1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUExportClustering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 28 #include "R600MachineScheduler.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "SIMachineScheduler.h" 31 #include "TargetInfo/AMDGPUTargetInfo.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 34 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 35 #include "llvm/CodeGen/GlobalISel/Localizer.h" 36 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 37 #include "llvm/CodeGen/MIRParser/MIParser.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/LegacyPassManager.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Target/TargetLoweringObjectFile.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Scalar/GVN.h" 54 #include "llvm/Transforms/Utils.h" 55 #include "llvm/Transforms/Vectorize.h" 56 #include <memory> 57 58 using namespace llvm; 59 60 static cl::opt<bool> EnableR600StructurizeCFG( 61 "r600-ir-structurize", 62 cl::desc("Use StructurizeCFG IR pass"), 63 cl::init(true)); 64 65 static cl::opt<bool> EnableSROA( 66 "amdgpu-sroa", 67 cl::desc("Run SROA after promote alloca pass"), 68 cl::ReallyHidden, 69 cl::init(true)); 70 71 static cl::opt<bool> 72 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 73 cl::desc("Run early if-conversion"), 74 cl::init(false)); 75 76 static cl::opt<bool> 77 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 78 cl::desc("Run pre-RA exec mask optimizations"), 79 cl::init(true)); 80 81 static cl::opt<bool> EnableR600IfConvert( 82 "r600-if-convert", 83 cl::desc("Use if conversion pass"), 84 cl::ReallyHidden, 85 cl::init(true)); 86 87 // Option to disable vectorizer for tests. 88 static cl::opt<bool> EnableLoadStoreVectorizer( 89 "amdgpu-load-store-vectorizer", 90 cl::desc("Enable load store vectorizer"), 91 cl::init(true), 92 cl::Hidden); 93 94 // Option to control global loads scalarization 95 static cl::opt<bool> ScalarizeGlobal( 96 "amdgpu-scalarize-global-loads", 97 cl::desc("Enable global load scalarization"), 98 cl::init(true), 99 cl::Hidden); 100 101 // Option to run internalize pass. 102 static cl::opt<bool> InternalizeSymbols( 103 "amdgpu-internalize-symbols", 104 cl::desc("Enable elimination of non-kernel functions and unused globals"), 105 cl::init(false), 106 cl::Hidden); 107 108 // Option to inline all early. 109 static cl::opt<bool> EarlyInlineAll( 110 "amdgpu-early-inline-all", 111 cl::desc("Inline all functions early"), 112 cl::init(false), 113 cl::Hidden); 114 115 static cl::opt<bool> EnableSDWAPeephole( 116 "amdgpu-sdwa-peephole", 117 cl::desc("Enable SDWA peepholer"), 118 cl::init(true)); 119 120 static cl::opt<bool> EnableDPPCombine( 121 "amdgpu-dpp-combine", 122 cl::desc("Enable DPP combiner"), 123 cl::init(true)); 124 125 // Enable address space based alias analysis 126 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 127 cl::desc("Enable AMDGPU Alias Analysis"), 128 cl::init(true)); 129 130 // Option to run late CFG structurizer 131 static cl::opt<bool, true> LateCFGStructurize( 132 "amdgpu-late-structurize", 133 cl::desc("Enable late CFG structurization"), 134 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 135 cl::Hidden); 136 137 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 138 "amdgpu-function-calls", 139 cl::desc("Enable AMDGPU function call support"), 140 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 141 cl::init(true), 142 cl::Hidden); 143 144 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 145 "amdgpu-fixed-function-abi", 146 cl::desc("Enable all implicit function arguments"), 147 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 148 cl::init(false), 149 cl::Hidden); 150 151 // Enable lib calls simplifications 152 static cl::opt<bool> EnableLibCallSimplify( 153 "amdgpu-simplify-libcall", 154 cl::desc("Enable amdgpu library simplifications"), 155 cl::init(true), 156 cl::Hidden); 157 158 static cl::opt<bool> EnableLowerKernelArguments( 159 "amdgpu-ir-lower-kernel-arguments", 160 cl::desc("Lower kernel argument loads in IR pass"), 161 cl::init(true), 162 cl::Hidden); 163 164 static cl::opt<bool> EnableRegReassign( 165 "amdgpu-reassign-regs", 166 cl::desc("Enable register reassign optimizations on gfx10+"), 167 cl::init(true), 168 cl::Hidden); 169 170 // Enable atomic optimization 171 static cl::opt<bool> EnableAtomicOptimizations( 172 "amdgpu-atomic-optimizations", 173 cl::desc("Enable atomic optimizations"), 174 cl::init(false), 175 cl::Hidden); 176 177 // Enable Mode register optimization 178 static cl::opt<bool> EnableSIModeRegisterPass( 179 "amdgpu-mode-register", 180 cl::desc("Enable mode register pass"), 181 cl::init(true), 182 cl::Hidden); 183 184 // Option is used in lit tests to prevent deadcoding of patterns inspected. 