1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUExportClustering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 28 #include "R600MachineScheduler.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "SIMachineScheduler.h" 31 #include "TargetInfo/AMDGPUTargetInfo.h" 32 #include "llvm/Analysis/CGSCCPassManager.h" 33 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 34 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 35 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 36 #include "llvm/CodeGen/GlobalISel/Localizer.h" 37 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 38 #include "llvm/CodeGen/MIRParser/MIParser.h" 39 #include "llvm/CodeGen/Passes.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/LegacyPassManager.h" 44 #include "llvm/IR/PassManager.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Passes/PassBuilder.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/TargetRegistry.h" 51 #include "llvm/Target/TargetLoweringObjectFile.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/IPO/AlwaysInliner.h" 54 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/GVN.h" 57 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 58 #include "llvm/Transforms/Utils.h" 59 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 60 #include "llvm/Transforms/Vectorize.h" 61 #include <memory> 62 63 using namespace llvm; 64 65 static cl::opt<bool> EnableR600StructurizeCFG( 66 "r600-ir-structurize", 67 cl::desc("Use StructurizeCFG IR pass"), 68 cl::init(true)); 69 70 static cl::opt<bool> EnableSROA( 71 "amdgpu-sroa", 72 cl::desc("Run SROA after promote alloca pass"), 73 cl::ReallyHidden, 74 cl::init(true)); 75 76 static cl::opt<bool> 77 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 78 cl::desc("Run early if-conversion"), 79 cl::init(false)); 80 81 static cl::opt<bool> 82 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 83 cl::desc("Run pre-RA exec mask optimizations"), 84 cl::init(true)); 85 86 static cl::opt<bool> EnableR600IfConvert( 87 "r600-if-convert", 88 cl::desc("Use if conversion pass"), 89 cl::ReallyHidden, 90 cl::init(true)); 91 92 // Option to disable vectorizer for tests. 93 static cl::opt<bool> EnableLoadStoreVectorizer( 94 "amdgpu-load-store-vectorizer", 95 cl::desc("Enable load store vectorizer"), 96 cl::init(true), 97 cl::Hidden); 98 99 // Option to control global loads scalarization 100 static cl::opt<bool> ScalarizeGlobal( 101 "amdgpu-scalarize-global-loads", 102 cl::desc("Enable global load scalarization"), 103 cl::init(true), 104 cl::Hidden); 105 106 // Option to run internalize pass. 107 static cl::opt<bool> InternalizeSymbols( 108 "amdgpu-internalize-symbols", 109 cl::desc("Enable elimination of non-kernel functions and unused globals"), 110 cl::init(false), 111 cl::Hidden); 112 113 // Option to inline all early. 114 static cl::opt<bool> EarlyInlineAll( 115 "amdgpu-early-inline-all", 116 cl::desc("Inline all functions early"), 117 cl::init(false), 118 cl::Hidden); 119 120 static cl::opt<bool> EnableSDWAPeephole( 121 "amdgpu-sdwa-peephole", 122 cl::desc("Enable SDWA peepholer"), 123 cl::init(true)); 124 125 static cl::opt<bool> EnableDPPCombine( 126 "amdgpu-dpp-combine", 127 cl::desc("Enable DPP combiner"), 128 cl::init(true)); 129 130 // Enable address space based alias analysis 131 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 132 cl::desc("Enable AMDGPU Alias Analysis"), 133 cl::init(true)); 134 135 // Option to run late CFG structurizer 136 static cl::opt<bool, true> LateCFGStructurize( 137 "amdgpu-late-structurize", 138 cl::desc("Enable late CFG structurization"), 139 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 140 cl::Hidden); 141 142 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 143 "amdgpu-function-calls", 144 cl::desc("Enable AMDGPU function call support"), 145 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 146 cl::init(true), 147 cl::Hidden); 148 149 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 150 "amdgpu-fixed-function-abi", 151 cl::desc("Enable all implicit function arguments"), 152 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 153 cl::init(false), 154 cl::Hidden); 155 156 // Enable lib calls simplifications 157 static cl::opt<bool> EnableLibCallSimplify( 158 "amdgpu-simplify-libcall", 159 cl::desc("Enable amdgpu library simplifications"), 160 cl::init(true), 161 cl::Hidden); 162 163 static cl::opt<bool> EnableLowerKernelArguments( 164 "amdgpu-ir-lower-kernel-arguments", 165 cl::desc("Lower kernel argument loads in IR pass"), 166 cl::init(true), 167 cl::Hidden); 168 169 static cl::opt<bool> EnableRegReassign( 170 "amdgpu-reassign-regs", 171 cl::desc("Enable register reassign optimizations on gfx10+"), 172 cl::init(true), 173 cl::Hidden); 174 175 // Enable atomic optimization 176 static cl::opt<bool> EnableAtomicOptimizations( 177 "amdgpu-atomic-optimizations", 178 cl::desc("Enable atomic optimizations"), 179 cl::init(false), 180 cl::Hidden); 181 182 // Enable Mode register optimization 183 static cl::opt<bool> EnableSIModeRegisterPass( 184 "amdgpu-mode-register", 185 cl::desc("Enable mode register pass"), 186 cl::init(true), 187 cl::Hidden); 188 189 // Option is used in lit tests to prevent deadcoding of patterns inspected. 