargetOptions Options, 372 Optional<Reloc::Model> RM, 373 Optional<CodeModel::Model> CM, 374 CodeGenOpt::Level OptLevel) 375 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 376 FS, Options, getEffectiveRelocModel(RM), 377 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 378 TLOF(createTLOF(getTargetTriple())) { 379 initAsmInfo(); 380 if (TT.getArch() == Triple::amdgcn) { 381 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 382 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 383 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 384 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 385 } 386 } 387 388 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 389 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 390 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 391 392 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 393 394 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 395 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 396 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 397 } 398 399 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 400 Attribute FSAttr = F.getFnAttribute("target-features"); 401 402 return FSAttr.isValid() ? FSAttr.getValueAsString() 403 : getTargetFeatureString(); 404 } 405 406 /// Predicate for Internalize pass. 407 static bool mustPreserveGV(const GlobalValue &GV) { 408 if (const Function *F = dyn_cast<Function>(&GV)) 409 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 410 411 return !GV.use_empty(); 412 } 413 414 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 415 Builder.DivergentTarget = true; 416 417 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 418 bool Internalize = InternalizeSymbols; 419 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 420 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 421 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 422 423 if (EnableFunctionCalls) { 424 delete Builder.Inliner; 425 Builder.Inliner = createFunctionInliningPass(); 426 } 427 428 Builder.addExtension( 429 PassManagerBuilder::EP_ModuleOptimizerEarly, 430 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 431 legacy::PassManagerBase &PM) { 432 if (AMDGPUAA) { 433 PM.add(createAMDGPUAAWrapperPass()); 434 PM.add(createAMDGPUExternalAAWrapperPass()); 435 } 436 PM.add(createAMDGPUUnifyMetadataPass()); 437 PM.add(createAMDGPUPrintfRuntimeBinding()); 438 if (Internalize) 439 PM.add(createInternalizePass(mustPreserveGV)); 440 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 441 if (Internalize) 442 PM.add(createGlobalDCEPass()); 443 if (EarlyInline) 444 PM.add(createAMDGPUAlwaysInlinePass(false)); 445 }); 446 447 Builder.addExtension( 448 PassManagerBuilder::EP_EarlyAsPossible, 449 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 450 legacy::PassManagerBase &PM) { 451 if (AMDGPUAA) { 452 PM.add(createAMDGPUAAWrapperPass()); 453 PM.add(createAMDGPUExternalAAWrapperPass()); 454 } 455 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 456 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 457 if (LibCallSimplify) 458 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 459 }); 460 461 Builder.addExtension( 462 PassManagerBuilder::EP_CGSCCOptimizerLate, 463 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 464 // Add infer address spaces pass to the opt pipeline after inlining 465 // but before SROA to increase SROA opportunities. 466 PM.add(createInferAddressSpacesPass()); 467 468 // This should run after inlining to have any chance of doing anything, 469 // and before other cleanup optimizations. 470 PM.add(createAMDGPULowerKernelAttributesPass()); 471 472 // Promote alloca to vector before SROA and loop unroll. If we manage 473 // to eliminate allocas before unroll we may choose to unroll less. 474 if (EnableOpt) 475 PM.add(createAMDGPUPromoteAllocaToVector()); 476 }); 477 } 478 479 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 480 AAM.registerFunctionAnalysis<AMDGPUAA>(); 481 } 482 483 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB, 484 bool DebugPassManager) { 485 PB.registerPipelineParsingCallback( 486 [this](StringRef PassName, ModulePassManager &PM, 487 ArrayRef<PassBuilder::PipelineElement>) { 488 if (PassName == "amdgpu-propagate-attributes-late") { 489 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 490 return