185 static cl::opt<bool> 186 EnableDCEInRA("amdgpu-dce-in-ra", 187 cl::init(true), cl::Hidden, 188 cl::desc("Enable machine DCE inside regalloc")); 189 190 static cl::opt<bool> EnableScalarIRPasses( 191 "amdgpu-scalar-ir-passes", 192 cl::desc("Enable scalar IR passes"), 193 cl::init(true), 194 cl::Hidden); 195 196 static cl::opt<bool> EnableStructurizerWorkarounds( 197 "amdgpu-enable-structurizer-workarounds", 198 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 199 cl::Hidden); 200 201 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 202 // Register the target 203 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 204 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 205 206 PassRegistry *PR = PassRegistry::getPassRegistry(); 207 initializeR600ClauseMergePassPass(*PR); 208 initializeR600ControlFlowFinalizerPass(*PR); 209 initializeR600PacketizerPass(*PR); 210 initializeR600ExpandSpecialInstrsPassPass(*PR); 211 initializeR600VectorRegMergerPass(*PR); 212 initializeGlobalISel(*PR); 213 initializeAMDGPUDAGToDAGISelPass(*PR); 214 initializeGCNDPPCombinePass(*PR); 215 initializeSILowerI1CopiesPass(*PR); 216 initializeSILowerSGPRSpillsPass(*PR); 217 initializeSIFixSGPRCopiesPass(*PR); 218 initializeSIFixVGPRCopiesPass(*PR); 219 initializeSIFoldOperandsPass(*PR); 220 initializeSIPeepholeSDWAPass(*PR); 221 initializeSIShrinkInstructionsPass(*PR); 222 initializeSIOptimizeExecMaskingPreRAPass(*PR); 223 initializeSILoadStoreOptimizerPass(*PR); 224 initializeAMDGPUFixFunctionBitcastsPass(*PR); 225 initializeAMDGPUAlwaysInlinePass(*PR); 226 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 227 initializeAMDGPUAnnotateUniformValuesPass(*PR); 228 initializeAMDGPUArgumentUsageInfoPass(*PR); 229 initializeAMDGPUAtomicOptimizerPass(*PR); 230 initializeAMDGPULowerKernelArgumentsPass(*PR); 231 initializeAMDGPULowerKernelAttributesPass(*PR); 232 initializeAMDGPULowerIntrinsicsPass(*PR); 233 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 234 initializeAMDGPUPostLegalizerCombinerPass(*PR); 235 initializeAMDGPUPreLegalizerCombinerPass(*PR); 236 initializeAMDGPUPromoteAllocaPass(*PR); 237 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 238 initializeAMDGPUCodeGenPreparePass(*PR); 239 initializeAMDGPULateCodeGenPreparePass(*PR); 240 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 241 initializeAMDGPUPropagateAttributesLatePass(*PR); 242 initializeAMDGPURewriteOutArgumentsPass(*PR); 243 initializeAMDGPUUnifyMetadataPass(*PR); 244 initializeSIAnnotateControlFlowPass(*PR); 245 initializeSIInsertHardClausesPass(*PR); 246 initializeSIInsertWaitcntsPass(*PR); 247 initializeSIModeRegisterPass(*PR); 248 initializeSIWholeQuadModePass(*PR); 249 initializeSILowerControlFlowPass(*PR); 250 initializeSIRemoveShortExecBranchesPass(*PR); 251 initializeSIPreEmitPeepholePass(*PR); 252 initializeSIInsertSkipsPass(*PR); 253 initializeSIMemoryLegalizerPass(*PR); 254 initializeSIOptimizeExecMaskingPass(*PR); 255 initializeSIPreAllocateWWMRegsPass(*PR); 256 initializeSIFormMemoryClausesPass(*PR); 257 initializeSIPostRABundlerPass(*PR); 258 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 259 initializeAMDGPUAAWrapperPassPass(*PR); 260 initializeAMDGPUExternalAAWrapperPass(*PR); 261 initializeAMDGPUUseNativeCallsPass(*PR); 262 initializeAMDGPUSimplifyLibCallsPass(*PR); 263 initializeAMDGPUInlinerPass(*PR); 264 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 265 initializeGCNRegBankReassignPass(*PR); 266 initializeGCNNSAReassignPass(*PR); 267 initializeSIAddIMGInitPass(*PR); 268 } 269 270 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 271 return std::make_unique<AMDGPUTargetObjectFile>(); 272 } 273 274 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 275 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 276 } 277 278 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 279 return new SIScheduleDAGMI(C); 280 } 281 282 static ScheduleDAGInstrs * 283 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 284 ScheduleDAGMILive *DAG = 285 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 286 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 287 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 288 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 289 return DAG; 290 } 291 292 static ScheduleDAGInstrs * 293 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 294 auto DAG = new GCNIterativeScheduler(C, 295 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 296 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 297 return DAG; 298 } 299 300 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 301 return new GCNIterativeScheduler(C, 302 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 303 } 304 305 static ScheduleDAGInstrs * 306 createIterativeILPMachineScheduler(MachineSchedContext *C) { 307 auto DAG = new GCNIterativeScheduler(C, 308 GCNIterativeScheduler::SCHEDULE_ILP); 309 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 310 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 311 return DAG; 312 } 313 314 static MachineSchedRegistry 315 R600SchedRegistry("r600", "Run R600's custom scheduler", 316 createR600MachineScheduler); 317 318 static MachineSchedRegistry 319 SISchedRegistry("si", "Run SI's custom scheduler", 320 createSIMachineScheduler); 321 322 static MachineSchedRegistry 323 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 324 "Run GCN scheduler to maximize occupancy", 325 createGCNMaxOccupancyMachineScheduler); 326 327 static MachineSchedRegistry 328 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 329 "Run GCN scheduler to maximize occupancy (experimental)", 330 createIterativeGCNMaxOccupancyMachineScheduler); 331 332 static MachineSchedRegistry 333 GCNMinRegSchedRegistry("gcn-minreg", 334 "Run GCN iterative scheduler for minimal register usage (experimental)", 335 createMinRegScheduler); 336 337 static MachineSchedRegistry 338 GCNILPSchedRegistry("gcn-ilp", 339 "Run GCN iterative scheduler for ILP scheduling (experimental)", 340 createIterativeILPMachineScheduler); 341 342 static StringRef computeDataLayout(const Triple &TT) { 343 if (TT.getArch() == Triple::r600) { 344 // 32-bit pointers. 