190 static cl::opt<bool> 191 EnableDCEInRA("amdgpu-dce-in-ra", 192 cl::init(true), cl::Hidden, 193 cl::desc("Enable machine DCE inside regalloc")); 194 195 static cl::opt<bool> EnableScalarIRPasses( 196 "amdgpu-scalar-ir-passes", 197 cl::desc("Enable scalar IR passes"), 198 cl::init(true), 199 cl::Hidden); 200 201 static cl::opt<bool> EnableStructurizerWorkarounds( 202 "amdgpu-enable-structurizer-workarounds", 203 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 204 cl::Hidden); 205 206 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 207 // Register the target 208 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 209 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 210 211 PassRegistry *PR = PassRegistry::getPassRegistry(); 212 initializeR600ClauseMergePassPass(*PR); 213 initializeR600ControlFlowFinalizerPass(*PR); 214 initializeR600PacketizerPass(*PR); 215 initializeR600ExpandSpecialInstrsPassPass(*PR); 216 initializeR600VectorRegMergerPass(*PR); 217 initializeGlobalISel(*PR); 218 initializeAMDGPUDAGToDAGISelPass(*PR); 219 initializeGCNDPPCombinePass(*PR); 220 initializeSILowerI1CopiesPass(*PR); 221 initializeSILowerSGPRSpillsPass(*PR); 222 initializeSIFixSGPRCopiesPass(*PR); 223 initializeSIFixVGPRCopiesPass(*PR); 224 initializeSIFoldOperandsPass(*PR); 225 initializeSIPeepholeSDWAPass(*PR); 226 initializeSIShrinkInstructionsPass(*PR); 227 initializeSIOptimizeExecMaskingPreRAPass(*PR); 228 initializeSILoadStoreOptimizerPass(*PR); 229 initializeAMDGPUFixFunctionBitcastsPass(*PR); 230 initializeAMDGPUAlwaysInlinePass(*PR); 231 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 232 initializeAMDGPUAnnotateUniformValuesPass(*PR); 233 initializeAMDGPUArgumentUsageInfoPass(*PR); 234 initializeAMDGPUAtomicOptimizerPass(*PR); 235 initializeAMDGPULowerKernelArgumentsPass(*PR); 236 initializeAMDGPULowerKernelAttributesPass(*PR); 237 initializeAMDGPULowerIntrinsicsPass(*PR); 238 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 239 initializeAMDGPUPostLegalizerCombinerPass(*PR); 240 initializeAMDGPUPreLegalizerCombinerPass(*PR); 241 initializeAMDGPUPromoteAllocaPass(*PR); 242 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 243 initializeAMDGPUCodeGenPreparePass(*PR); 244 initializeAMDGPULateCodeGenPreparePass(*PR); 245 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 246 initializeAMDGPUPropagateAttributesLatePass(*PR); 247 initializeAMDGPURewriteOutArgumentsPass(*PR); 248 initializeAMDGPUUnifyMetadataPass(*PR); 249 initializeSIAnnotateControlFlowPass(*PR); 250 initializeSIInsertHardClausesPass(*PR); 251 initializeSIInsertWaitcntsPass(*PR); 252 initializeSIModeRegisterPass(*PR); 253 initializeSIWholeQuadModePass(*PR); 254 initializeSILowerControlFlowPass(*PR); 255 initializeSIRemoveShortExecBranchesPass(*PR); 256 initializeSIPreEmitPeepholePass(*PR); 257 initializeSIInsertSkipsPass(*PR); 258 initializeSIMemoryLegalizerPass(*PR); 259 initializeSIOptimizeExecMaskingPass(*PR); 260 initializeSIPreAllocateWWMRegsPass(*PR); 261 initializeSIFormMemoryClausesPass(*PR); 262 initializeSIPostRABundlerPass(*PR); 263 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 264 initializeAMDGPUAAWrapperPassPass(*PR); 265 initializeAMDGPUExternalAAWrapperPass(*PR); 266 initializeAMDGPUUseNativeCallsPass(*PR); 267 initializeAMDGPUSimplifyLibCallsPass(*PR); 268 initializeAMDGPUInlinerPass(*PR); 269 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 270 initializeGCNRegBankReassignPass(*PR); 271 initializeGCNNSAReassignPass(*PR); 272 initializeSIAddIMGInitPass(*PR); 273 } 274 275 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 276 return std::make_unique<AMDGPUTargetObjectFile>(); 277 } 278 279 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 280 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 281 } 282 283 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 284 return new SIScheduleDAGMI(C); 285 } 286 287 static ScheduleDAGInstrs * 288 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 289 ScheduleDAGMILive *DAG = 290 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 291 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 292 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 293 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 294 return DAG; 295 } 296 297 static ScheduleDAGInstrs * 298 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 299 auto DAG = new GCNIterativeScheduler(C, 300 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 301 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 302 return DAG; 303 } 304 305 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 306 return new GCNIterativeScheduler(C, 307 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 308 } 309 310 static ScheduleDAGInstrs * 311 createIterativeILPMachineScheduler(MachineSchedContext *C) { 312 auto DAG = new GCNIterativeScheduler(C, 313 GCNIterativeScheduler::SCHEDULE_ILP); 314 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 315 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 316 return DAG; 317 } 318 319 static MachineSchedRegistry 320 R600SchedRegistry("r600", "Run R600's custom scheduler", 321 createR600MachineScheduler); 322 323 static MachineSchedRegistry 324 SISchedRegistry("si", "Run SI's custom scheduler", 325 createSIMachineScheduler); 326 327 static MachineSchedRegistry 328 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 329 "Run GCN scheduler to maximize occupancy", 330 createGCNMaxOccupancyMachineScheduler); 331 332 static MachineSchedRegistry 333 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 334 "Run GCN scheduler to maximize occupancy (experimental)", 335 createIterativeGCNMaxOccupancyMachineScheduler); 336 337 static MachineSchedRegistry 338 GCNMinRegSchedRegistry("gcn-minreg", 339 "Run GCN iterative scheduler for minimal register usage (experimental)", 340 createMinRegScheduler); 341 342 static MachineSchedRegistry 343 GCNILPSchedRegistry("gcn-ilp", 344 "Run GCN iterative scheduler for ILP scheduling (experimental)", 345 createIterativeILPMachineScheduler); 346 347 static StringRef computeDataLayout(const Triple &TT) { 348 if (TT.getArch() == Triple::r600) { 349 // 32-bit pointers. 