1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for SI+ GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUMacroFusion.h" 20 #include "AMDGPUTargetObjectFile.h" 21 #include "AMDGPUTargetTransformInfo.h" 22 #include "GCNIterativeScheduler.h" 23 #include "GCNSchedStrategy.h" 24 #include "R600.h" 25 #include "R600TargetMachine.h" 26 #include "SIMachineFunctionInfo.h" 27 #include "SIMachineScheduler.h" 28 #include "TargetInfo/AMDGPUTargetInfo.h" 29 #include "llvm/Analysis/CGSCCPassManager.h" 30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/Localizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MIRParser/MIParser.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/RegAllocRegistry.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/IR/IntrinsicsAMDGPU.h" 40 #include "llvm/IR/LegacyPassManager.h" 41 #include "llvm/IR/PassManager.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/TargetRegistry.h" 45 #include "llvm/Passes/PassBuilder.h" 46 #include "llvm/Transforms/IPO.h" 47 #include "llvm/Transforms/IPO/AlwaysInliner.h" 48 #include "llvm/Transforms/IPO/GlobalDCE.h" 49 #include "llvm/Transforms/IPO/Internalize.h" 50 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 51 #include "llvm/Transforms/Scalar.h" 52 #include "llvm/Transforms/Scalar/GVN.h" 53 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 54 #include "llvm/Transforms/Utils.h" 55 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 56 #include "llvm/Transforms/Vectorize.h" 57 58 using namespace llvm; 59 60 namespace { 61 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> { 62 public: 63 SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 64 : RegisterRegAllocBase(N, D, C) {} 65 }; 66 67 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> { 68 public: 69 VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 70 : RegisterRegAllocBase(N, D, C) {} 71 }; 72 73 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI, 74 const TargetRegisterClass &RC) { 75 return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 76 } 77 78 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI, 79 const TargetRegisterClass &RC) { 80 return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 81 } 82 83 84 /// -{sgpr|vgpr}-regalloc=... command line option. 85 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; } 86 87 /// A dummy default pass factory indicates whether the register allocator is 88 /// overridden on the command line. 89 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag; 90 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag; 91 92 static SGPRRegisterRegAlloc 93 defaultSGPRRegAlloc("default", 94 "pick SGPR register allocator based on -O option", 95 useDefaultRegisterAllocator); 96 97 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false, 98 RegisterPassParser<SGPRRegisterRegAlloc>> 99 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 100 cl::desc("Register allocator to use for SGPRs")); 101 102 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false, 103 RegisterPassParser<VGPRRegisterRegAlloc>> 104 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 105 cl::desc("Register allocator to use for VGPRs")); 106 107 108 static void initializeDefaultSGPRRegisterAllocatorOnce() { 109 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 110 111 if (!Ctor) { 112 Ctor = SGPRRegAlloc; 113 SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc); 114 } 115 } 116 117 static void initializeDefaultVGPRRegisterAllocatorOnce() { 118 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 119 120 if (!Ctor) { 121 Ctor = VGPRRegAlloc; 122 VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc); 123 } 124 } 125 126 static FunctionPass *createBasicSGPRRegisterAllocator() { 127 return createBasicRegisterAllocator(onlyAllocateSGPRs); 128 } 129 130 static FunctionPass *createGreedySGPRRegisterAllocator() { 131 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 132 } 133 134 static FunctionPass *createFastSGPRRegisterAllocator() { 135 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 136 } 137 138 static FunctionPass *createBasicVGPRRegisterAllocator() { 139 return createBasicRegisterAllocator(onlyAllocateVGPRs); 140 } 141 142 static FunctionPass *createGreedyVGPRRegisterAllocator() { 143 return createGreedyRegisterAllocator(onlyAllocateVGPRs); 144 } 145 146 static FunctionPass *createFastVGPRRegisterAllocator() { 147 return createFastRegisterAllocator(onlyAllocateVGPRs, true); 148 } 149 150 static SGPRRegisterRegAlloc basicRegAllocSGPR( 151 "basic", "basic register allocator", createBasicSGPRRegisterAllocator); 152 static SGPRRegisterRegAlloc greedyRegAllocSGPR( 153 "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator); 154 155 static SGPRRegisterRegAlloc fastRegAllocSGPR( 156 "fast", "fast register allocator", createFastSGPRRegisterAllocator); 157 158 159 static VGPRRegisterRegAlloc basicRegAllocVGPR( 160 "basic", "basic register allocator", createBasicVGPRRegisterAllocator); 161 static VGPRRegisterRegAlloc greedyRegAllocVGPR( 162 "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator); 163 164 static VGPRRegisterRegAlloc fastRegAllocVGPR( 165 "fast", "fast register allocator", createFastVGPRRegisterAllocator); 166 } 167 168 static cl::opt<bool> EnableSROA( 169 "amdgpu-sroa", 170 cl::desc("Run SROA after promote alloca pass"), 171 cl::ReallyHidden, 172 cl::init(true)); 173 174 static cl::opt<bool> 175 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 176 cl::desc("Run early if-conversion"), 177 cl::init(false)); 178 179 static cl::opt<bool> 180 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 181 cl::desc("Run pre-RA exec mask optimizations"), 182 cl::init(true)); 183 184 // Option to disable vectorizer for tests. 185 static cl::opt<bool> EnableLoadStoreVectorizer( 186 "amdgpu-load-store-vectorizer", 187 cl::desc("Enable load store vectorizer"), 188 cl::init(true), 189 cl::Hidden); 190 191 // Option to control global loads scalarization 192 static cl::opt<bool> ScalarizeGlobal( 193 "amdgpu-scalarize-global-loads", 194 cl::desc("Enable global load scalarization"), 195 cl::init(true), 196 cl::Hidden); 197 198 // Option to run internalize pass. 199 static cl::opt<bool> InternalizeSymbols( 200 "amdgpu-internalize-symbols", 201 cl::desc("Enable elimination of non-kernel functions and unused globals"), 202 cl::init(false), 203 cl::Hidden); 204 205 // Option to inline all early. 