345 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 346 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 347 } 348 349 // 32-bit private, local, and region pointers. 64-bit global, constant and 350 // flat, non-integral buffer fat pointers. 351 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 352 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 353 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 354 "-ni:7"; 355 } 356 357 LLVM_READNONE 358 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 359 if (!GPU.empty()) 360 return GPU; 361 362 // Need to default to a target with flat support for HSA. 363 if (TT.getArch() == Triple::amdgcn) 364 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 365 366 return "r600"; 367 } 368 369 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 370 // The AMDGPU toolchain only supports generating shared objects, so we 371 // must always use PIC. 372 return Reloc::PIC_; 373 } 374 375 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 376 StringRef CPU, StringRef FS, 377 TargetOptions Options, 378 Optional<Reloc::Model> RM, 379 Optional<CodeModel::Model> CM, 380 CodeGenOpt::Level OptLevel) 381 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 382 FS, Options, getEffectiveRelocModel(RM), 383 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 384 TLOF(createTLOF(getTargetTriple())) { 385 initAsmInfo(); 386 if (TT.getArch() == Triple::amdgcn) { 387 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 388 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 389 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 390 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 391 } 392 } 393 394 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 395 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 396 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 397 398 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 399 400 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 401 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 402 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 403 } 404 405 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 406 Attribute FSAttr = F.getFnAttribute("target-features"); 407 408 return FSAttr.isValid() ? FSAttr.getValueAsString() 409 : getTargetFeatureString(); 410 } 411 412 /// Predicate for Internalize pass. 413 static bool mustPreserveGV(const GlobalValue &GV) { 414 if (const Function *F = dyn_cast<Function>(&GV)) 415 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 416 417 return !GV.use_empty(); 418 } 419 420 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 421 Builder.DivergentTarget = true; 422 423 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 424 bool Internalize = InternalizeSymbols; 425 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 426 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 427 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 428 429 if (EnableFunctionCalls) { 430 delete Builder.Inliner; 431 Builder.Inliner = createAMDGPUFunctionInliningPass(); 432 } 433 434 Builder.addExtension( 435 PassManagerBuilder::EP_ModuleOptimizerEarly, 436 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 437 legacy::PassManagerBase &PM) { 438 if (AMDGPUAA) { 439 PM.add(createAMDGPUAAWrapperPass()); 440 PM.add(createAMDGPUExternalAAWrapperPass()); 441 } 442 PM.add(createAMDGPUUnifyMetadataPass()); 443 PM.add(createAMDGPUPrintfRuntimeBinding()); 444 if (Internalize) 445 PM.add(createInternalizePass(mustPreserveGV)); 446 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 447 if (Internalize) 448 PM.add(createGlobalDCEPass()); 449 if (EarlyInline) 450 PM.add(createAMDGPUAlwaysInlinePass(false)); 451 }); 452 453 Builder.addExtension( 454 PassManagerBuilder::EP_EarlyAsPossible, 455 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 456 legacy::PassManagerBase &PM) { 457 if (AMDGPUAA) { 458 PM.add(createAMDGPUAAWrapperPass()); 459 PM.add(createAMDGPUExternalAAWrapperPass()); 460 } 461 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 462 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 463 if (LibCallSimplify) 464 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 465 }); 466 467 Builder.addExtension( 468 PassManagerBuilder::EP_CGSCCOptimizerLate, 469 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 470 // Add infer address spaces pass to the opt pipeline after inlining 471 // but before SROA to increase SROA opportunities. 