350 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 351 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 352 } 353 354 // 32-bit private, local, and region pointers. 64-bit global, constant and 355 // flat, non-integral buffer fat pointers. 356 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 357 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 358 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 359 "-ni:7"; 360 } 361 362 LLVM_READNONE 363 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 364 if (!GPU.empty()) 365 return GPU; 366 367 // Need to default to a target with flat support for HSA. 368 if (TT.getArch() == Triple::amdgcn) 369 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 370 371 return "r600"; 372 } 373 374 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 375 // The AMDGPU toolchain only supports generating shared objects, so we 376 // must always use PIC. 377 return Reloc::PIC_; 378 } 379 380 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 381 StringRef CPU, StringRef FS, 382 TargetOptions Options, 383 Optional<Reloc::Model> RM, 384 Optional<CodeModel::Model> CM, 385 CodeGenOpt::Level OptLevel) 386 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 387 FS, Options, getEffectiveRelocModel(RM), 388 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 389 TLOF(createTLOF(getTargetTriple())) { 390 initAsmInfo(); 391 if (TT.getArch() == Triple::amdgcn) { 392 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 393 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 394 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 395 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 396 } 397 } 398 399 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 400 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 401 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 402 403 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 404 405 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 406 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 407 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 408 } 409 410 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 411 Attribute FSAttr = F.getFnAttribute("target-features"); 412 413 return FSAttr.isValid() ? FSAttr.getValueAsString() 414 : getTargetFeatureString(); 415 } 416 417 /// Predicate for Internalize pass. 418 static bool mustPreserveGV(const GlobalValue &GV) { 419 if (const Function *F = dyn_cast<Function>(&GV)) 420 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 421 422 return !GV.use_empty(); 423 } 424 425 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 426 Builder.DivergentTarget = true; 427 428 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 429 bool Internalize = InternalizeSymbols; 430 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 431 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 432 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 433 434 if (EnableFunctionCalls) { 435 delete Builder.Inliner; 436 Builder.Inliner = createAMDGPUFunctionInliningPass(); 437 } 438 439 Builder.addExtension( 440 PassManagerBuilder::EP_ModuleOptimizerEarly, 441 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 442 legacy::PassManagerBase &PM) { 443 if (AMDGPUAA) { 444 PM.add(createAMDGPUAAWrapperPass()); 445 PM.add(createAMDGPUExternalAAWrapperPass()); 446 } 447 PM.add(createAMDGPUUnifyMetadataPass()); 448 PM.add(createAMDGPUPrintfRuntimeBinding()); 449 if (Internalize) 450 PM.add(createInternalizePass(mustPreserveGV)); 451 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 452 if (Internalize) 453 PM.add(createGlobalDCEPass()); 454 if (EarlyInline) 455 PM.add(createAMDGPUAlwaysInlinePass(false)); 456 }); 457 458 Builder.addExtension( 459 PassManagerBuilder::EP_EarlyAsPossible, 460 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 461 legacy::PassManagerBase &PM) { 462 if (AMDGPUAA) { 463 PM.add(createAMDGPUAAWrapperPass()); 464 PM.add(createAMDGPUExternalAAWrapperPass()); 465 } 466 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 467 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 468 if (LibCallSimplify) 469 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 470 }); 471 472 Builder.addExtension( 473 PassManagerBuilder::EP_CGSCCOptimizerLate, 474 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 475 // Add infer address spaces pass to the opt pipeline after inlining 476 // but before SROA to increase SROA opportunities. 477 PM.add(createInferAddressSpacesPass()); 478 479 // This should run after inlining to have any chance of doing anything, 480 // and before other cleanup optimizations. 