true; 491 } 492 if (PassName == "amdgpu-unify-metadata") { 493 PM.addPass(AMDGPUUnifyMetadataPass()); 494 return true; 495 } 496 if (PassName == "amdgpu-printf-runtime-binding") { 497 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 498 return true; 499 } 500 if (PassName == "amdgpu-always-inline") { 501 PM.addPass(AMDGPUAlwaysInlinePass()); 502 return true; 503 } 504 return false; 505 }); 506 PB.registerPipelineParsingCallback( 507 [this](StringRef PassName, FunctionPassManager &PM, 508 ArrayRef<PassBuilder::PipelineElement>) { 509 if (PassName == "amdgpu-simplifylib") { 510 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 511 return true; 512 } 513 if (PassName == "amdgpu-usenative") { 514 PM.addPass(AMDGPUUseNativeCallsPass()); 515 return true; 516 } 517 if (PassName == "amdgpu-promote-alloca") { 518 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 519 return true; 520 } 521 if (PassName == "amdgpu-promote-alloca-to-vector") { 522 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 523 return true; 524 } 525 if (PassName == "amdgpu-lower-kernel-attributes") { 526 PM.addPass(AMDGPULowerKernelAttributesPass()); 527 return true; 528 } 529 if (PassName == "amdgpu-propagate-attributes-early") { 530 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 531 return true; 532 } 533 534 return false; 535 }); 536 537 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 538 FAM.registerPass([&] { return AMDGPUAA(); }); 539 }); 540 541 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 542 if (AAName == "amdgpu-aa") { 543 AAM.registerFunctionAnalysis<AMDGPUAA>(); 544 return true; 545 } 546 return false; 547 }); 548 549 PB.registerPipelineStartEPCallback([this, DebugPassManager]( 550 ModulePassManager &PM, 551 PassBuilder::OptimizationLevel Level) { 552 FunctionPassManager FPM(DebugPassManager); 553 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 554 FPM.addPass(AMDGPUUseNativeCallsPass()); 555 if (EnableLibCallSimplify && Level != PassBuilder::OptimizationLevel::O0) 556 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 557 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 558 }); 559 560 PB.registerPipelineEarlySimplificationEPCallback( 561 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) { 562 if (Level == PassBuilder::OptimizationLevel::O0) 563 return; 564 565 PM.addPass(AMDGPUUnifyMetadataPass()); 566 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 567 568 if (InternalizeSymbols) { 569 PM.addPass(InternalizePass(mustPreserveGV)); 570 } 571 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 572 if (InternalizeSymbols) { 573 PM.addPass(GlobalDCEPass()); 574 } 575 if (EarlyInlineAll && !EnableFunctionCalls) 576 PM.addPass(AMDGPUAlwaysInlinePass()); 577 }); 578 579 PB.registerCGSCCOptimizerLateEPCallback( 580 [this, DebugPassManager](CGSCCPassManager &PM, 581 PassBuilder::OptimizationLevel Level) { 582 FunctionPassManager FPM(DebugPassManager); 583 584 // Add infer address spaces pass to the opt pipeline after inlining 585 // but before SROA to increase SROA opportunities. 586 FPM.addPass(InferAddressSpacesPass()); 587 588 // This should run after inlining to have any chance of doing 589 // anything, and before other cleanup optimizations. 590 FPM.addPass(AMDGPULowerKernelAttributesPass()); 591 592 if (Level != PassBuilder::OptimizationLevel::O0) { 593 // Promote alloca to vector before SROA and loop unroll. If we 594 // manage to eliminate allocas before unroll we may choose to unroll 595 // less. 596 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 597 } 598 599 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 600 }); 601 } 602 603 //===----------------------------------------------------------------------===// 604 // R600 Target Machine (R600 -> Cayman) 605 //===----------------------------------------------------------------------===// 606 607 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 608 StringRef CPU, StringRef FS, 609 TargetOptions Options, 610 Optional<Reloc::Model> RM, 611 Optional<CodeModel::Model> CM, 612 CodeGenOpt::Level OL, bool JIT) 613 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 614 setRequiresStructuredCFG(true); 615 616 // Override the default since calls aren't supported for r600. 