472 PM.add(createInferAddressSpacesPass()); 473 474 // This should run after inlining to have any chance of doing anything, 475 // and before other cleanup optimizations. 476 PM.add(createAMDGPULowerKernelAttributesPass()); 477 478 // Promote alloca to vector before SROA and loop unroll. If we manage 479 // to eliminate allocas before unroll we may choose to unroll less. 480 if (EnableOpt) 481 PM.add(createAMDGPUPromoteAllocaToVector()); 482 }); 483 } 484 485 //===----------------------------------------------------------------------===// 486 // R600 Target Machine (R600 -> Cayman) 487 //===----------------------------------------------------------------------===// 488 489 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 490 StringRef CPU, StringRef FS, 491 TargetOptions Options, 492 Optional<Reloc::Model> RM, 493 Optional<CodeModel::Model> CM, 494 CodeGenOpt::Level OL, bool JIT) 495 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 496 setRequiresStructuredCFG(true); 497 498 // Override the default since calls aren't supported for r600. 499 if (EnableFunctionCalls && 500 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 501 EnableFunctionCalls = false; 502 } 503 504 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 505 const Function &F) const { 506 StringRef GPU = getGPUName(F); 507 StringRef FS = getFeatureString(F); 508 509 SmallString<128> SubtargetKey(GPU); 510 SubtargetKey.append(FS); 511 512 auto &I = SubtargetMap[SubtargetKey]; 513 if (!I) { 514 // This needs to be done before we create a new subtarget since any 515 // creation will depend on the TM and the code generation flags on the 516 // function that reside in TargetOptions. 517 resetTargetOptions(F); 518 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 519 } 520 521 return I.get(); 522 } 523 524 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 525 unsigned DestAS) const { 526 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 527 AMDGPU::isFlatGlobalAddrSpace(DestAS); 528 } 529 530 TargetTransformInfo 531 R600TargetMachine::getTargetTransformInfo(const Function &F) { 532 return TargetTransformInfo(R600TTIImpl(this, F)); 533 } 534 535 //===----------------------------------------------------------------------===// 536 // GCN Target Machine (SI+) 537 //===----------------------------------------------------------------------===// 538 539 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 540 StringRef CPU, StringRef FS, 541 TargetOptions Options, 542 Optional<Reloc::Model> RM, 543 Optional<CodeModel::Model> CM, 544 CodeGenOpt::Level OL, bool JIT) 545 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 546 547 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 548 StringRef GPU = getGPUName(F); 549 StringRef FS = getFeatureString(F); 550 551 SmallString<128> SubtargetKey(GPU); 552 SubtargetKey.append(FS); 553 554 auto &I = SubtargetMap[SubtargetKey]; 555 if (!I) { 556 // This needs to be done before we create a new subtarget since any 557 // creation will depend on the TM and the code generation flags on the 558 // function that reside in TargetOptions. 559 resetTargetOptions(F); 560 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 561 } 562 563 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 564 565 return I.get(); 566 } 567 568 TargetTransformInfo 569 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 570 return TargetTransformInfo(GCNTTIImpl(this, F)); 571 } 572 573 //===----------------------------------------------------------------------===// 574 // AMDGPU Pass Setup 575 //===----------------------------------------------------------------------===// 576 577 namespace { 578 579 class AMDGPUPassConfig : public TargetPassConfig { 580 public: 581 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 582 : TargetPassConfig(TM, PM) { 583 // Exceptions and StackMaps are not supported, so these passes will never do 584 // anything. 585 disablePass(&StackMapLivenessID); 586 disablePass(&FuncletLayoutID); 587 } 588 589 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 590 return getTM<AMDGPUTargetMachine>(); 591 } 592 593 ScheduleDAGInstrs * 594 createMachineScheduler(MachineSchedContext *C) const override { 595 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 596 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 597 return DAG; 598 } 599 600 void addEarlyCSEOrGVNPass(); 601 void addStraightLineScalarOptimizationPasses(); 602 void addIRPasses() override; 603 void addCodeGenPrepare() override; 604 bool addPreISel() override; 605 bool addInstSelector() override; 606 bool addGCPasses() override; 607 608 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 609 }; 610 611 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 612 return getStandardCSEConfigForOpt(TM->getOptLevel()); 613 } 614 615 class R600PassConfig final : public AMDGPUPassConfig { 616 public: 617 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 618 : AMDGPUPassConfig(TM, PM) {} 619 620 ScheduleDAGInstrs *createMachineScheduler( 621 MachineSchedContext *C) const override { 622 return createR600MachineScheduler(C); 623 } 624 625 bool addPreISel() override; 626 bool addInstSelector() override; 627 void addPreRegAlloc() override; 628 void addPreSched2() override; 629 void addPreEmitPass() override; 630 }; 631 632 class GCNPassConfig final : public AMDGPUPassConfig { 633 public: 634 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 635 : AMDGPUPassConfig(TM, PM) { 636 // It is necessary to know the register usage of the entire call graph. We 637 // allow calls without EnableAMDGPUFunctionCalls if they are marked 638 // noinline, so this is always required. 