206 static cl::opt<bool> EarlyInlineAll( 207 "amdgpu-early-inline-all", 208 cl::desc("Inline all functions early"), 209 cl::init(false), 210 cl::Hidden); 211 212 static cl::opt<bool> EnableSDWAPeephole( 213 "amdgpu-sdwa-peephole", 214 cl::desc("Enable SDWA peepholer"), 215 cl::init(true)); 216 217 static cl::opt<bool> EnableDPPCombine( 218 "amdgpu-dpp-combine", 219 cl::desc("Enable DPP combiner"), 220 cl::init(true)); 221 222 // Enable address space based alias analysis 223 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 224 cl::desc("Enable AMDGPU Alias Analysis"), 225 cl::init(true)); 226 227 // Option to run late CFG structurizer 228 static cl::opt<bool, true> LateCFGStructurize( 229 "amdgpu-late-structurize", 230 cl::desc("Enable late CFG structurization"), 231 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 232 cl::Hidden); 233 234 // Enable lib calls simplifications 235 static cl::opt<bool> EnableLibCallSimplify( 236 "amdgpu-simplify-libcall", 237 cl::desc("Enable amdgpu library simplifications"), 238 cl::init(true), 239 cl::Hidden); 240 241 static cl::opt<bool> EnableLowerKernelArguments( 242 "amdgpu-ir-lower-kernel-arguments", 243 cl::desc("Lower kernel argument loads in IR pass"), 244 cl::init(true), 245 cl::Hidden); 246 247 static cl::opt<bool> EnableRegReassign( 248 "amdgpu-reassign-regs", 249 cl::desc("Enable register reassign optimizations on gfx10+"), 250 cl::init(true), 251 cl::Hidden); 252 253 static cl::opt<bool> OptVGPRLiveRange( 254 "amdgpu-opt-vgpr-liverange", 255 cl::desc("Enable VGPR liverange optimizations for if-else structure"), 256 cl::init(true), cl::Hidden); 257 258 // Enable atomic optimization 259 static cl::opt<bool> EnableAtomicOptimizations( 260 "amdgpu-atomic-optimizations", 261 cl::desc("Enable atomic optimizations"), 262 cl::init(false), 263 cl::Hidden); 264 265 // Enable Mode register optimization 266 static cl::opt<bool> EnableSIModeRegisterPass( 267 "amdgpu-mode-register", 268 cl::desc("Enable mode register pass"), 269 cl::init(true), 270 cl::Hidden); 271 272 // Option is used in lit tests to prevent deadcoding of patterns inspected. 273 static cl::opt<bool> 274 EnableDCEInRA("amdgpu-dce-in-ra", 275 cl::init(true), cl::Hidden, 276 cl::desc("Enable machine DCE inside regalloc")); 277 278 static cl::opt<bool> EnableScalarIRPasses( 279 "amdgpu-scalar-ir-passes", 280 cl::desc("Enable scalar IR passes"), 281 cl::init(true), 282 cl::Hidden); 283 284 static cl::opt<bool> EnableStructurizerWorkarounds( 285 "amdgpu-enable-structurizer-workarounds", 286 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 287 cl::Hidden); 288 289 static cl::opt<bool> EnableLDSReplaceWithPointer( 290 "amdgpu-enable-lds-replace-with-pointer", 291 cl::desc("Enable LDS replace with pointer pass"), cl::init(false), 292 cl::Hidden); 293 294 static cl::opt<bool, true> EnableLowerModuleLDS( 295 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), 296 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), 297 cl::Hidden); 298 299 static cl::opt<bool> EnablePreRAOptimizations( 300 "amdgpu-enable-pre-ra-optimizations", 301 cl::desc("Enable Pre-RA optimizations pass"), cl::init(true), 302 cl::Hidden); 303 304 static cl::opt<bool> EnablePromoteKernelArguments( 305 "amdgpu-enable-promote-kernel-arguments", 306 cl::desc("Enable promotion of flat kernel pointer arguments to global"), 307 cl::Hidden, cl::init(true)); 308 309 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 310 // Register the target 311 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 312 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 313 314 PassRegistry *PR = PassRegistry::getPassRegistry(); 315 initializeR600ClauseMergePassPass(*PR); 316 initializeR600ControlFlowFinalizerPass(*PR); 317 initializeR600PacketizerPass(*PR); 318 initializeR600ExpandSpecialInstrsPassPass(*PR); 319 initializeR600VectorRegMergerPass(*PR); 320 initializeGlobalISel(*PR); 321 initializeAMDGPUDAGToDAGISelPass(*PR); 322 initializeGCNDPPCombinePass(*PR); 323 initializeSILowerI1CopiesPass(*PR); 324 initializeSILowerSGPRSpillsPass(*PR); 325 initializeSIFixSGPRCopiesPass(*PR); 326 initializeSIFixVGPRCopiesPass(*PR); 327 initializeSIFoldOperandsPass(*PR); 328 initializeSIPeepholeSDWAPass(*PR); 329 initializeSIShrinkInstructionsPass(*PR); 330 initializeSIOptimizeExecMaskingPreRAPass(*PR); 331 initializeSIOptimizeVGPRLiveRangePass(*PR); 332 initializeSILoadStoreOptimizerPass(*PR); 333 initializeAMDGPUCtorDtorLoweringPass(*PR); 334 initializeAMDGPUAlwaysInlinePass(*PR); 335 initializeAMDGPUAttributorPass(*PR); 336 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 337 initializeAMDGPUAnnotateUniformValuesPass(*PR); 338 initializeAMDGPUArgumentUsageInfoPass(*PR); 339 initializeAMDGPUAtomicOptimizerPass(*PR); 340 initializeAMDGPULowerKernelArgumentsPass(*PR); 341 initializeAMDGPUPromoteKernelArgumentsPass(*PR); 342 initializeAMDGPULowerKernelAttributesPass(*PR); 343 initializeAMDGPULowerIntrinsicsPass(*PR); 344 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 345 initializeAMDGPUPostLegalizerCombinerPass(*PR); 346 initializeAMDGPUPreLegalizerCombinerPass(*PR); 347 initializeAMDGPURegBankCombinerPass(*PR); 348 initializeAMDGPUPromoteAllocaPass(*PR); 349 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 350 initializeAMDGPUCodeGenPreparePass(*PR); 351 initializeAMDGPULateCodeGenPreparePass(*PR); 352 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 353 initializeAMDGPUPropagateAttributesLatePass(*PR); 354 initializeAMDGPUReplaceLDSUseWithPointerPass(*PR); 355 initializeAMDGPULowerModuleLDSPass(*PR); 356 initializeAMDGPURewriteOutArgumentsPass(*PR); 357 initializeAMDGPUUnifyMetadataPass(*PR); 358 initializeSIAnnotateControlFlowPass(*PR); 359 initializeSIInsertHardClausesPass(*PR); 360 initializeSIInsertWaitcntsPass(*PR); 361 initializeSIModeRegisterPass(*PR); 362 initializeSIWholeQuadModePass(*PR); 363 initializeSILowerControlFlowPass(*PR); 364 initializeSIPreEmitPeepholePass(*PR); 365 initializeSILateBranchLoweringPass(*PR); 366 initializeSIMemoryLegalizerPass(*PR); 367 initializeSIOptimizeExecMaskingPass(*PR); 368 initializeSIPreAllocateWWMRegsPass(*PR); 369 initializeSIFormMemoryClausesPass(*PR); 370 initializeSIPostRABundlerPass(*PR); 371 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 372 initializeAMDGPUAAWrapperPassPass(*PR); 373 initializeAMDGPUExternalAAWrapperPass(*PR); 374 initializeAMDGPUUseNativeCallsPass(*PR); 375 initializeAMDGPUSimplifyLibCallsPass(*PR); 376 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 377 initializeAMDGPUResourceUsageAnalysisPass(*PR); 378 initializeGCNNSAReassignPass(*PR); 379 initializeGCNPreRAOptimizationsPass(*PR); 380 } 381 382 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 383 return std::make_unique<AMDGPUTargetObjectFile>(); 384 } 385 386 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 387 return new SIScheduleDAGMI(C); 388 } 389 390 static ScheduleDAGInstrs * 391 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 392 ScheduleDAGMILive *DAG = 393 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 394 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 395 