481 PM.add(createAMDGPULowerKernelAttributesPass()); 482 483 // Promote alloca to vector before SROA and loop unroll. If we manage 484 // to eliminate allocas before unroll we may choose to unroll less. 485 if (EnableOpt) 486 PM.add(createAMDGPUPromoteAllocaToVector()); 487 }); 488 } 489 490 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB, 491 bool DebugPassManager) { 492 PB.registerPipelineParsingCallback( 493 [this](StringRef PassName, FunctionPassManager &PM, 494 ArrayRef<PassBuilder::PipelineElement>) { 495 if (PassName == "amdgpu-simplifylib") { 496 PM.addPass(AMDGPUSimplifyLibCallsPass()); 497 return true; 498 } 499 if (PassName == "amdgpu-usenative") { 500 PM.addPass(AMDGPUUseNativeCallsPass()); 501 return true; 502 } 503 if (PassName == "amdgpu-promote-alloca") { 504 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 505 return true; 506 } 507 if (PassName == "amdgpu-promote-alloca-to-vector") { 508 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 509 return true; 510 } 511 if (PassName == "amdgpu-lower-kernel-attributes") { 512 PM.addPass(AMDGPULowerKernelAttributesPass()); 513 return true; 514 } 515 return false; 516 }); 517 518 PB.registerPipelineStartEPCallback([DebugPassManager]( 519 ModulePassManager &PM, 520 PassBuilder::OptimizationLevel Level) { 521 FunctionPassManager FPM(DebugPassManager); 522 FPM.addPass(AMDGPUUseNativeCallsPass()); 523 if (EnableLibCallSimplify && Level != PassBuilder::OptimizationLevel::O0) 524 FPM.addPass(AMDGPUSimplifyLibCallsPass()); 525 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 526 }); 527 528 PB.registerCGSCCOptimizerLateEPCallback( 529 [this, DebugPassManager](CGSCCPassManager &PM, 530 PassBuilder::OptimizationLevel Level) { 531 FunctionPassManager FPM(DebugPassManager); 532 533 // Add infer address spaces pass to the opt pipeline after inlining 534 // but before SROA to increase SROA opportunities. 535 FPM.addPass(InferAddressSpacesPass()); 536 537 // This should run after inlining to have any chance of doing 538 // anything, and before other cleanup optimizations. 539 FPM.addPass(AMDGPULowerKernelAttributesPass()); 540 541 if (Level != PassBuilder::OptimizationLevel::O0) { 542 // Promote alloca to vector before SROA and loop unroll. If we 543 // manage to eliminate allocas before unroll we may choose to unroll 544 // less. 545 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 546 } 547 548 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 549 }); 550 } 551 552 //===----------------------------------------------------------------------===// 553 // R600 Target Machine (R600 -> Cayman) 554 //===----------------------------------------------------------------------===// 555 556 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 557 StringRef CPU, StringRef FS, 558 TargetOptions Options, 559 Optional<Reloc::Model> RM, 560 Optional<CodeModel::Model> CM, 561 CodeGenOpt::Level OL, bool JIT) 562 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 563 setRequiresStructuredCFG(true); 564 565 // Override the default since calls aren't supported for r600. 566 if (EnableFunctionCalls && 567 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 568 EnableFunctionCalls = false; 569 } 570 571 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 572 const Function &F) const { 573 StringRef GPU = getGPUName(F); 574 StringRef FS = getFeatureString(F); 575 576 SmallString<128> SubtargetKey(GPU); 577 SubtargetKey.append(FS); 578 579 auto &I = SubtargetMap[SubtargetKey]; 580 if (!I) { 581 // This needs to be done before we create a new subtarget since any 582 // creation will depend on the TM and the code generation flags on the 583 // function that reside in TargetOptions. 584 resetTargetOptions(F); 585 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 586 } 587 588 return I.get(); 589 } 590 591 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 592 unsigned DestAS) const { 593 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 594 AMDGPU::isFlatGlobalAddrSpace(DestAS); 595 } 596 597 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 598 const auto *LD = dyn_cast<LoadInst>(V); 599 if (!LD) 600 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 601 602 // It must be a generic pointer loaded. 603 assert(V->getType()->isPointerTy() && 604 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 605 606 const auto *Ptr = LD->getPointerOperand(); 607 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 608 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 609 // For a generic pointer loaded from the constant memory, it could be assumed 610 // as a global pointer since the constant memory is only populated on the 611 // host side. As implied by the offload programming model, only global 612 // pointers could be referenced on the host side. 613 return AMDGPUAS::GLOBAL_ADDRESS; 614 } 615 616 TargetTransformInfo 617 R600TargetMachine::getTargetTransformInfo(const Function &F) { 618 return TargetTransformInfo(R600TTIImpl(this, F)); 619 } 620 621 //===----------------------------------------------------------------------===// 622 // GCN Target Machine (SI+) 623 //===----------------------------------------------------------------------===// 624 625 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 626 StringRef CPU, StringRef FS, 627 TargetOptions Options, 628 Optional<Reloc::Model> RM, 629 Optional<CodeModel::Model> CM, 630 CodeGenOpt::Level OL, bool JIT) 631 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 632 633 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 634 StringRef GPU = getGPUName(F); 635 StringRef FS = getFeatureString(F); 636 637 SmallString<128> SubtargetKey(GPU); 638 SubtargetKey.append(FS); 639 640 auto &I = SubtargetMap[SubtargetKey]; 641 if (!I) { 642 // This needs to be done before we create a new subtarget since any 643 // creation will depend on the TM and the code generation flags on the 644 // function that reside in TargetOptions. 