639 setRequiresCodeGenSCCOrder(true); 640 } 641 642 GCNTargetMachine &getGCNTargetMachine() const { 643 return getTM<GCNTargetMachine>(); 644 } 645 646 ScheduleDAGInstrs * 647 createMachineScheduler(MachineSchedContext *C) const override; 648 649 bool addPreISel() override; 650 void addMachineSSAOptimization() override; 651 bool addILPOpts() override; 652 bool addInstSelector() override; 653 bool addIRTranslator() override; 654 void addPreLegalizeMachineIR() override; 655 bool addLegalizeMachineIR() override; 656 void addPreRegBankSelect() override; 657 bool addRegBankSelect() override; 658 bool addGlobalInstructionSelect() override; 659 void addFastRegAlloc() override; 660 void addOptimizedRegAlloc() override; 661 void addPreRegAlloc() override; 662 bool addPreRewrite() override; 663 void addPostRegAlloc() override; 664 void addPreSched2() override; 665 void addPreEmitPass() override; 666 }; 667 668 } // end anonymous namespace 669 670 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 671 if (getOptLevel() == CodeGenOpt::Aggressive) 672 addPass(createGVNPass()); 673 else 674 addPass(createEarlyCSEPass()); 675 } 676 677 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 678 addPass(createLICMPass()); 679 addPass(createSeparateConstOffsetFromGEPPass()); 680 addPass(createSpeculativeExecutionPass()); 681 // ReassociateGEPs exposes more opportunites for SLSR. See 682 // the example in reassociate-geps-and-slsr.ll. 683 addPass(createStraightLineStrengthReducePass()); 684 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 685 // EarlyCSE can reuse. 686 addEarlyCSEOrGVNPass(); 687 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 688 addPass(createNaryReassociatePass()); 689 // NaryReassociate on GEPs creates redundant common expressions, so run 690 // EarlyCSE after it. 691 addPass(createEarlyCSEPass()); 692 } 693 694 void AMDGPUPassConfig::addIRPasses() { 695 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 696 697 // There is no reason to run these. 698 disablePass(&StackMapLivenessID); 699 disablePass(&FuncletLayoutID); 700 disablePass(&PatchableFunctionID); 701 702 addPass(createAMDGPUPrintfRuntimeBinding()); 703 704 // This must occur before inlining, as the inliner will not look through 705 // bitcast calls. 706 addPass(createAMDGPUFixFunctionBitcastsPass()); 707 708 // A call to propagate attributes pass in the backend in case opt was not run. 709 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 710 711 addPass(createAtomicExpandPass()); 712 713 714 addPass(createAMDGPULowerIntrinsicsPass()); 715 716 // Function calls are not supported, so make sure we inline everything. 717 addPass(createAMDGPUAlwaysInlinePass()); 718 addPass(createAlwaysInlinerLegacyPass()); 719 // We need to add the barrier noop pass, otherwise adding the function 720 // inlining pass will cause all of the PassConfigs passes to be run 721 // one function at a time, which means if we have a nodule with two 722 // functions, then we will generate code for the first function 723 // without ever running any passes on the second. 724 addPass(createBarrierNoopPass()); 725 726 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 727 if (TM.getTargetTriple().getArch() == Triple::r600) 728 addPass(createR600OpenCLImageTypeLoweringPass()); 729 730 // Replace OpenCL enqueued block function pointers with global variables. 731 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 732 733 if (TM.getOptLevel() > CodeGenOpt::None) { 734 addPass(createInferAddressSpacesPass()); 735 addPass(createAMDGPUPromoteAlloca()); 736 737 if (EnableSROA) 738 addPass(createSROAPass()); 739 740 if (EnableScalarIRPasses) 741 addStraightLineScalarOptimizationPasses(); 742 743 if (EnableAMDGPUAliasAnalysis) { 744 addPass(createAMDGPUAAWrapperPass()); 745 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 746 AAResults &AAR) { 747 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 748 AAR.addAAResult(WrapperPass->getResult()); 749 })); 750 } 751 } 752 753 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 754 // TODO: May want to move later or split into an early and late one. 755 addPass(createAMDGPUCodeGenPreparePass()); 756 } 757 758 TargetPassConfig::addIRPasses(); 759 760 // EarlyCSE is not always strong enough to clean up what LSR produces. For 761 // example, GVN can combine 762 // 763 // %0 = add %a, %b 764 // %1 = add %b, %a 765 // 766 // and 767 // 768 // %0 = shl nsw %a, 2 769 // %1 = shl %a, 2 770 // 771 // but EarlyCSE can do neither of them. 772 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 