617 if (EnableFunctionCalls && 618 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 619 EnableFunctionCalls = false; 620 } 621 622 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 623 const Function &F) const { 624 StringRef GPU = getGPUName(F); 625 StringRef FS = getFeatureString(F); 626 627 SmallString<128> SubtargetKey(GPU); 628 SubtargetKey.append(FS); 629 630 auto &I = SubtargetMap[SubtargetKey]; 631 if (!I) { 632 // This needs to be done before we create a new subtarget since any 633 // creation will depend on the TM and the code generation flags on the 634 // function that reside in TargetOptions. 635 resetTargetOptions(F); 636 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 637 } 638 639 return I.get(); 640 } 641 642 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 643 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 644 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 645 AddrSpace == AMDGPUAS::REGION_ADDRESS) 646 ? -1 647 : 0; 648 } 649 650 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 651 unsigned DestAS) const { 652 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 653 AMDGPU::isFlatGlobalAddrSpace(DestAS); 654 } 655 656 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 657 const auto *LD = dyn_cast<LoadInst>(V); 658 if (!LD) 659 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 660 661 // It must be a generic pointer loaded. 662 assert(V->getType()->isPointerTy() && 663 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 664 665 const auto *Ptr = LD->getPointerOperand(); 666 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 667 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 668 // For a generic pointer loaded from the constant memory, it could be assumed 669 // as a global pointer since the constant memory is only populated on the 670 // host side. As implied by the offload programming model, only global 671 // pointers could be referenced on the host side. 672 return AMDGPUAS::GLOBAL_ADDRESS; 673 } 674 675 TargetTransformInfo 676 R600TargetMachine::getTargetTransformInfo(const Function &F) { 677 return TargetTransformInfo(R600TTIImpl(this, F)); 678 } 679 680 //===----------------------------------------------------------------------===// 681 // GCN Target Machine (SI+) 682 //===----------------------------------------------------------------------===// 683 684 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 685 StringRef CPU, StringRef FS, 686 TargetOptions Options, 687 Optional<Reloc::Model> RM, 688 Optional<CodeModel::Model> CM, 689 CodeGenOpt::Level OL, bool JIT) 690 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 691 692 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 693 StringRef GPU = getGPUName(F); 694 StringRef FS = getFeatureString(F); 695 696 SmallString<128> SubtargetKey(GPU); 697 SubtargetKey.append(FS); 698 699 auto &I = SubtargetMap[SubtargetKey]; 700 if (!I) { 701 // This needs to be done before we create a new subtarget since any 702 // creation will depend on the TM and the code generation flags on the 703 // function that reside in TargetOptions. 704 resetTargetOptions(F); 705 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 706 } 707 708 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 709 710 return I.get(); 711 } 712 713 TargetTransformInfo 714 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 715 return TargetTransformInfo(GCNTTIImpl(this, F)); 716 } 717 718 //===----------------------------------------------------------------------===// 719 // AMDGPU Pass Setup 720 //===----------------------------------------------------------------------===// 721 722 namespace { 723 724 class AMDGPUPassConfig : public TargetPassConfig { 725 public: 726 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 727 : TargetPassConfig(TM, PM) { 728 // Exceptions and StackMaps are not supported, so these passes will never do 729 // anything. 