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 396 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 397 return DAG; 398 } 399 400 static ScheduleDAGInstrs * 401 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 402 auto DAG = new GCNIterativeScheduler(C, 403 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 404 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 405 return DAG; 406 } 407 408 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 409 return new GCNIterativeScheduler(C, 410 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 411 } 412 413 static ScheduleDAGInstrs * 414 createIterativeILPMachineScheduler(MachineSchedContext *C) { 415 auto DAG = new GCNIterativeScheduler(C, 416 GCNIterativeScheduler::SCHEDULE_ILP); 417 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 418 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 419 return DAG; 420 } 421 422 static MachineSchedRegistry 423 SISchedRegistry("si", "Run SI's custom scheduler", 424 createSIMachineScheduler); 425 426 static MachineSchedRegistry 427 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 428 "Run GCN scheduler to maximize occupancy", 429 createGCNMaxOccupancyMachineScheduler); 430 431 static MachineSchedRegistry 432 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 433 "Run GCN scheduler to maximize occupancy (experimental)", 434 createIterativeGCNMaxOccupancyMachineScheduler); 435 436 static MachineSchedRegistry 437 GCNMinRegSchedRegistry("gcn-minreg", 438 "Run GCN iterative scheduler for minimal register usage (experimental)", 439 createMinRegScheduler); 440 441 static MachineSchedRegistry 442 GCNILPSchedRegistry("gcn-ilp", 443 "Run GCN iterative scheduler for ILP scheduling (experimental)", 444 createIterativeILPMachineScheduler); 445 446 static StringRef computeDataLayout(const Triple &TT) { 447 if (TT.getArch() == Triple::r600) { 448 // 32-bit pointers. 449 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 450 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 451 } 452 453 // 32-bit private, local, and region pointers. 64-bit global, constant and 454 // flat, non-integral buffer fat pointers. 455 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 456 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 457 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 458 "-ni:7"; 459 } 460 461 LLVM_READNONE 462 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 463 if (!GPU.empty()) 464 return GPU; 465 466 // Need to default to a target with flat support for HSA. 467 if (TT.getArch() == Triple::amdgcn) 468 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 469 470 return "r600"; 471 } 472 473 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 474 // The AMDGPU toolchain only supports generating shared objects, so we 475 // must always use PIC. 476 return Reloc::PIC_; 477 } 478 479 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 480 StringRef CPU, StringRef FS, 481 TargetOptions Options, 482 Optional<Reloc::Model> RM, 483 Optional<CodeModel::Model> CM, 484 CodeGenOpt::Level OptLevel) 485 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 486 FS, Options, getEffectiveRelocModel(RM), 487 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 488 TLOF(createTLOF(getTargetTriple())) { 489 initAsmInfo(); 490 if (TT.getArch() == Triple::amdgcn) { 491 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 492 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 493 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 494 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 495 } 496 } 497 498 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 499 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 500 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; 501 502 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 503 504 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 505 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 506 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 507 } 508 509 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 510 Attribute FSAttr = F.getFnAttribute("target-features"); 511 512 return FSAttr.isValid() ? FSAttr.getValueAsString() 513 : getTargetFeatureString(); 514 } 515 516 /// Predicate for Internalize pass. 517 static bool mustPreserveGV(const GlobalValue &GV) { 518 if (const Function *F = dyn_cast<Function>(&GV)) 519 return F->isDeclaration() || F->getName().startswith("__asan_") || 520 F->getName().startswith("__sanitizer_") || 521 AMDGPU::isEntryFunctionCC(F->getCallingConv()); 522 523 GV.removeDeadConstantUsers(); 524 return !GV.use_empty(); 525 } 526 527 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 528 Builder.DivergentTarget = true; 529 530 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 531 bool Internalize = InternalizeSymbols; 532 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 533 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 534 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 535 bool PromoteKernelArguments = 536 EnablePromoteKernelArguments && getOptLevel() > CodeGenOpt::Less; 537 538 if (EnableFunctionCalls) { 539 delete Builder.Inliner; 540 Builder.Inliner = createFunctionInliningPass(); 541 } 542 543 Builder.addExtension( 544 PassManagerBuilder::EP_ModuleOptimizerEarly, 545 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 546 legacy::PassManagerBase &PM) { 547 if (AMDGPUAA) { 548 PM.add(createAMDGPUAAWrapperPass()); 549 PM.add(createAMDGPUExternalAAWrapperPass()); 550 } 551 PM.add(createAMDGPUUnifyMetadataPass()); 552 PM.add(createAMDGPUPrintfRuntimeBinding()); 553 if (Internalize) 554 PM.add(createInternalizePass(mustPreserveGV)); 555 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 556 if (Internalize) 557 PM.add(createGlobalDCEPass()); 558 if (EarlyInline) 559 PM.add(createAMDGPUAlwaysInlinePass(false)); 560 }); 561 562 Builder.addExtension( 563 PassManagerBuilder::EP_EarlyAsPossible, 564 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 565 legacy::PassManagerBase &PM) { 566 if (AMDGPUAA) { 567 PM.add(createAMDGPUAAWrapperPass()); 568 PM.add(createAMDGPUExternalAAWrapperPass()); 569 } 570 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 571 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 572 if (LibCallSimplify) 573 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 574 }); 575 576 Builder.addExtension( 577 PassManagerBuilder::EP_CGSCCOptimizerLate, 578 [EnableOpt, PromoteKernelArguments](const PassManagerBuilder &, 579 legacy::PassManagerBase &PM) { 580 // Add promote kernel arguments pass to the opt pipeline right before 581 // infer address spaces which is needed to do actual address space 582 // rewriting. 