773 addEarlyCSEOrGVNPass(); 774 } 775 776 void AMDGPUPassConfig::addCodeGenPrepare() { 777 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 778 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 779 780 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 781 EnableLowerKernelArguments) 782 addPass(createAMDGPULowerKernelArgumentsPass()); 783 784 addPass(&AMDGPUPerfHintAnalysisID); 785 786 TargetPassConfig::addCodeGenPrepare(); 787 788 if (EnableLoadStoreVectorizer) 789 addPass(createLoadStoreVectorizerPass()); 790 791 // LowerSwitch pass may introduce unreachable blocks that can 792 // cause unexpected behavior for subsequent passes. Placing it 793 // here seems better that these blocks would get cleaned up by 794 // UnreachableBlockElim inserted next in the pass flow. 795 addPass(createLowerSwitchPass()); 796 } 797 798 bool AMDGPUPassConfig::addPreISel() { 799 addPass(createFlattenCFGPass()); 800 return false; 801 } 802 803 bool AMDGPUPassConfig::addInstSelector() { 804 // Defer the verifier until FinalizeISel. 805 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 806 return false; 807 } 808 809 bool AMDGPUPassConfig::addGCPasses() { 810 // Do nothing. GC is not supported. 811 return false; 812 } 813 814 //===----------------------------------------------------------------------===// 815 // R600 Pass Setup 816 //===----------------------------------------------------------------------===// 817 818 bool R600PassConfig::addPreISel() { 819 AMDGPUPassConfig::addPreISel(); 820 821 if (EnableR600StructurizeCFG) 822 addPass(createStructurizeCFGPass()); 823 return false; 824 } 825 826 bool R600PassConfig::addInstSelector() { 827 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 828 return false; 829 } 830 831 void R600PassConfig::addPreRegAlloc() { 832 addPass(createR600VectorRegMerger()); 833 } 834 835 void R600PassConfig::addPreSched2() { 836 addPass(createR600EmitClauseMarkers(), false); 837 if (EnableR600IfConvert) 838 addPass(&IfConverterID, false); 839 addPass(createR600ClauseMergePass(), false); 840 } 841 842 void R600PassConfig::addPreEmitPass() { 843 addPass(createAMDGPUCFGStructurizerPass(), false); 844 addPass(createR600ExpandSpecialInstrsPass(), false); 845 addPass(&FinalizeMachineBundlesID, false); 846 addPass(createR600Packetizer(), false); 847 addPass(createR600ControlFlowFinalizer(), false); 848 } 849 850 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 851 return new R600PassConfig(*this, PM); 852 } 853 854 //===----------------------------------------------------------------------===// 855 // GCN Pass Setup 856 //===----------------------------------------------------------------------===// 857 858 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 859 MachineSchedContext *C) const { 860 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 861 if (ST.enableSIScheduler()) 862 return createSIMachineScheduler(C); 863 return createGCNMaxOccupancyMachineScheduler(C); 864 } 865 866 bool GCNPassConfig::addPreISel() { 867 AMDGPUPassConfig::addPreISel(); 868 869 addPass(createAMDGPULateCodeGenPreparePass()); 870 if (EnableAtomicOptimizations) { 871 addPass(createAMDGPUAtomicOptimizerPass()); 872 } 873 874 // FIXME: We need to run a pass to propagate the attributes when calls are 875 // supported. 876 877 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 878 // regions formed by them. 879 addPass(&AMDGPUUnifyDivergentExitNodesID); 880 if (!LateCFGStructurize) { 881 if (EnableStructurizerWorkarounds) { 882 addPass(createFixIrreduciblePass()); 883 addPass(createUnifyLoopExitsPass()); 884 } 885 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 886 } 887 addPass(createSinkingPass()); 888 addPass(createAMDGPUAnnotateUniformValues()); 889 if (!LateCFGStructurize) { 890 addPass(createSIAnnotateControlFlowPass()); 891 } 892 addPass(createLCSSAPass()); 893 894 return false; 895 } 896 897 void GCNPassConfig::addMachineSSAOptimization() { 898 TargetPassConfig::addMachineSSAOptimization(); 899 900 // We want to fold operands after PeepholeOptimizer has run (or as part of 901 // it), because it will eliminate extra copies making it easier to fold the 902 // real source operand. We want to eliminate dead instructions after, so that 903 // we see fewer uses of the copies. We then need to clean up the dead 904 // instructions leftover after the operands are folded as well. 905 // 906 // XXX - Can we get away without running DeadMachineInstructionElim again? 