645 resetTargetOptions(F); 646 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 647 } 648 649 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 650 651 return I.get(); 652 } 653 654 TargetTransformInfo 655 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 656 return TargetTransformInfo(GCNTTIImpl(this, F)); 657 } 658 659 //===----------------------------------------------------------------------===// 660 // AMDGPU Pass Setup 661 //===----------------------------------------------------------------------===// 662 663 namespace { 664 665 class AMDGPUPassConfig : public TargetPassConfig { 666 public: 667 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 668 : TargetPassConfig(TM, PM) { 669 // Exceptions and StackMaps are not supported, so these passes will never do 670 // anything. 671 disablePass(&StackMapLivenessID); 672 disablePass(&FuncletLayoutID); 673 } 674 675 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 676 return getTM<AMDGPUTargetMachine>(); 677 } 678 679 ScheduleDAGInstrs * 680 createMachineScheduler(MachineSchedContext *C) const override { 681 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 682 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 683 return DAG; 684 } 685 686 void addEarlyCSEOrGVNPass(); 687 void addStraightLineScalarOptimizationPasses(); 688 void addIRPasses() override; 689 void addCodeGenPrepare() override; 690 bool addPreISel() override; 691 bool addInstSelector() override; 692 bool addGCPasses() override; 693 694 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 695 }; 696 697 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 698 return getStandardCSEConfigForOpt(TM->getOptLevel()); 699 } 700 701 class R600PassConfig final : public AMDGPUPassConfig { 702 public: 703 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 704 : AMDGPUPassConfig(TM, PM) {} 705 706 ScheduleDAGInstrs *createMachineScheduler( 707 MachineSchedContext *C) const override { 708 return createR600MachineScheduler(C); 709 } 710 711 bool addPreISel() override; 712 bool addInstSelector() override; 713 void addPreRegAlloc() override; 714 void addPreSched2() override; 715 void addPreEmitPass() override; 716 }; 717 718 class GCNPassConfig final : public AMDGPUPassConfig { 719 public: 720 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 721 : AMDGPUPassConfig(TM, PM) { 722 // It is necessary to know the register usage of the entire call graph. We 723 // allow calls without EnableAMDGPUFunctionCalls if they are marked 724 // noinline, so this is always required. 725 setRequiresCodeGenSCCOrder(true); 726 } 727 728 GCNTargetMachine &getGCNTargetMachine() const { 729 return getTM<GCNTargetMachine>(); 730 } 731 732 ScheduleDAGInstrs * 733 createMachineScheduler(MachineSchedContext *C) const override; 734 735 bool addPreISel() override; 736 void addMachineSSAOptimization() override; 737 bool addILPOpts() override; 738 bool addInstSelector() override; 739 bool addIRTranslator() override; 740 void addPreLegalizeMachineIR() override; 741 bool addLegalizeMachineIR() override; 742 void addPreRegBankSelect() override; 743 bool addRegBankSelect() override; 744 bool addGlobalInstructionSelect() override; 745 void addFastRegAlloc() override; 746 void addOptimizedRegAlloc() override; 747 void addPreRegAlloc() override; 748 bool addPreRewrite() override; 749 void addPostRegAlloc() override; 750 void addPreSched2() override; 751 void addPreEmitPass() override; 752 }; 753 754 } // end anonymous namespace 755 756 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 757 if (getOptLevel() == CodeGenOpt::Aggressive) 758 addPass(createGVNPass()); 759 else 760 addPass(createEarlyCSEPass()); 761 } 762 763 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 764 addPass(createLICMPass()); 765 addPass(createSeparateConstOffsetFromGEPPass()); 766 addPass(createSpeculativeExecutionPass()); 767 // ReassociateGEPs exposes more opportunites for SLSR. See 768 // the example in reassociate-geps-and-slsr.ll. 769 addPass(createStraightLineStrengthReducePass()); 770 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 771 // EarlyCSE can reuse. 772 addEarlyCSEOrGVNPass(); 773 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 774 addPass(createNaryReassociatePass()); 775 // NaryReassociate on GEPs creates redundant common expressions, so run 776 // EarlyCSE after it. 777 addPass(createEarlyCSEPass()); 778 } 779 780 void AMDGPUPassConfig::addIRPasses() { 781 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 782 783 // There is no reason to run these. 784 disablePass(&StackMapLivenessID); 785 disablePass(&FuncletLayoutID); 786 disablePass(&PatchableFunctionID); 787 788 addPass(createAMDGPUPrintfRuntimeBinding()); 789 790 // This must occur before inlining, as the inliner will not look through 791 // bitcast calls. 792 addPass(createAMDGPUFixFunctionBitcastsPass()); 793 794 // A call to propagate attributes pass in the backend in case opt was not run. 795 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 796 797 addPass(createAtomicExpandPass()); 798 799 800 addPass(createAMDGPULowerIntrinsicsPass()); 801 802 // Function calls are not supported, so make sure we inline everything. 803 addPass(createAMDGPUAlwaysInlinePass()); 804 addPass(createAlwaysInlinerLegacyPass()); 805 // We need to add the barrier noop pass, otherwise adding the function 806 // inlining pass will cause all of the PassConfigs passes to be run 807 // one function at a time, which means if we have a nodule with two 808 // functions, then we will generate code for the first function 809 // without ever running any passes on the second. 810 addPass(createBarrierNoopPass()); 811 812 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 813 if (TM.getTargetTriple().getArch() == Triple::r600) 814 addPass(createR600OpenCLImageTypeLoweringPass()); 815 816 // Replace OpenCL enqueued block function pointers with global variables. 