583 if (PromoteKernelArguments) 584 PM.add(createAMDGPUPromoteKernelArgumentsPass()); 585 586 // Add infer address spaces pass to the opt pipeline after inlining 587 // but before SROA to increase SROA opportunities. 588 PM.add(createInferAddressSpacesPass()); 589 590 // This should run after inlining to have any chance of doing anything, 591 // and before other cleanup optimizations. 592 PM.add(createAMDGPULowerKernelAttributesPass()); 593 594 // Promote alloca to vector before SROA and loop unroll. If we manage 595 // to eliminate allocas before unroll we may choose to unroll less. 596 if (EnableOpt) 597 PM.add(createAMDGPUPromoteAllocaToVector()); 598 }); 599 } 600 601 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 602 AAM.registerFunctionAnalysis<AMDGPUAA>(); 603 } 604 605 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) { 606 PB.registerPipelineParsingCallback( 607 [this](StringRef PassName, ModulePassManager &PM, 608 ArrayRef<PassBuilder::PipelineElement>) { 609 if (PassName == "amdgpu-propagate-attributes-late") { 610 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 611 return true; 612 } 613 if (PassName == "amdgpu-unify-metadata") { 614 PM.addPass(AMDGPUUnifyMetadataPass()); 615 return true; 616 } 617 if (PassName == "amdgpu-printf-runtime-binding") { 618 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 619 return true; 620 } 621 if (PassName == "amdgpu-always-inline") { 622 PM.addPass(AMDGPUAlwaysInlinePass()); 623 return true; 624 } 625 if (PassName == "amdgpu-replace-lds-use-with-pointer") { 626 PM.addPass(AMDGPUReplaceLDSUseWithPointerPass()); 627 return true; 628 } 629 if (PassName == "amdgpu-lower-module-lds") { 630 PM.addPass(AMDGPULowerModuleLDSPass()); 631 return true; 632 } 633 return false; 634 }); 635 PB.registerPipelineParsingCallback( 636 [this](StringRef PassName, FunctionPassManager &PM, 637 ArrayRef<PassBuilder::PipelineElement>) { 638 if (PassName == "amdgpu-simplifylib") { 639 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 640 return true; 641 } 642 if (PassName == "amdgpu-usenative") { 643 PM.addPass(AMDGPUUseNativeCallsPass()); 644 return true; 645 } 646 if (PassName == "amdgpu-promote-alloca") { 647 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 648 return true; 649 } 650 if (PassName == "amdgpu-promote-alloca-to-vector") { 651 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 652 return true; 653 } 654 if (PassName == "amdgpu-lower-kernel-attributes") { 655 PM.addPass(AMDGPULowerKernelAttributesPass()); 656 return true; 657 } 658 if (PassName == "amdgpu-propagate-attributes-early") { 659 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 660 return true; 661 } 662 if (PassName == "amdgpu-promote-kernel-arguments") { 663 PM.addPass(AMDGPUPromoteKernelArgumentsPass()); 664 return true; 665 } 666 return false; 667 }); 668 669 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 670 FAM.registerPass([&] { return AMDGPUAA(); }); 671 }); 672 673 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 674 if (AAName == "amdgpu-aa") { 675 AAM.registerFunctionAnalysis<AMDGPUAA>(); 676 return true; 677 } 678 return false; 679 }); 680 681 PB.registerPipelineStartEPCallback( 682 [this](ModulePassManager &PM, OptimizationLevel Level) { 683 FunctionPassManager FPM; 684 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 685 FPM.addPass(AMDGPUUseNativeCallsPass()); 686 if (EnableLibCallSimplify && Level != OptimizationLevel::O0) 687 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 688 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 689 }); 690 691 PB.registerPipelineEarlySimplificationEPCallback( 692 [this](ModulePassManager &PM, OptimizationLevel Level) { 693 if (Level == OptimizationLevel::O0) 694 return; 695 696 PM.addPass(AMDGPUUnifyMetadataPass()); 697 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 698 699 if (InternalizeSymbols) { 700 PM.addPass(InternalizePass(mustPreserveGV)); 701 } 702 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 703 if (InternalizeSymbols) { 704 PM.addPass(GlobalDCEPass()); 705 } 706 if (EarlyInlineAll && !EnableFunctionCalls) 707 PM.addPass(AMDGPUAlwaysInlinePass()); 708 }); 709 710 PB.registerCGSCCOptimizerLateEPCallback( 711 [this](CGSCCPassManager &PM, OptimizationLevel Level) { 712 if (Level == OptimizationLevel::O0) 713 return; 714 715 FunctionPassManager FPM; 716 717 // Add promote kernel arguments pass to the opt pipeline right before 718 // infer address spaces which is needed to do actual address space 719 // rewriting. 720 if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() && 721 EnablePromoteKernelArguments) 722 FPM.addPass(AMDGPUPromoteKernelArgumentsPass()); 723 724 // Add infer address spaces pass to the opt pipeline after inlining 725 // but before SROA to increase SROA opportunities. 726 FPM.addPass(InferAddressSpacesPass()); 727 728 // This should run after inlining to have any chance of doing 729 // anything, and before other cleanup optimizations. 730 FPM.addPass(AMDGPULowerKernelAttributesPass()); 731 732 if (Level != OptimizationLevel::O0) { 733 // Promote alloca to vector before SROA and loop unroll. If we 734 // manage to eliminate allocas before unroll we may choose to unroll 735 // less. 736 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 737 } 738 739 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 740 }); 741 } 742 743 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 744 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 745 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 746 AddrSpace == AMDGPUAS::REGION_ADDRESS) 747 ? -1 748 : 0; 749 } 750 751 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 752 unsigned DestAS) const { 753 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 754 AMDGPU::isFlatGlobalAddrSpace(DestAS); 755 } 756 757 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 758 const auto *LD = dyn_cast<LoadInst>(V); 759 if (!LD) 760 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 761 762 // It must be a generic pointer loaded. 763 assert(V->getType()->isPointerTy() && 764 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 765 766 const auto *Ptr = LD->getPointerOperand(); 767 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 768 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 769 // For a generic pointer loaded from the constant memory, it could be assumed 770 // as a global pointer since the constant memory is only populated on the 771 // host side. As implied by the offload programming model, only global 772 // pointers could be referenced on the host side. 773 return AMDGPUAS::GLOBAL_ADDRESS; 774 } 775 776 std::pair<const Value *, unsigned> 777 AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const { 778 if (auto *II = dyn_cast<IntrinsicInst>(V)) { 779 switch (II->getIntrinsicID()) { 780 case Intrinsic::amdgcn_is_shared: 781 return std::make_pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS); 782 case Intrinsic::amdgcn_is_private: 783 return std::make_pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS); 784 default: 785 break; 786 } 787 return std::make_pair(nullptr, -1); 788 } 789 // Check the global pointer predication based on 790 // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and 791 // the order of 'is_shared' and 'is_private' is not significant. 