730 disablePass(&StackMapLivenessID); 731 disablePass(&FuncletLayoutID); 732 } 733 734 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 735 return getTM<AMDGPUTargetMachine>(); 736 } 737 738 ScheduleDAGInstrs * 739 createMachineScheduler(MachineSchedContext *C) const override { 740 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 741 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 742 return DAG; 743 } 744 745 void addEarlyCSEOrGVNPass(); 746 void addStraightLineScalarOptimizationPasses(); 747 void addIRPasses() override; 748 void addCodeGenPrepare() override; 749 bool addPreISel() override; 750 bool addInstSelector() override; 751 bool addGCPasses() override; 752 753 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 754 }; 755 756 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 757 return getStandardCSEConfigForOpt(TM->getOptLevel()); 758 } 759 760 class R600PassConfig final : public AMDGPUPassConfig { 761 public: 762 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 763 : AMDGPUPassConfig(TM, PM) {} 764 765 ScheduleDAGInstrs *createMachineScheduler( 766 MachineSchedContext *C) const override { 767 return createR600MachineScheduler(C); 768 } 769 770 bool addPreISel() override; 771 bool addInstSelector() override; 772 void addPreRegAlloc() override; 773 void addPreSched2() override; 774 void addPreEmitPass() override; 775 }; 776 777 class GCNPassConfig final : public AMDGPUPassConfig { 778 public: 779 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 780 : AMDGPUPassConfig(TM, PM) { 781 // It is necessary to know the register usage of the entire call graph. We 782 // allow calls without EnableAMDGPUFunctionCalls if they are marked 783 // noinline, so this is always required. 784 setRequiresCodeGenSCCOrder(true); 785 } 786 787 GCNTargetMachine &getGCNTargetMachine() const { 788 return getTM<GCNTargetMachine>(); 789 } 790 791 ScheduleDAGInstrs * 792 createMachineScheduler(MachineSchedContext *C) const override; 793 794 bool addPreISel() override; 795 void addMachineSSAOptimization() override; 796 bool addILPOpts() override; 797 bool addInstSelector() override; 798 bool addIRTranslator() override; 799 void addPreLegalizeMachineIR() override; 800 bool addLegalizeMachineIR() override; 801 void addPreRegBankSelect() override; 802 bool addRegBankSelect() override; 803 bool addGlobalInstructionSelect() override; 804 void addFastRegAlloc() override; 805 void addOptimizedRegAlloc() override; 806 void addPreRegAlloc() override; 807 bool addPreRewrite() override; 808 void addPostRegAlloc() override; 809 void addPreSched2() override; 810 void addPreEmitPass() override; 811 }; 812 813 } // end anonymous namespace 814 815 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 816 if (getOptLevel() == CodeGenOpt::Aggressive) 817 addPass(createGVNPass()); 818 else 819 addPass(createEarlyCSEPass()); 820 } 821 822 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 823 addPass(createLICMPass()); 824 addPass(createSeparateConstOffsetFromGEPPass()); 825 addPass(createSpeculativeExecutionPass()); 826 // ReassociateGEPs exposes more opportunites for SLSR. See 827 // the example in reassociate-geps-and-slsr.ll. 828 addPass(createStraightLineStrengthReducePass()); 829 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 830 // EarlyCSE can reuse. 831 addEarlyCSEOrGVNPass(); 832 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 833 addPass(createNaryReassociatePass()); 834 // NaryReassociate on GEPs creates redundant common expressions, so run 835 // EarlyCSE after it. 836 addPass(createEarlyCSEPass()); 837 } 838 839 void AMDGPUPassConfig::addIRPasses() { 840 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 841 842 // There is no reason to run these. 843 disablePass(&StackMapLivenessID); 844 disablePass(&FuncletLayoutID); 845 disablePass(&PatchableFunctionID); 846 847 addPass(createAMDGPUPrintfRuntimeBinding()); 848 849 // This must occur before inlining, as the inliner will not look through 850 // bitcast calls. 851 addPass(createAMDGPUFixFunctionBitcastsPass()); 852 853 // A call to propagate attributes pass in the backend in case opt was not run. 854 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 855 856 addPass(createAtomicExpandPass()); 857 858 859 addPass(createAMDGPULowerIntrinsicsPass()); 860 861 // Function calls are not supported, so make sure we inline everything. 862 addPass(createAMDGPUAlwaysInlinePass()); 863 addPass(createAlwaysInlinerLegacyPass()); 864 // We need to add the barrier noop pass, otherwise adding the function 865 // inlining pass will cause all of the PassConfigs passes to be run 866 // one function at a time, which means if we have a nodule with two 867 // functions, then we will generate code for the first function 868 // without ever running any passes on the second. 