907 addPass(&SIFoldOperandsID); 908 if (EnableDPPCombine) 909 addPass(&GCNDPPCombineID); 910 addPass(&DeadMachineInstructionElimID); 911 addPass(&SILoadStoreOptimizerID); 912 if (EnableSDWAPeephole) { 913 addPass(&SIPeepholeSDWAID); 914 addPass(&EarlyMachineLICMID); 915 addPass(&MachineCSEID); 916 addPass(&SIFoldOperandsID); 917 addPass(&DeadMachineInstructionElimID); 918 } 919 addPass(createSIShrinkInstructionsPass()); 920 } 921 922 bool GCNPassConfig::addILPOpts() { 923 if (EnableEarlyIfConversion) 924 addPass(&EarlyIfConverterID); 925 926 TargetPassConfig::addILPOpts(); 927 return false; 928 } 929 930 bool GCNPassConfig::addInstSelector() { 931 AMDGPUPassConfig::addInstSelector(); 932 addPass(&SIFixSGPRCopiesID); 933 addPass(createSILowerI1CopiesPass()); 934 addPass(createSIAddIMGInitPass()); 935 return false; 936 } 937 938 bool GCNPassConfig::addIRTranslator() { 939 addPass(new IRTranslator(getOptLevel())); 940 return false; 941 } 942 943 void GCNPassConfig::addPreLegalizeMachineIR() { 944 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 945 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 946 addPass(new Localizer()); 947 } 948 949 bool GCNPassConfig::addLegalizeMachineIR() { 950 addPass(new Legalizer()); 951 return false; 952 } 953 954 void GCNPassConfig::addPreRegBankSelect() { 955 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 956 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 957 } 958 959 bool GCNPassConfig::addRegBankSelect() { 960 addPass(new RegBankSelect()); 961 return false; 962 } 963 964 bool GCNPassConfig::addGlobalInstructionSelect() { 965 addPass(new InstructionSelect()); 966 return false; 967 } 968 969 void GCNPassConfig::addPreRegAlloc() { 970 if (LateCFGStructurize) { 971 addPass(createAMDGPUMachineCFGStructurizerPass()); 972 } 973 } 974 975 void GCNPassConfig::addFastRegAlloc() { 976 // FIXME: We have to disable the verifier here because of PHIElimination + 977 // TwoAddressInstructions disabling it. 978 979 // This must be run immediately after phi elimination and before 980 // TwoAddressInstructions, otherwise the processing of the tied operand of 981 // SI_ELSE will introduce a copy of the tied operand source after the else. 982 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 983 984 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 985 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 986 987 TargetPassConfig::addFastRegAlloc(); 988 } 989 990 void GCNPassConfig::addOptimizedRegAlloc() { 991 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 992 // instructions that cause scheduling barriers. 993 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 994 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 995 996 if (OptExecMaskPreRA) 997 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 998 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 999 1000 // This must be run immediately after phi elimination and before 1001 // TwoAddressInstructions, otherwise the processing of the tied operand of 1002 // SI_ELSE will introduce a copy of the tied operand source after the else. 1003 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1004 1005 if (EnableDCEInRA) 1006 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1007 1008 TargetPassConfig::addOptimizedRegAlloc(); 1009 } 1010 1011 bool GCNPassConfig::addPreRewrite() { 1012 if (EnableRegReassign) { 1013 addPass(&GCNNSAReassignID); 1014 addPass(&GCNRegBankReassignID); 1015 } 1016 return true; 1017 } 1018 1019 void GCNPassConfig::addPostRegAlloc() { 1020 addPass(&SIFixVGPRCopiesID); 1021 if (getOptLevel() > CodeGenOpt::None) 1022 addPass(&SIOptimizeExecMaskingID); 1023 TargetPassConfig::addPostRegAlloc(); 1024 1025 // Equivalent of PEI for SGPRs. 1026 addPass(&SILowerSGPRSpillsID); 1027 } 1028 1029 void GCNPassConfig::addPreSched2() { 1030 addPass(&SIPostRABundlerID); 1031 } 1032 1033 void GCNPassConfig::addPreEmitPass() { 1034 addPass(createSIMemoryLegalizerPass()); 1035 addPass(createSIInsertWaitcntsPass()); 1036 addPass(createSIShrinkInstructionsPass()); 1037 addPass(createSIModeRegisterPass()); 1038 1039 if (getOptLevel() > CodeGenOpt::None) 1040 addPass(&SIInsertHardClausesID); 1041 1042 addPass(&SIRemoveShortExecBranchesID); 1043 addPass(&SIInsertSkipsPassID); 1044 addPass(&SIPreEmitPeepholeID); 1045 // The hazard recognizer that runs as part of the post-ra scheduler does not 1046 // guarantee to be able handle all hazards correctly. This is because if there 1047 // are multiple scheduling regions in a basic block, the regions are scheduled 1048 // bottom up, so when we begin to schedule a region we don't know what 1049 // instructions were emitted directly before it. 1050 // 1051 // Here we add a stand-alone hazard recognizer pass which can handle all 1052 // cases. 1053 addPass(&PostRAHazardRecognizerID); 1054 addPass(&BranchRelaxationPassID); 1055 } 1056 1057 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1058 return new GCNPassConfig(*this, PM); 1059 } 1060 1061 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1062 return new yaml::SIMachineFunctionInfo(); 1063 } 1064 1065 yaml::MachineFunctionInfo * 1066 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1067 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1068 return new yaml::SIMachineFunctionInfo(*MFI, 1069 *MF.getSubtarget().getRegisterInfo()); 1070 } 1071 1072 bool GCNTargetMachine::parseMachineFunctionInfo( 1073 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1074 SMDiagnostic &Error, SMRange &SourceRange) const { 1075 const yaml::SIMachineFunctionInfo &YamlMFI = 1076 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1077 MachineFunction &MF = PFS.MF; 1078 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1079 1080 MFI->initializeBaseYamlFields(YamlMFI); 1081 1082 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1083 Register TempReg; 1084 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1085 SourceRange = RegName.SourceRange; 1086 return true; 1087 } 1088 RegVal = TempReg; 1089 1090 return false; 1091 }; 1092 1093 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1094 // Create a diagnostic for a the register string literal. 