817 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 818 819 if (TM.getOptLevel() > CodeGenOpt::None) { 820 addPass(createInferAddressSpacesPass()); 821 addPass(createAMDGPUPromoteAlloca()); 822 823 if (EnableSROA) 824 addPass(createSROAPass()); 825 826 if (EnableScalarIRPasses) 827 addStraightLineScalarOptimizationPasses(); 828 829 if (EnableAMDGPUAliasAnalysis) { 830 addPass(createAMDGPUAAWrapperPass()); 831 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 832 AAResults &AAR) { 833 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 834 AAR.addAAResult(WrapperPass->getResult()); 835 })); 836 } 837 } 838 839 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 840 // TODO: May want to move later or split into an early and late one. 841 addPass(createAMDGPUCodeGenPreparePass()); 842 } 843 844 TargetPassConfig::addIRPasses(); 845 846 // EarlyCSE is not always strong enough to clean up what LSR produces. For 847 // example, GVN can combine 848 // 849 // %0 = add %a, %b 850 // %1 = add %b, %a 851 // 852 // and 853 // 854 // %0 = shl nsw %a, 2 855 // %1 = shl %a, 2 856 // 857 // but EarlyCSE can do neither of them. 858 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 859 addEarlyCSEOrGVNPass(); 860 } 861 862 void AMDGPUPassConfig::addCodeGenPrepare() { 863 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 864 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 865 866 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 867 EnableLowerKernelArguments) 868 addPass(createAMDGPULowerKernelArgumentsPass()); 869 870 addPass(&AMDGPUPerfHintAnalysisID); 871 872 TargetPassConfig::addCodeGenPrepare(); 873 874 if (EnableLoadStoreVectorizer) 875 addPass(createLoadStoreVectorizerPass()); 876 877 // LowerSwitch pass may introduce unreachable blocks that can 878 // cause unexpected behavior for subsequent passes. Placing it 879 // here seems better that these blocks would get cleaned up by 880 // UnreachableBlockElim inserted next in the pass flow. 881 addPass(createLowerSwitchPass()); 882 } 883 884 bool AMDGPUPassConfig::addPreISel() { 885 addPass(createFlattenCFGPass()); 886 return false; 887 } 888 889 bool AMDGPUPassConfig::addInstSelector() { 890 // Defer the verifier until FinalizeISel. 891 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 892 return false; 893 } 894 895 bool AMDGPUPassConfig::addGCPasses() { 896 // Do nothing. GC is not supported. 897 return false; 898 } 899 900 //===----------------------------------------------------------------------===// 901 // R600 Pass Setup 902 //===----------------------------------------------------------------------===// 903 904 bool R600PassConfig::addPreISel() { 905 AMDGPUPassConfig::addPreISel(); 906 907 if (EnableR600StructurizeCFG) 908 addPass(createStructurizeCFGPass()); 909 return false; 910 } 911 912 bool R600PassConfig::addInstSelector() { 913 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 914 return false; 915 } 916 917 void R600PassConfig::addPreRegAlloc() { 918 addPass(createR600VectorRegMerger()); 919 } 920 921 void R600PassConfig::addPreSched2() { 922 addPass(createR600EmitClauseMarkers(), false); 923 if (EnableR600IfConvert) 924 addPass(&IfConverterID, false); 925 addPass(createR600ClauseMergePass(), false); 926 } 927 928 void R600PassConfig::addPreEmitPass() { 929 addPass(createAMDGPUCFGStructurizerPass(), false); 930 addPass(createR600ExpandSpecialInstrsPass(), false); 931 addPass(&FinalizeMachineBundlesID, false); 932 addPass(createR600Packetizer(), false); 933 addPass(createR600ControlFlowFinalizer(), false); 934 } 935 936 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 937 return new R600PassConfig(*this, PM); 938 } 939 940 //===----------------------------------------------------------------------===// 941 // GCN Pass Setup 942 //===----------------------------------------------------------------------===// 943 944 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 945 MachineSchedContext *C) const { 946 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 947 if (ST.enableSIScheduler()) 948 return createSIMachineScheduler(C); 949 return createGCNMaxOccupancyMachineScheduler(C); 950 } 951 952 bool GCNPassConfig::addPreISel() { 953 AMDGPUPassConfig::addPreISel(); 954 955 addPass(createAMDGPULateCodeGenPreparePass()); 956 if (EnableAtomicOptimizations) { 957 addPass(createAMDGPUAtomicOptimizerPass()); 958 } 959 960 // FIXME: We need to run a pass to propagate the attributes when calls are 961 // supported. 962 963 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 964 // regions formed by them. 965 addPass(&AMDGPUUnifyDivergentExitNodesID); 966 if (!LateCFGStructurize) { 967 if (EnableStructurizerWorkarounds) { 968 addPass(createFixIrreduciblePass()); 969 addPass(createUnifyLoopExitsPass()); 970 } 971 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 972 } 973 addPass(createSinkingPass()); 974 addPass(createAMDGPUAnnotateUniformValues()); 975 if (!LateCFGStructurize) { 976 addPass(createSIAnnotateControlFlowPass()); 977 } 978 addPass(createLCSSAPass()); 979 980 return false; 981 } 982 983 void GCNPassConfig::addMachineSSAOptimization() { 984 TargetPassConfig::addMachineSSAOptimization(); 985 986 // We want to fold operands after PeepholeOptimizer has run (or as part of 987 // it), because it will eliminate extra copies making it easier to fold the 988 // real source operand. We want to eliminate dead instructions after, so that 989 // we see fewer uses of the copies. We then need to clean up the dead 990 // instructions leftover after the operands are folded as well. 991 // 992 // XXX - Can we get away without running DeadMachineInstructionElim again? 