869 addPass(createBarrierNoopPass()); 870 871 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 872 if (TM.getTargetTriple().getArch() == Triple::r600) 873 addPass(createR600OpenCLImageTypeLoweringPass()); 874 875 // Replace OpenCL enqueued block function pointers with global variables. 876 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 877 878 if (TM.getOptLevel() > CodeGenOpt::None) { 879 addPass(createInferAddressSpacesPass()); 880 addPass(createAMDGPUPromoteAlloca()); 881 882 if (EnableSROA) 883 addPass(createSROAPass()); 884 885 if (EnableScalarIRPasses) 886 addStraightLineScalarOptimizationPasses(); 887 888 if (EnableAMDGPUAliasAnalysis) { 889 addPass(createAMDGPUAAWrapperPass()); 890 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 891 AAResults &AAR) { 892 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 893 AAR.addAAResult(WrapperPass->getResult()); 894 })); 895 } 896 } 897 898 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 899 // TODO: May want to move later or split into an early and late one. 900 addPass(createAMDGPUCodeGenPreparePass()); 901 } 902 903 TargetPassConfig::addIRPasses(); 904 905 // EarlyCSE is not always strong enough to clean up what LSR produces. For 906 // example, GVN can combine 907 // 908 // %0 = add %a, %b 909 // %1 = add %b, %a 910 // 911 // and 912 // 913 // %0 = shl nsw %a, 2 914 // %1 = shl %a, 2 915 // 916 // but EarlyCSE can do neither of them. 917 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 918 addEarlyCSEOrGVNPass(); 919 } 920 921 void AMDGPUPassConfig::addCodeGenPrepare() { 922 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 923 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 924 925 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 926 EnableLowerKernelArguments) 927 addPass(createAMDGPULowerKernelArgumentsPass()); 928 929 addPass(&AMDGPUPerfHintAnalysisID); 930 931 TargetPassConfig::addCodeGenPrepare(); 932 933 if (EnableLoadStoreVectorizer) 934 addPass(createLoadStoreVectorizerPass()); 935 936 // LowerSwitch pass may introduce unreachable blocks that can 937 // cause unexpected behavior for subsequent passes. Placing it 938 // here seems better that these blocks would get cleaned up by 939 // UnreachableBlockElim inserted next in the pass flow. 940 addPass(createLowerSwitchPass()); 941 } 942 943 bool AMDGPUPassConfig::addPreISel() { 944 addPass(createFlattenCFGPass()); 945 return false; 946 } 947 948 bool AMDGPUPassConfig::addInstSelector() { 949 // Defer the verifier until FinalizeISel. 950 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 951 return false; 952 } 953 954 bool AMDGPUPassConfig::addGCPasses() { 955 // Do nothing. GC is not supported. 956 return false; 957 } 958 959 //===----------------------------------------------------------------------===// 960 // R600 Pass Setup 961 //===----------------------------------------------------------------------===// 962 963 bool R600PassConfig::addPreISel() { 964 AMDGPUPassConfig::addPreISel(); 965 966 if (EnableR600StructurizeCFG) 967 addPass(createStructurizeCFGPass()); 968 return false; 969 } 970 971 bool R600PassConfig::addInstSelector() { 972 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 973 return false; 974 } 975 976 void R600PassConfig::addPreRegAlloc() { 977 addPass(createR600VectorRegMerger()); 978 } 979 980 void R600PassConfig::addPreSched2() { 981 addPass(createR600EmitClauseMarkers(), false); 982 if (EnableR600IfConvert) 983 addPass(&IfConverterID, false); 984 addPass(createR600ClauseMergePass(), false); 985 } 986 987 void R600PassConfig::addPreEmitPass() { 988 addPass(createAMDGPUCFGStructurizerPass(), false); 989 addPass(createR600ExpandSpecialInstrsPass(), false); 990 addPass(&FinalizeMachineBundlesID, false); 991 addPass(createR600Packetizer(), false); 992 addPass(createR600ControlFlowFinalizer(), false); 993 } 994 995 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 996 return new R600PassConfig(*this, PM); 997 } 998 999 //===----------------------------------------------------------------------===// 1000 // GCN Pass Setup 1001 //===----------------------------------------------------------------------===// 1002 1003 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1004 MachineSchedContext *C) const { 1005 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1006 if (ST.enableSIScheduler()) 1007 return createSIMachineScheduler(C); 1008 return createGCNMaxOccupancyMachineScheduler(C); 1009 } 1010 1011 bool GCNPassConfig::addPreISel() { 1012 AMDGPUPassConfig::addPreISel(); 1013 1014 addPass(createAMDGPULateCodeGenPreparePass()); 1015 if (EnableAtomicOptimizations) { 1016 addPass(createAMDGPUAtomicOptimizerPass()); 1017 } 1018 1019 // FIXME: We need to run a pass to propagate the attributes when calls are 1020 // supported. 