1095 const MemoryBuffer &Buffer = 1096 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1097 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1098 RegName.Value.size(), SourceMgr::DK_Error, 1099 "incorrect register class for field", RegName.Value, 1100 None, None); 1101 SourceRange = RegName.SourceRange; 1102 return true; 1103 }; 1104 1105 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1106 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1107 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1108 return true; 1109 1110 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1111 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1112 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1113 } 1114 1115 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1116 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1117 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1118 } 1119 1120 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1121 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1122 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1123 } 1124 1125 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1126 const TargetRegisterClass &RC, 1127 ArgDescriptor &Arg, unsigned UserSGPRs, 1128 unsigned SystemSGPRs) { 1129 // Skip parsing if it's not present. 1130 if (!A) 1131 return false; 1132 1133 if (A->IsRegister) { 1134 Register Reg; 1135 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1136 SourceRange = A->RegisterName.SourceRange; 1137 return true; 1138 } 1139 if (!RC.contains(Reg)) 1140 return diagnoseRegisterClass(A->RegisterName); 1141 Arg = ArgDescriptor::createRegister(Reg); 1142 } else 1143 Arg = ArgDescriptor::createStack(A->StackOffset); 1144 // Check and apply the optional mask. 1145 if (A->Mask) 1146 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1147 1148 MFI->NumUserSGPRs += UserSGPRs; 1149 MFI->NumSystemSGPRs += SystemSGPRs; 1150 return false; 1151 }; 1152 1153 if (YamlMFI.ArgInfo && 1154 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1155 AMDGPU::SGPR_128RegClass, 1156 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1157 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1158 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1159 2, 0) || 1160 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1161 MFI->ArgInfo.QueuePtr, 2, 0) || 1162 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1163 AMDGPU::SReg_64RegClass, 1164 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1165 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1166 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1167 2, 0) || 1168 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1169 AMDGPU::SReg_64RegClass, 1170 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1171 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1172 AMDGPU::SGPR_32RegClass, 1173 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1174 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1175 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1176 0, 1) || 1177 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1178 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1179 0, 1) || 1180 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1181 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1182 0, 1) || 1183 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1184 AMDGPU::SGPR_32RegClass, 1185 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1186 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1187 AMDGPU::SGPR_32RegClass, 1188 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1189 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1190 AMDGPU::SReg_64RegClass, 1191 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1192 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1193 AMDGPU::SReg_64RegClass, 1194 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1195 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1196 AMDGPU::VGPR_32RegClass, 1197 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1198 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1199 AMDGPU::VGPR_32RegClass, 1200 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1201 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1202 AMDGPU::VGPR_32RegClass, 1203 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1204 return true; 1205 1206 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1207 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1208 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1209 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1210 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1211 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1212 1213 return false; 1214 } 1215