993 addPass(&SIFoldOperandsID); 994 if (EnableDPPCombine) 995 addPass(&GCNDPPCombineID); 996 addPass(&DeadMachineInstructionElimID); 997 addPass(&SILoadStoreOptimizerID); 998 if (EnableSDWAPeephole) { 999 addPass(&SIPeepholeSDWAID); 1000 addPass(&EarlyMachineLICMID); 1001 addPass(&MachineCSEID); 1002 addPass(&SIFoldOperandsID); 1003 addPass(&DeadMachineInstructionElimID); 1004 } 1005 addPass(createSIShrinkInstructionsPass()); 1006 } 1007 1008 bool GCNPassConfig::addILPOpts() { 1009 if (EnableEarlyIfConversion) 1010 addPass(&EarlyIfConverterID); 1011 1012 TargetPassConfig::addILPOpts(); 1013 return false; 1014 } 1015 1016 bool GCNPassConfig::addInstSelector() { 1017 AMDGPUPassConfig::addInstSelector(); 1018 addPass(&SIFixSGPRCopiesID); 1019 addPass(createSILowerI1CopiesPass()); 1020 addPass(createSIAddIMGInitPass()); 1021 return false; 1022 } 1023 1024 bool GCNPassConfig::addIRTranslator() { 1025 addPass(new IRTranslator(getOptLevel())); 1026 return false; 1027 } 1028 1029 void GCNPassConfig::addPreLegalizeMachineIR() { 1030 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1031 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1032 addPass(new Localizer()); 1033 } 1034 1035 bool GCNPassConfig::addLegalizeMachineIR() { 1036 addPass(new Legalizer()); 1037 return false; 1038 } 1039 1040 void GCNPassConfig::addPreRegBankSelect() { 1041 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1042 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1043 } 1044 1045 bool GCNPassConfig::addRegBankSelect() { 1046 addPass(new RegBankSelect()); 1047 return false; 1048 } 1049 1050 bool GCNPassConfig::addGlobalInstructionSelect() { 1051 addPass(new InstructionSelect()); 1052 return false; 1053 } 1054 1055 void GCNPassConfig::addPreRegAlloc() { 1056 if (LateCFGStructurize) { 1057 addPass(createAMDGPUMachineCFGStructurizerPass()); 1058 } 1059 } 1060 1061 void GCNPassConfig::addFastRegAlloc() { 1062 // FIXME: We have to disable the verifier here because of PHIElimination + 1063 // TwoAddressInstructions disabling it. 1064 1065 // This must be run immediately after phi elimination and before 1066 // TwoAddressInstructions, otherwise the processing of the tied operand of 1067 // SI_ELSE will introduce a copy of the tied operand source after the else. 1068 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1069 1070 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1071 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1072 1073 TargetPassConfig::addFastRegAlloc(); 1074 } 1075 1076 void GCNPassConfig::addOptimizedRegAlloc() { 1077 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1078 // instructions that cause scheduling barriers. 1079 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1080 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1081 1082 if (OptExecMaskPreRA) 1083 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1084 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1085 1086 // This must be run immediately after phi elimination and before 1087 // TwoAddressInstructions, otherwise the processing of the tied operand of 1088 // SI_ELSE will introduce a copy of the tied operand source after the else. 1089 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1090 1091 if (EnableDCEInRA) 1092 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1093 1094 TargetPassConfig::addOptimizedRegAlloc(); 1095 } 1096 1097 bool GCNPassConfig::addPreRewrite() { 1098 if (EnableRegReassign) { 1099 addPass(&GCNNSAReassignID); 1100 addPass(&GCNRegBankReassignID); 1101 } 1102 return true; 1103 } 1104 1105 void GCNPassConfig::addPostRegAlloc() { 1106 addPass(&SIFixVGPRCopiesID); 1107 if (getOptLevel() > CodeGenOpt::None) 1108 addPass(&SIOptimizeExecMaskingID); 1109 TargetPassConfig::addPostRegAlloc(); 1110 1111 // Equivalent of PEI for SGPRs. 1112 addPass(&SILowerSGPRSpillsID); 1113 } 1114 1115 void GCNPassConfig::addPreSched2() { 1116 addPass(&SIPostRABundlerID); 1117 } 1118 1119 void GCNPassConfig::addPreEmitPass() { 1120 addPass(createSIMemoryLegalizerPass()); 1121 addPass(createSIInsertWaitcntsPass()); 1122 addPass(createSIShrinkInstructionsPass()); 1123 addPass(createSIModeRegisterPass()); 1124 1125 if (getOptLevel() > CodeGenOpt::None) 1126 addPass(&SIInsertHardClausesID); 1127 1128 addPass(&SIRemoveShortExecBranchesID); 1129 addPass(&SIInsertSkipsPassID); 1130 addPass(&SIPreEmitPeepholeID); 1131 // The hazard recognizer that runs as part of the post-ra scheduler does not 1132 // guarantee to be able handle all hazards correctly. This is because if there 1133 // are multiple scheduling regions in a basic block, the regions are scheduled 1134 // bottom up, so when we begin to schedule a region we don't know what 1135 // instructions were emitted directly before it. 1136 // 1137 // Here we add a stand-alone hazard recognizer pass which can handle all 1138 // cases. 