792 Value *Ptr; 793 if (match( 794 const_cast<Value *>(V), 795 m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))), 796 m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>( 797 m_Deferred(Ptr)))))) 798 return std::make_pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS); 799 800 return std::make_pair(nullptr, -1); 801 } 802 803 //===----------------------------------------------------------------------===// 804 // GCN Target Machine (SI+) 805 //===----------------------------------------------------------------------===// 806 807 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 808 StringRef CPU, StringRef FS, 809 TargetOptions Options, 810 Optional<Reloc::Model> RM, 811 Optional<CodeModel::Model> CM, 812 CodeGenOpt::Level OL, bool JIT) 813 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 814 815 const TargetSubtargetInfo * 816 GCNTargetMachine::getSubtargetImpl(const Function &F) const { 817 StringRef GPU = getGPUName(F); 818 StringRef FS = getFeatureString(F); 819 820 SmallString<128> SubtargetKey(GPU); 821 SubtargetKey.append(FS); 822 823 auto &I = SubtargetMap[SubtargetKey]; 824 if (!I) { 825 // This needs to be done before we create a new subtarget since any 826 // creation will depend on the TM and the code generation flags on the 827 // function that reside in TargetOptions. 828 resetTargetOptions(F); 829 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 830 } 831 832 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 833 834 return I.get(); 835 } 836 837 TargetTransformInfo 838 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 839 return TargetTransformInfo(GCNTTIImpl(this, F)); 840 } 841 842 //===----------------------------------------------------------------------===// 843 // AMDGPU Pass Setup 844 //===----------------------------------------------------------------------===// 845 846 std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const { 847 return getStandardCSEConfigForOpt(TM->getOptLevel()); 848 } 849 850 namespace { 851 852 class GCNPassConfig final : public AMDGPUPassConfig { 853 public: 854 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 855 : AMDGPUPassConfig(TM, PM) { 856 // It is necessary to know the register usage of the entire call graph. We 857 // allow calls without EnableAMDGPUFunctionCalls if they are marked 858 // noinline, so this is always required. 859 setRequiresCodeGenSCCOrder(true); 860 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 861 } 862 863 GCNTargetMachine &getGCNTargetMachine() const { 864 return getTM<GCNTargetMachine>(); 865 } 866 867 ScheduleDAGInstrs * 868 createMachineScheduler(MachineSchedContext *C) const override; 869 870 ScheduleDAGInstrs * 871 createPostMachineScheduler(MachineSchedContext *C) const override { 872 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 873 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 874 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 875 DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII)); 876 return DAG; 877 } 878 879 bool addPreISel() override; 880 void addMachineSSAOptimization() override; 881 bool addILPOpts() override; 882 bool addInstSelector() override; 883 bool addIRTranslator() override; 884 void addPreLegalizeMachineIR() override; 885 bool addLegalizeMachineIR() override; 886 void addPreRegBankSelect() override; 887 bool addRegBankSelect() override; 888 void addPreGlobalInstructionSelect() override; 889 bool addGlobalInstructionSelect() override; 890 void addFastRegAlloc() override; 891 void addOptimizedRegAlloc() override; 892 893 FunctionPass *createSGPRAllocPass(bool Optimized); 894 FunctionPass *createVGPRAllocPass(bool Optimized); 895 FunctionPass *createRegAllocPass(bool Optimized) override; 896 897 bool addRegAssignAndRewriteFast() override; 898 bool addRegAssignAndRewriteOptimized() override; 899 900 void addPreRegAlloc() override; 901 bool addPreRewrite() override; 902 void addPostRegAlloc() override; 903 void addPreSched2() override; 904 void addPreEmitPass() override; 905 }; 906 907 } // end anonymous namespace 908 909 AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 910 : TargetPassConfig(TM, PM) { 911 // Exceptions and StackMaps are not supported, so these passes will never do 912 // anything. 913 disablePass(&StackMapLivenessID); 914 disablePass(&FuncletLayoutID); 915 // Garbage collection is not supported. 916 disablePass(&GCLoweringID); 917 disablePass(&ShadowStackGCLoweringID); 918 } 919 920 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 921 if (getOptLevel() == CodeGenOpt::Aggressive) 922 addPass(createGVNPass()); 923 else 924 addPass(createEarlyCSEPass()); 925 } 926 927 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 928 addPass(createLICMPass()); 929 addPass(createSeparateConstOffsetFromGEPPass()); 930 addPass(createSpeculativeExecutionPass()); 931 // ReassociateGEPs exposes more opportunities for SLSR. See 932 // the example in reassociate-geps-and-slsr.ll. 933 addPass(createStraightLineStrengthReducePass()); 934 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 935 // EarlyCSE can reuse. 936 addEarlyCSEOrGVNPass(); 937 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 938 addPass(createNaryReassociatePass()); 939 // NaryReassociate on GEPs creates redundant common expressions, so run 940 // EarlyCSE after it. 941 addPass(createEarlyCSEPass()); 942 } 943 944 void AMDGPUPassConfig::addIRPasses() { 945 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 946 947 // There is no reason to run these. 948 disablePass(&StackMapLivenessID); 949 disablePass(&FuncletLayoutID); 950 disablePass(&PatchableFunctionID); 951 952 addPass(createAMDGPUPrintfRuntimeBinding()); 953 addPass(createAMDGPUCtorDtorLoweringPass()); 954 955 // A call to propagate attributes pass in the backend in case opt was not run. 956 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 957 958 addPass(createAMDGPULowerIntrinsicsPass()); 959 960 // Function calls are not supported, so make sure we inline everything. 961 addPass(createAMDGPUAlwaysInlinePass()); 962 addPass(createAlwaysInlinerLegacyPass()); 963 // We need to add the barrier noop pass, otherwise adding the function 964 // inlining pass will cause all of the PassConfigs passes to be run 965 // one function at a time, which means if we have a nodule with two 966 // functions, then we will generate code for the first function 967 // without ever running any passes on the second. 