1021 1022 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1023 // regions formed by them. 1024 addPass(&AMDGPUUnifyDivergentExitNodesID); 1025 if (!LateCFGStructurize) { 1026 if (EnableStructurizerWorkarounds) { 1027 addPass(createFixIrreduciblePass()); 1028 addPass(createUnifyLoopExitsPass()); 1029 } 1030 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1031 } 1032 addPass(createSinkingPass()); 1033 addPass(createAMDGPUAnnotateUniformValues()); 1034 if (!LateCFGStructurize) { 1035 addPass(createSIAnnotateControlFlowPass()); 1036 } 1037 addPass(createLCSSAPass()); 1038 1039 return false; 1040 } 1041 1042 void GCNPassConfig::addMachineSSAOptimization() { 1043 TargetPassConfig::addMachineSSAOptimization(); 1044 1045 // We want to fold operands after PeepholeOptimizer has run (or as part of 1046 // it), because it will eliminate extra copies making it easier to fold the 1047 // real source operand. We want to eliminate dead instructions after, so that 1048 // we see fewer uses of the copies. We then need to clean up the dead 1049 // instructions leftover after the operands are folded as well. 1050 // 1051 // XXX - Can we get away without running DeadMachineInstructionElim again? 1052 addPass(&SIFoldOperandsID); 1053 if (EnableDPPCombine) 1054 addPass(&GCNDPPCombineID); 1055 addPass(&DeadMachineInstructionElimID); 1056 addPass(&SILoadStoreOptimizerID); 1057 if (EnableSDWAPeephole) { 1058 addPass(&SIPeepholeSDWAID); 1059 addPass(&EarlyMachineLICMID); 1060 addPass(&MachineCSEID); 1061 addPass(&SIFoldOperandsID); 1062 addPass(&DeadMachineInstructionElimID); 1063 } 1064 addPass(createSIShrinkInstructionsPass()); 1065 } 1066 1067 bool GCNPassConfig::addILPOpts() { 1068 if (EnableEarlyIfConversion) 1069 addPass(&EarlyIfConverterID); 1070 1071 TargetPassConfig::addILPOpts(); 1072 return false; 1073 } 1074 1075 bool GCNPassConfig::addInstSelector() { 1076 AMDGPUPassConfig::addInstSelector(); 1077 addPass(&SIFixSGPRCopiesID); 1078 addPass(createSILowerI1CopiesPass()); 1079 addPass(createSIAddIMGInitPass()); 1080 return false; 1081 } 1082 1083 bool GCNPassConfig::addIRTranslator() { 1084 addPass(new IRTranslator(getOptLevel())); 1085 return false; 1086 } 1087 1088 void GCNPassConfig::addPreLegalizeMachineIR() { 1089 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1090 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1091 addPass(new Localizer()); 1092 } 1093 1094 bool GCNPassConfig::addLegalizeMachineIR() { 1095 addPass(new Legalizer()); 1096 return false; 1097 } 1098 1099 void GCNPassConfig::addPreRegBankSelect() { 1100 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1101 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1102 } 1103 1104 bool GCNPassConfig::addRegBankSelect() { 1105 addPass(new RegBankSelect()); 1106 return false; 1107 } 1108 1109 bool GCNPassConfig::addGlobalInstructionSelect() { 1110 addPass(new InstructionSelect()); 1111 // TODO: Fix instruction selection to do the right thing for image 1112 // instructions with tfe or lwe in the first place, instead of running a 1113 // separate pass to fix them up? 1114 addPass(createSIAddIMGInitPass()); 1115 return false; 1116 } 1117 1118 void GCNPassConfig::addPreRegAlloc() { 1119 if (LateCFGStructurize) { 1120 addPass(createAMDGPUMachineCFGStructurizerPass()); 1121 } 1122 } 1123 1124 void GCNPassConfig::addFastRegAlloc() { 1125 // FIXME: We have to disable the verifier here because of PHIElimination + 1126 // TwoAddressInstructions disabling it. 1127 1128 // This must be run immediately after phi elimination and before 1129 // TwoAddressInstructions, otherwise the processing of the tied operand of 1130 // SI_ELSE will introduce a copy of the tied operand source after the else. 1131 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1132 1133 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1134 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1135 1136 TargetPassConfig::addFastRegAlloc(); 1137 } 1138 1139 void GCNPassConfig::addOptimizedRegAlloc() { 1140 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1141 // instructions that cause scheduling barriers. 