1139 addPass(&PostRAHazardRecognizerID); 1140 addPass(&BranchRelaxationPassID); 1141 } 1142 1143 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1144 return new GCNPassConfig(*this, PM); 1145 } 1146 1147 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1148 return new yaml::SIMachineFunctionInfo(); 1149 } 1150 1151 yaml::MachineFunctionInfo * 1152 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1153 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1154 return new yaml::SIMachineFunctionInfo(*MFI, 1155 *MF.getSubtarget().getRegisterInfo()); 1156 } 1157 1158 bool GCNTargetMachine::parseMachineFunctionInfo( 1159 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1160 SMDiagnostic &Error, SMRange &SourceRange) const { 1161 const yaml::SIMachineFunctionInfo &YamlMFI = 1162 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1163 MachineFunction &MF = PFS.MF; 1164 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1165 1166 MFI->initializeBaseYamlFields(YamlMFI); 1167 1168 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1169 Register TempReg; 1170 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1171 SourceRange = RegName.SourceRange; 1172 return true; 1173 } 1174 RegVal = TempReg; 1175 1176 return false; 1177 }; 1178 1179 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1180 // Create a diagnostic for a the register string literal. 1181 const MemoryBuffer &Buffer = 1182 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1183 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1184 RegName.Value.size(), SourceMgr::DK_Error, 1185 "incorrect register class for field", RegName.Value, 1186 None, None); 1187 SourceRange = RegName.SourceRange; 1188 return true; 1189 }; 1190 1191 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1192 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1193 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1194 return true; 1195 1196 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1197 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1198 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1199 } 1200 1201 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1202 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1203 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1204 } 1205 1206 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1207 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1208 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1209 } 1210 1211 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1212 const TargetRegisterClass &RC, 1213 ArgDescriptor &Arg, unsigned UserSGPRs, 1214 unsigned SystemSGPRs) { 1215 // Skip parsing if it's not present. 1216 if (!A) 1217 return false; 1218 1219 if (A->IsRegister) { 1220 Register Reg; 1221 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1222 SourceRange = A->RegisterName.SourceRange; 1223 return true; 1224 } 1225 if (!RC.contains(Reg)) 1226 return diagnoseRegisterClass(A->RegisterName); 1227 Arg = ArgDescriptor::createRegister(Reg); 1228 } else 1229 Arg = ArgDescriptor::createStack(A->StackOffset); 1230 // Check and apply the optional mask. 1231 if (A->Mask) 1232 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1233 1234 MFI->NumUserSGPRs += UserSGPRs; 1235 MFI->NumSystemSGPRs += SystemSGPRs; 1236 return false; 1237 }; 1238 1239 if (YamlMFI.ArgInfo && 1240 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1241 AMDGPU::SGPR_128RegClass, 1242 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1243 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1244 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1245 2, 0) || 1246 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1247 MFI->ArgInfo.QueuePtr, 2, 0) || 1248 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1249 AMDGPU::SReg_64RegClass, 1250 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1251 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1252 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1253 2, 0) || 1254 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1255 AMDGPU::SReg_64RegClass, 1256 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1257 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1258 AMDGPU::SGPR_32RegClass, 1259 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1260 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1261 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1262 0, 1) || 1263 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1264 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1265 0, 1) || 1266 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1267 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1268 0, 1) || 1269 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1270 AMDGPU::SGPR_32RegClass, 1271 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1272 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1273 AMDGPU::SGPR_32RegClass, 1274 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1275 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1276 AMDGPU::SReg_64RegClass, 1277 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1278 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1279 AMDGPU::SReg_64RegClass, 1280 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1281 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1282 AMDGPU::VGPR_32RegClass, 1283 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1284 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1285 AMDGPU::VGPR_32RegClass, 1286 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1287 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1288 AMDGPU::VGPR_32RegClass, 1289 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1290 return true; 1291 1292 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1293 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1294 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1295 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1296 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1297 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1298 1299 return false; 1300 } 1301