968 addPass(createBarrierNoopPass()); 969 970 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 971 if (TM.getTargetTriple().getArch() == Triple::r600) 972 addPass(createR600OpenCLImageTypeLoweringPass()); 973 974 // Replace OpenCL enqueued block function pointers with global variables. 975 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 976 977 // Can increase LDS used by kernel so runs before PromoteAlloca 978 if (EnableLowerModuleLDS) { 979 // The pass "amdgpu-replace-lds-use-with-pointer" need to be run before the 980 // pass "amdgpu-lower-module-lds", and also it required to be run only if 981 // "amdgpu-lower-module-lds" pass is enabled. 982 if (EnableLDSReplaceWithPointer) 983 addPass(createAMDGPUReplaceLDSUseWithPointerPass()); 984 985 addPass(createAMDGPULowerModuleLDSPass()); 986 } 987 988 if (TM.getOptLevel() > CodeGenOpt::None) 989 addPass(createInferAddressSpacesPass()); 990 991 addPass(createAtomicExpandPass()); 992 993 if (TM.getOptLevel() > CodeGenOpt::None) { 994 addPass(createAMDGPUPromoteAlloca()); 995 996 if (EnableSROA) 997 addPass(createSROAPass()); 998 if (isPassEnabled(EnableScalarIRPasses)) 999 addStraightLineScalarOptimizationPasses(); 1000 1001 if (EnableAMDGPUAliasAnalysis) { 1002 addPass(createAMDGPUAAWrapperPass()); 1003 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 1004 AAResults &AAR) { 1005 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 1006 AAR.addAAResult(WrapperPass->getResult()); 1007 })); 1008 } 1009 1010 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1011 // TODO: May want to move later or split into an early and late one. 1012 addPass(createAMDGPUCodeGenPreparePass()); 1013 } 1014 } 1015 1016 TargetPassConfig::addIRPasses(); 1017 1018 // EarlyCSE is not always strong enough to clean up what LSR produces. For 1019 // example, GVN can combine 1020 // 1021 // %0 = add %a, %b 1022 // %1 = add %b, %a 1023 // 1024 // and 1025 // 1026 // %0 = shl nsw %a, 2 1027 // %1 = shl %a, 2 1028 // 1029 // but EarlyCSE can do neither of them. 1030 if (isPassEnabled(EnableScalarIRPasses)) 1031 addEarlyCSEOrGVNPass(); 1032 } 1033 1034 void AMDGPUPassConfig::addCodeGenPrepare() { 1035 if (TM->getTargetTriple().getArch() == Triple::amdgcn) { 1036 addPass(createAMDGPUAttributorPass()); 1037 1038 // FIXME: This pass adds 2 hacky attributes that can be replaced with an 1039 // analysis, and should be removed. 1040 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 1041 } 1042 1043 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 1044 EnableLowerKernelArguments) 1045 addPass(createAMDGPULowerKernelArgumentsPass()); 1046 1047 TargetPassConfig::addCodeGenPrepare(); 1048 1049 if (isPassEnabled(EnableLoadStoreVectorizer)) 1050 addPass(createLoadStoreVectorizerPass()); 1051 1052 // LowerSwitch pass may introduce unreachable blocks that can 1053 // cause unexpected behavior for subsequent passes. Placing it 1054 // here seems better that these blocks would get cleaned up by 1055 // UnreachableBlockElim inserted next in the pass flow. 1056 addPass(createLowerSwitchPass()); 1057 } 1058 1059 bool AMDGPUPassConfig::addPreISel() { 1060 if (TM->getOptLevel() > CodeGenOpt::None) 1061 addPass(createFlattenCFGPass()); 1062 return false; 1063 } 1064 1065 bool AMDGPUPassConfig::addInstSelector() { 1066 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 1067 return false; 1068 } 1069 1070 bool AMDGPUPassConfig::addGCPasses() { 1071 // Do nothing. GC is not supported. 1072 return false; 1073 } 1074 1075 llvm::ScheduleDAGInstrs * 1076 AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const { 1077 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 1078 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 1079 return DAG; 1080 } 1081 1082 //===----------------------------------------------------------------------===// 1083 // GCN Pass Setup 1084 //===----------------------------------------------------------------------===// 1085 1086 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1087 MachineSchedContext *C) const { 1088 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1089 if (ST.enableSIScheduler()) 1090 return createSIMachineScheduler(C); 1091 return createGCNMaxOccupancyMachineScheduler(C); 1092 } 1093 1094 bool GCNPassConfig::addPreISel() { 1095 AMDGPUPassConfig::addPreISel(); 1096 1097 if (TM->getOptLevel() > CodeGenOpt::None) 1098 addPass(createAMDGPULateCodeGenPreparePass()); 1099 1100 if (isPassEnabled(EnableAtomicOptimizations, CodeGenOpt::Less)) { 1101 addPass(createAMDGPUAtomicOptimizerPass()); 1102 } 1103 1104 if (TM->getOptLevel() > CodeGenOpt::None) 1105 addPass(createSinkingPass()); 1106 1107 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1108 // regions formed by them. 1109 addPass(&AMDGPUUnifyDivergentExitNodesID); 1110 if (!LateCFGStructurize) { 1111 if (EnableStructurizerWorkarounds) { 1112 addPass(createFixIrreduciblePass()); 1113 addPass(createUnifyLoopExitsPass()); 1114 } 1115 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1116 } 1117 addPass(createAMDGPUAnnotateUniformValues()); 1118 if (!LateCFGStructurize) { 1119 addPass(createSIAnnotateControlFlowPass()); 1120 } 1121 addPass(createLCSSAPass()); 1122 1123 if (TM->getOptLevel() > CodeGenOpt::Less) 1124 addPass(&AMDGPUPerfHintAnalysisID); 1125 1126 return false; 1127 } 1128 1129 void GCNPassConfig::addMachineSSAOptimization() { 1130 TargetPassConfig::addMachineSSAOptimization(); 1131 1132 // We want to fold operands after PeepholeOptimizer has run (or as part of 1133 // it), because it will eliminate extra copies making it easier to fold the 1134 // real source operand. We want to eliminate dead instructions after, so that 1135 // we see fewer uses of the copies. We then need to clean up the dead 1136 // instructions leftover after the operands are folded as well. 1137 // 1138 // XXX - Can we get away without running DeadMachineInstructionElim again? 