1142 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1143 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1144 1145 if (OptExecMaskPreRA) 1146 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1147 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1148 1149 // This must be run immediately after phi elimination and before 1150 // TwoAddressInstructions, otherwise the processing of the tied operand of 1151 // SI_ELSE will introduce a copy of the tied operand source after the else. 1152 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1153 1154 if (EnableDCEInRA) 1155 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1156 1157 TargetPassConfig::addOptimizedRegAlloc(); 1158 } 1159 1160 bool GCNPassConfig::addPreRewrite() { 1161 if (EnableRegReassign) { 1162 addPass(&GCNNSAReassignID); 1163 addPass(&GCNRegBankReassignID); 1164 } 1165 return true; 1166 } 1167 1168 void GCNPassConfig::addPostRegAlloc() { 1169 addPass(&SIFixVGPRCopiesID); 1170 if (getOptLevel() > CodeGenOpt::None) 1171 addPass(&SIOptimizeExecMaskingID); 1172 TargetPassConfig::addPostRegAlloc(); 1173 1174 // Equivalent of PEI for SGPRs. 1175 addPass(&SILowerSGPRSpillsID); 1176 } 1177 1178 void GCNPassConfig::addPreSched2() { 1179 addPass(&SIPostRABundlerID); 1180 } 1181 1182 void GCNPassConfig::addPreEmitPass() { 1183 addPass(createSIMemoryLegalizerPass()); 1184 addPass(createSIInsertWaitcntsPass()); 1185 addPass(createSIShrinkInstructionsPass()); 1186 addPass(createSIModeRegisterPass()); 1187 1188 if (getOptLevel() > CodeGenOpt::None) 1189 addPass(&SIInsertHardClausesID); 1190 1191 addPass(&SIRemoveShortExecBranchesID); 1192 addPass(&SIInsertSkipsPassID); 1193 addPass(&SIPreEmitPeepholeID); 1194 // The hazard recognizer that runs as part of the post-ra scheduler does not 1195 // guarantee to be able handle all hazards correctly. This is because if there 1196 // are multiple scheduling regions in a basic block, the regions are scheduled 1197 // bottom up, so when we begin to schedule a region we don't know what 1198 // instructions were emitted directly before it. 1199 // 1200 // Here we add a stand-alone hazard recognizer pass which can handle all 1201 // cases. 1202 addPass(&PostRAHazardRecognizerID); 1203 addPass(&BranchRelaxationPassID); 1204 } 1205 1206 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1207 return new GCNPassConfig(*this, PM); 1208 } 1209 1210 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1211 return new yaml::SIMachineFunctionInfo(); 1212 } 1213 1214 yaml::MachineFunctionInfo * 1215 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1216 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1217 return new yaml::SIMachineFunctionInfo(*MFI, 1218 *MF.getSubtarget().getRegisterInfo()); 1219 } 1220 1221 bool GCNTargetMachine::parseMachineFunctionInfo( 1222 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1223 SMDiagnostic &Error, SMRange &SourceRange) const { 1224 const yaml::SIMachineFunctionInfo &YamlMFI = 1225 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1226 MachineFunction &MF = PFS.MF; 1227 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1228 1229 MFI->initializeBaseYamlFields(YamlMFI); 1230 1231 if (MFI->Occupancy == 0) { 1232 // Fixup the subtarget dependent default value. 1233 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1234 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1235 } 1236 1237 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1238 Register TempReg; 1239 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1240 SourceRange = RegName.SourceRange; 1241 return true; 1242 } 1243 RegVal = TempReg; 1244 1245 return false; 1246 }; 1247 1248 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1249 // Create a diagnostic for a the register string literal. 