1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUAliasAnalysis.h" 19 #include "AMDGPUCallLowering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "R600MachineScheduler.h" 28 #include "SIMachineScheduler.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/LegacyPassManager.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Target/TargetLoweringObjectFile.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/IPO/AlwaysInliner.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Vectorize.h" 49 #include <memory> 50 51 using namespace llvm; 52 53 static cl::opt<bool> EnableR600StructurizeCFG( 54 "r600-ir-structurize", 55 cl::desc("Use StructurizeCFG IR pass"), 56 cl::init(true)); 57 58 static cl::opt<bool> EnableSROA( 59 "amdgpu-sroa", 60 cl::desc("Run SROA after promote alloca pass"), 61 cl::ReallyHidden, 62 cl::init(true)); 63 64 static cl::opt<bool> 65 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 66 cl::desc("Run early if-conversion"), 67 cl::init(false)); 68 69 static cl::opt<bool> EnableR600IfConvert( 70 "r600-if-convert", 71 cl::desc("Use if conversion pass"), 72 cl::ReallyHidden, 73 cl::init(true)); 74 75 // Option to disable vectorizer for tests. 76 static cl::opt<bool> EnableLoadStoreVectorizer( 77 "amdgpu-load-store-vectorizer", 78 cl::desc("Enable load store vectorizer"), 79 cl::init(true), 80 cl::Hidden); 81 82 // Option to to control global loads scalarization 83 static cl::opt<bool> ScalarizeGlobal( 84 "amdgpu-scalarize-global-loads", 85 cl::desc("Enable global load scalarization"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to run internalize pass. 90 static cl::opt<bool> InternalizeSymbols( 91 "amdgpu-internalize-symbols", 92 cl::desc("Enable elimination of non-kernel functions and unused globals"), 93 cl::init(false), 94 cl::Hidden); 95 96 // Option to inline all early. 97 static cl::opt<bool> EarlyInlineAll( 98 "amdgpu-early-inline-all", 99 cl::desc("Inline all functions early"), 100 cl::init(false), 101 cl::Hidden); 102 103 static cl::opt<bool> EnableSDWAPeephole( 104 "amdgpu-sdwa-peephole", 105 cl::desc("Enable SDWA peepholer"), 106 cl::init(true)); 107 108 // Enable address space based alias analysis 109 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 110 cl::desc("Enable AMDGPU Alias Analysis"), 111 cl::init(true)); 112 113 // Option to enable new waitcnt insertion pass. 114 static cl::opt<bool> EnableSIInsertWaitcntsPass( 115 "enable-si-insert-waitcnts", 116 cl::desc("Use new waitcnt insertion pass"), 117 cl::init(true)); 118 119 // Option to run late CFG structurizer 120 static cl::opt<bool> LateCFGStructurize( 121 "amdgpu-late-structurize", 122 cl::desc("Enable late CFG structurization"), 123 cl::init(false), 124 cl::Hidden); 125 126 extern "C" void LLVMInitializeAMDGPUTarget() { 127 // Register the target 128 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 129 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 130 131 PassRegistry *PR = PassRegistry::getPassRegistry(); 132 initializeSILowerI1CopiesPass(*PR); 133 initializeSIFixSGPRCopiesPass(*PR); 134 initializeSIFixVGPRCopiesPass(*PR); 135 initializeSIFoldOperandsPass(*PR); 136 initializeSIPeepholeSDWAPass(*PR); 137 initializeSIShrinkInstructionsPass(*PR); 138 initializeSIFixControlFlowLiveIntervalsPass(*PR); 139 initializeSILoadStoreOptimizerPass(*PR); 140 initializeAMDGPUAlwaysInlinePass(*PR); 141 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 142 initializeAMDGPUAnnotateUniformValuesPass(*PR); 143 initializeAMDGPULowerIntrinsicsPass(*PR); 144 initializeAMDGPUPromoteAllocaPass(*PR); 145 initializeAMDGPUCodeGenPreparePass(*PR); 146 initializeAMDGPURewriteOutArgumentsPass(*PR); 147 initializeAMDGPUUnifyMetadataPass(*PR); 148 initializeSIAnnotateControlFlowPass(*PR); 149 initializeSIInsertWaitsPass(*PR); 150 initializeSIInsertWaitcntsPass(*PR); 151 initializeSIWholeQuadModePass(*PR); 152 initializeSILowerControlFlowPass(*PR); 153 initializeSIInsertSkipsPass(*PR); 154 initializeSIMemoryLegalizerPass(*PR); 155 initializeSIDebuggerInsertNopsPass(*PR); 156 initializeSIOptimizeExecMaskingPass(*PR); 157 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 158 initializeAMDGPUAAWrapperPassPass(*PR); 159 } 160 161 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 162 return llvm::make_unique<AMDGPUTargetObjectFile>(); 163 } 164 165 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 166 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 167 } 168 169 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 170 return new SIScheduleDAGMI(C); 