1139 addPass(&SIFoldOperandsID); 1140 if (EnableDPPCombine) 1141 addPass(&GCNDPPCombineID); 1142 addPass(&SILoadStoreOptimizerID); 1143 if (isPassEnabled(EnableSDWAPeephole)) { 1144 addPass(&SIPeepholeSDWAID); 1145 addPass(&EarlyMachineLICMID); 1146 addPass(&MachineCSEID); 1147 addPass(&SIFoldOperandsID); 1148 } 1149 addPass(&DeadMachineInstructionElimID); 1150 addPass(createSIShrinkInstructionsPass()); 1151 } 1152 1153 bool GCNPassConfig::addILPOpts() { 1154 if (EnableEarlyIfConversion) 1155 addPass(&EarlyIfConverterID); 1156 1157 TargetPassConfig::addILPOpts(); 1158 return false; 1159 } 1160 1161 bool GCNPassConfig::addInstSelector() { 1162 AMDGPUPassConfig::addInstSelector(); 1163 addPass(&SIFixSGPRCopiesID); 1164 addPass(createSILowerI1CopiesPass()); 1165 return false; 1166 } 1167 1168 bool GCNPassConfig::addIRTranslator() { 1169 addPass(new IRTranslator(getOptLevel())); 1170 return false; 1171 } 1172 1173 void GCNPassConfig::addPreLegalizeMachineIR() { 1174 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1175 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1176 addPass(new Localizer()); 1177 } 1178 1179 bool GCNPassConfig::addLegalizeMachineIR() { 1180 addPass(new Legalizer()); 1181 return false; 1182 } 1183 1184 void GCNPassConfig::addPreRegBankSelect() { 1185 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1186 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1187 } 1188 1189 bool GCNPassConfig::addRegBankSelect() { 1190 addPass(new RegBankSelect()); 1191 return false; 1192 } 1193 1194 void GCNPassConfig::addPreGlobalInstructionSelect() { 1195 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1196 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1197 } 1198 1199 bool GCNPassConfig::addGlobalInstructionSelect() { 1200 addPass(new InstructionSelect(getOptLevel())); 1201 return false; 1202 } 1203 1204 void GCNPassConfig::addPreRegAlloc() { 1205 if (LateCFGStructurize) { 1206 addPass(createAMDGPUMachineCFGStructurizerPass()); 1207 } 1208 } 1209 1210 void GCNPassConfig::addFastRegAlloc() { 1211 // FIXME: We have to disable the verifier here because of PHIElimination + 1212 // TwoAddressInstructions disabling it. 1213 1214 // This must be run immediately after phi elimination and before 1215 // TwoAddressInstructions, otherwise the processing of the tied operand of 1216 // SI_ELSE will introduce a copy of the tied operand source after the else. 1217 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1218 1219 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1220 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1221 1222 TargetPassConfig::addFastRegAlloc(); 1223 } 1224 1225 void GCNPassConfig::addOptimizedRegAlloc() { 1226 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1227 // instructions that cause scheduling barriers. 1228 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1229 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1230 1231 if (OptExecMaskPreRA) 1232 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1233 1234 if (isPassEnabled(EnablePreRAOptimizations)) 1235 insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID); 1236 1237 // This is not an essential optimization and it has a noticeable impact on 1238 // compilation time, so we only enable it from O2. 1239 if (TM->getOptLevel() > CodeGenOpt::Less) 1240 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1241 1242 // FIXME: when an instruction has a Killed operand, and the instruction is 1243 // inside a bundle, seems only the BUNDLE instruction appears as the Kills of 1244 // the register in LiveVariables, this would trigger a failure in verifier, 1245 // we should fix it and enable the verifier. 1246 if (OptVGPRLiveRange) 1247 insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID); 1248 // This must be run immediately after phi elimination and before 1249 // TwoAddressInstructions, otherwise the processing of the tied operand of 1250 // SI_ELSE will introduce a copy of the tied operand source after the else. 1251 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1252 1253 if (EnableDCEInRA) 1254 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1255 1256 TargetPassConfig::addOptimizedRegAlloc(); 1257 } 1258 1259 bool GCNPassConfig::addPreRewrite() { 1260 if (EnableRegReassign) 1261 addPass(&GCNNSAReassignID); 1262 return true; 1263 } 1264 1265 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) { 1266 // Initialize the global default. 1267 llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag, 1268 initializeDefaultSGPRRegisterAllocatorOnce); 1269 1270 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 1271 if (Ctor != useDefaultRegisterAllocator) 1272 return Ctor(); 1273 1274 if (Optimized) 1275 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 1276 1277 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 1278 } 1279 1280 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) { 1281 // Initialize the global default. 1282 llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag, 1283 initializeDefaultVGPRRegisterAllocatorOnce); 1284 1285 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 1286 if (Ctor != useDefaultRegisterAllocator) 1287 return Ctor(); 1288 1289 if (Optimized) 1290 return createGreedyVGPRRegisterAllocator(); 1291 1292 return createFastVGPRRegisterAllocator(); 1293 } 1294 1295 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) { 1296 llvm_unreachable("should not be used"); 1297 } 1298 1299 static const char RegAllocOptNotSupportedMessage[] = 1300 "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc"; 1301 1302 bool GCNPassConfig::addRegAssignAndRewriteFast() { 1303 if (!usingDefaultRegAlloc()) 1304 report_fatal_error(RegAllocOptNotSupportedMessage); 1305 1306 addPass(createSGPRAllocPass(false)); 1307 1308 // Equivalent of PEI for SGPRs. 1309 addPass(&SILowerSGPRSpillsID); 1310 1311 addPass(createVGPRAllocPass(false)); 1312 return true; 1313 } 1314 1315 bool GCNPassConfig::addRegAssignAndRewriteOptimized() { 1316 if (!usingDefaultRegAlloc()) 1317 report_fatal_error(RegAllocOptNotSupportedMessage); 1318 1319 addPass(createSGPRAllocPass(true)); 1320 1321 // Commit allocated register changes. This is mostly necessary because too 1322 // many things rely on the use lists of the physical registers, such as the 1323 // verifier. This is only necessary with allocators which use LiveIntervals, 1324 // since FastRegAlloc does the replacements itself. 1325 addPass(createVirtRegRewriter(false)); 1326 1327 // Equivalent of PEI for SGPRs. 1328 addPass(&SILowerSGPRSpillsID); 1329 1330 addPass(createVGPRAllocPass(true)); 1331 1332 addPreRewrite(); 1333 addPass(&VirtRegRewriterID); 1334 1335 return true; 1336 } 1337 1338 void GCNPassConfig::addPostRegAlloc() { 1339 addPass(&SIFixVGPRCopiesID); 1340 if (getOptLevel() > CodeGenOpt::None) 1341 addPass(&SIOptimizeExecMaskingID); 1342 TargetPassConfig::addPostRegAlloc(); 1343 } 1344 1345 void GCNPassConfig::addPreSched2() { 1346 if (TM->getOptLevel() > CodeGenOpt::None) 1347 addPass(createSIShrinkInstructionsPass()); 1348 addPass(&SIPostRABundlerID); 1349 } 1350 1351 void GCNPassConfig::addPreEmitPass() { 1352 addPass(createSIMemoryLegalizerPass()); 1353 addPass(createSIInsertWaitcntsPass()); 1354 1355 addPass(createSIModeRegisterPass()); 1356 1357 if (getOptLevel() > CodeGenOpt::None) 1358 addPass(&SIInsertHardClausesID); 1359 1360 addPass(&SILateBranchLoweringPassID); 1361 if (getOptLevel() > CodeGenOpt::None) 1362 addPass(&SIPreEmitPeepholeID); 1363 // The hazard recognizer that runs as part of the post-ra scheduler does not 1364 // guarantee to be able handle all hazards correctly. This is because if there 1365 // are multiple scheduling regions in a basic block, the regions are scheduled 1366 // bottom up, so when we begin to schedule a region we don't know what 1367 // instructions were emitted directly before it. 1368 // 1369 // Here we add a stand-alone hazard recognizer pass which can handle all 1370 // cases. 