1250 const MemoryBuffer &Buffer = 1251 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1252 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1253 RegName.Value.size(), SourceMgr::DK_Error, 1254 "incorrect register class for field", RegName.Value, 1255 None, None); 1256 SourceRange = RegName.SourceRange; 1257 return true; 1258 }; 1259 1260 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1261 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1262 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1263 return true; 1264 1265 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1266 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1267 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1268 } 1269 1270 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1271 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1272 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1273 } 1274 1275 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1276 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1277 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1278 } 1279 1280 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1281 const TargetRegisterClass &RC, 1282 ArgDescriptor &Arg, unsigned UserSGPRs, 1283 unsigned SystemSGPRs) { 1284 // Skip parsing if it's not present. 1285 if (!A) 1286 return false; 1287 1288 if (A->IsRegister) { 1289 Register Reg; 1290 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1291 SourceRange = A->RegisterName.SourceRange; 1292 return true; 1293 } 1294 if (!RC.contains(Reg)) 1295 return diagnoseRegisterClass(A->RegisterName); 1296 Arg = ArgDescriptor::createRegister(Reg); 1297 } else 1298 Arg = ArgDescriptor::createStack(A->StackOffset); 1299 // Check and apply the optional mask. 1300 if (A->Mask) 1301 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1302 1303 MFI->NumUserSGPRs += UserSGPRs; 1304 MFI->NumSystemSGPRs += SystemSGPRs; 1305 return false; 1306 }; 1307 1308 if (YamlMFI.ArgInfo && 1309 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1310 AMDGPU::SGPR_128RegClass, 1311 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1312 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1313 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1314 2, 0) || 1315 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1316 MFI->ArgInfo.QueuePtr, 2, 0) || 1317 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1318 AMDGPU::SReg_64RegClass, 1319 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1320 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1321 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1322 2, 0) || 1323 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1324 AMDGPU::SReg_64RegClass, 1325 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1326 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1327 AMDGPU::SGPR_32RegClass, 1328 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1329 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1330 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1331 0, 1) || 1332 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1333 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1334 0, 1) || 1335 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1336 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1337 0, 1) || 1338 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1339 AMDGPU::SGPR_32RegClass, 1340 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1341 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1342 AMDGPU::SGPR_32RegClass, 1343 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1344 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1345 AMDGPU::SReg_64RegClass, 1346 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1347 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1348 AMDGPU::SReg_64RegClass, 1349 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1350 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1351 AMDGPU::VGPR_32RegClass, 1352 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1353 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1354 AMDGPU::VGPR_32RegClass, 1355 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1356 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1357 AMDGPU::VGPR_32RegClass, 1358 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1359 return true; 1360 1361 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1362 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1363 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1364 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1365 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1366 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1367 1368 return false; 1369 } 1370