171 } 172 173 static ScheduleDAGInstrs * 174 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 175 ScheduleDAGMILive *DAG = 176 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 177 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 178 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 179 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 180 return DAG; 181 } 182 183 static ScheduleDAGInstrs * 184 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 185 auto DAG = new GCNIterativeScheduler(C, 186 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 187 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 188 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 189 return DAG; 190 } 191 192 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 193 return new GCNIterativeScheduler(C, 194 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 195 } 196 197 static MachineSchedRegistry 198 R600SchedRegistry("r600", "Run R600's custom scheduler", 199 createR600MachineScheduler); 200 201 static MachineSchedRegistry 202 SISchedRegistry("si", "Run SI's custom scheduler", 203 createSIMachineScheduler); 204 205 static MachineSchedRegistry 206 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 207 "Run GCN scheduler to maximize occupancy", 208 createGCNMaxOccupancyMachineScheduler); 209 210 static MachineSchedRegistry 211 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 212 "Run GCN scheduler to maximize occupancy (experimental)", 213 createIterativeGCNMaxOccupancyMachineScheduler); 214 215 static MachineSchedRegistry 216 GCNMinRegSchedRegistry("gcn-minreg", 217 "Run GCN iterative scheduler for minimal register usage (experimental)", 218 createMinRegScheduler); 219 220 static StringRef computeDataLayout(const Triple &TT) { 221 if (TT.getArch() == Triple::r600) { 222 // 32-bit pointers. 223 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 224 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 225 } 226 227 // 32-bit private, local, and region pointers. 64-bit global, constant and 228 // flat. 229 if (TT.getEnvironmentName() == "amdgiz" || 230 TT.getEnvironmentName() == "amdgizcl") 231 return "e-p:64:64-p1:64:64-p2:64:64-p3:32:32-p4:32:32-p5:32:32" 232 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 233 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-A5"; 234 return "e-p:32:32-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32" 235 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 236 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 237 } 238 239 LLVM_READNONE 240 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 241 if (!GPU.empty()) 242 return GPU; 243 244 // HSA only supports CI+, so change the default GPU to a CI for HSA. 245 if (TT.getArch() == Triple::amdgcn) 246 return (TT.getOS() == Triple::AMDHSA) ? "kaveri" : "tahiti"; 247 248 return "r600"; 249 } 250 251 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 252 // The AMDGPU toolchain only supports generating shared objects, so we 253 // must always use PIC. 254 return Reloc::PIC_; 255 } 256 257 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 258 StringRef CPU, StringRef FS, 259 TargetOptions Options, 260 Optional<Reloc::Model> RM, 261 CodeModel::Model CM, 262 CodeGenOpt::Level OptLevel) 263 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 264 FS, Options, getEffectiveRelocModel(RM), CM, OptLevel), 265 TLOF(createTLOF(getTargetTriple())) { 266 AS = AMDGPU::getAMDGPUAS(TT); 267 initAsmInfo(); 268 } 269 270 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 271 272 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 273 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 274 return GPUAttr.hasAttribute(Attribute::None) ? 275 getTargetCPU() : GPUAttr.getValueAsString(); 276 } 277 278 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 279 Attribute FSAttr = F.getFnAttribute("target-features"); 280 281 return FSAttr.hasAttribute(Attribute::None) ? 