1371 addPass(&PostRAHazardRecognizerID); 1372 addPass(&BranchRelaxationPassID); 1373 } 1374 1375 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1376 return new GCNPassConfig(*this, PM); 1377 } 1378 1379 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1380 return new yaml::SIMachineFunctionInfo(); 1381 } 1382 1383 yaml::MachineFunctionInfo * 1384 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1385 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1386 return new yaml::SIMachineFunctionInfo( 1387 *MFI, *MF.getSubtarget().getRegisterInfo(), MF); 1388 } 1389 1390 bool GCNTargetMachine::parseMachineFunctionInfo( 1391 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1392 SMDiagnostic &Error, SMRange &SourceRange) const { 1393 const yaml::SIMachineFunctionInfo &YamlMFI = 1394 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1395 MachineFunction &MF = PFS.MF; 1396 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1397 1398 if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange)) 1399 return true; 1400 1401 if (MFI->Occupancy == 0) { 1402 // Fixup the subtarget dependent default value. 1403 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1404 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1405 } 1406 1407 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1408 Register TempReg; 1409 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1410 SourceRange = RegName.SourceRange; 1411 return true; 1412 } 1413 RegVal = TempReg; 1414 1415 return false; 1416 }; 1417 1418 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1419 // Create a diagnostic for a the register string literal. 1420 const MemoryBuffer &Buffer = 1421 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1422 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1423 RegName.Value.size(), SourceMgr::DK_Error, 1424 "incorrect register class for field", RegName.Value, 1425 None, None); 1426 SourceRange = RegName.SourceRange; 1427 return true; 1428 }; 1429 1430 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1431 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1432 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1433 return true; 1434 1435 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1436 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1437 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1438 } 1439 1440 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1441 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1442 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1443 } 1444 1445 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1446 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1447 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1448 } 1449 1450 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1451 const TargetRegisterClass &RC, 1452 ArgDescriptor &Arg, unsigned UserSGPRs, 1453 unsigned SystemSGPRs) { 1454 // Skip parsing if it's not present. 1455 if (!A) 1456 return false; 1457 1458 if (A->IsRegister) { 1459 Register Reg; 1460 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1461 SourceRange = A->RegisterName.SourceRange; 1462 return true; 1463 } 1464 if (!RC.contains(Reg)) 1465 return diagnoseRegisterClass(A->RegisterName); 1466 Arg = ArgDescriptor::createRegister(Reg); 1467 } else 1468 Arg = ArgDescriptor::createStack(A->StackOffset); 1469 // Check and apply the optional mask. 1470 if (A->Mask) 1471 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1472 1473 MFI->NumUserSGPRs += UserSGPRs; 1474 MFI->NumSystemSGPRs += SystemSGPRs; 1475 return false; 1476 }; 1477 1478 if (YamlMFI.ArgInfo && 1479 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1480 AMDGPU::SGPR_128RegClass, 1481 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1482 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1483 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1484 2, 0) || 1485 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1486 MFI->ArgInfo.QueuePtr, 2, 0) || 1487 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1488 AMDGPU::SReg_64RegClass, 1489 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1490 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1491 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1492 2, 0) || 1493 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1494 AMDGPU::SReg_64RegClass, 1495 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1496 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1497 AMDGPU::SGPR_32RegClass, 1498 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1499 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1500 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1501 0, 1) || 1502 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1503 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1504 0, 1) || 1505 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1506 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1507 0, 1) || 1508 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1509 AMDGPU::SGPR_32RegClass, 1510 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1511 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1512 AMDGPU::SGPR_32RegClass, 1513 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1514 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1515 AMDGPU::SReg_64RegClass, 1516 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1517 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1518 AMDGPU::SReg_64RegClass, 1519 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1520 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1521 AMDGPU::VGPR_32RegClass, 1522 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1523 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1524 AMDGPU::VGPR_32RegClass, 1525 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1526 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1527 AMDGPU::VGPR_32RegClass, 1528 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1529 return true; 1530 1531 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1532 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1533 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1534 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1535 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1536 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1537 1538 return false; 1539 } 1540