282 getTargetFeatureString() : 283 FSAttr.getValueAsString(); 284 } 285 286 static ImmutablePass *createAMDGPUExternalAAWrapperPass() { 287 return createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) { 288 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 289 AAR.addAAResult(WrapperPass->getResult()); 290 }); 291 } 292 293 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 294 Builder.DivergentTarget = true; 295 296 bool Internalize = InternalizeSymbols && 297 (getOptLevel() > CodeGenOpt::None) && 298 (getTargetTriple().getArch() == Triple::amdgcn); 299 bool EarlyInline = EarlyInlineAll && 300 (getOptLevel() > CodeGenOpt::None); 301 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && getOptLevel() > CodeGenOpt::None; 302 303 Builder.addExtension( 304 PassManagerBuilder::EP_ModuleOptimizerEarly, 305 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 306 legacy::PassManagerBase &PM) { 307 if (AMDGPUAA) { 308 PM.add(createAMDGPUAAWrapperPass()); 309 PM.add(createAMDGPUExternalAAWrapperPass()); 310 } 311 PM.add(createAMDGPUUnifyMetadataPass()); 312 if (Internalize) { 313 PM.add(createInternalizePass([=](const GlobalValue &GV) -> bool { 314 if (const Function *F = dyn_cast<Function>(&GV)) { 315 if (F->isDeclaration()) 316 return true; 317 switch (F->getCallingConv()) { 318 default: 319 return false; 320 case CallingConv::AMDGPU_VS: 321 case CallingConv::AMDGPU_HS: 322 case CallingConv::AMDGPU_GS: 323 case CallingConv::AMDGPU_PS: 324 case CallingConv::AMDGPU_CS: 325 case CallingConv::AMDGPU_KERNEL: 326 case CallingConv::SPIR_KERNEL: 327 return true; 328 } 329 } 330 return !GV.use_empty(); 331 })); 332 PM.add(createGlobalDCEPass()); 333 } 334 if (EarlyInline) 335 PM.add(createAMDGPUAlwaysInlinePass(false)); 336 }); 337 338 Builder.addExtension( 339 PassManagerBuilder::EP_EarlyAsPossible, 340 [AMDGPUAA](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 341 if (AMDGPUAA) { 342 PM.add(createAMDGPUAAWrapperPass()); 343 PM.add(createAMDGPUExternalAAWrapperPass()); 344 } 345 }); 346 347 Builder.addExtension( 348 PassManagerBuilder::EP_CGSCCOptimizerLate, 349 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 350 // Add infer address spaces pass to the opt pipeline after inlining 351 // but before SROA to increase SROA opportunities. 352 PM.add(createInferAddressSpacesPass()); 353 }); 354 } 355 356 //===----------------------------------------------------------------------===// 357 // R600 Target Machine (R600 -> Cayman) 358 //===----------------------------------------------------------------------===// 359 360 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 361 StringRef CPU, StringRef FS, 362 TargetOptions Options, 363 Optional<Reloc::Model> RM, 364 CodeModel::Model CM, CodeGenOpt::Level OL) 365 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 366 setRequiresStructuredCFG(true); 367 } 368 369 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 370 const Function &F) const { 371 StringRef GPU = getGPUName(F); 372 StringRef FS = getFeatureString(F); 373 374 SmallString<128> SubtargetKey(GPU); 375 SubtargetKey.append(FS); 376 377 auto &I = SubtargetMap[SubtargetKey]; 378 if (!I) { 379 // This needs to be done before we create a new subtarget since any 380 // creation will depend on the TM and the code generation flags on the 381 // function that reside in TargetOptions. 382 resetTargetOptions(F); 383 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 384 } 385 386 return I.get(); 387 } 388 389 //===----------------------------------------------------------------------===// 390 // GCN Target Machine (SI+) 391 //===----------------------------------------------------------------------===// 392 393 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 394 StringRef CPU, StringRef FS, 395 TargetOptions Options, 396 Optional<Reloc::Model> RM, 397 CodeModel::Model CM, CodeGenOpt::Level OL) 398 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 399 400 const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 401 StringRef GPU = getGPUName(F); 402 StringRef FS = getFeatureString(F); 403 404 SmallString<128> SubtargetKey(GPU); 405 SubtargetKey.append(FS); 406 407 auto &I = SubtargetMap[SubtargetKey]; 408 if (!I) { 409 // This needs to be done before we create a new subtarget since any 410 // creation will depend on the TM and the code generation flags on the 411 // function that reside in TargetOptions. 412 resetTargetOptions(F); 413 I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this); 414 } 415 416 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 417 418 return I.get(); 419 } 420 421 //===----------------------------------------------------------------------===// 422 // AMDGPU Pass Setup 423 //===----------------------------------------------------------------------===// 424 425 namespace { 426 427 class AMDGPUPassConfig : public TargetPassConfig { 428 public: 429 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 430 : TargetPassConfig(TM, PM) { 431 // Exceptions and StackMaps are not supported, so these passes will never do 432 // anything. 433 disablePass(&StackMapLivenessID); 434 disablePass(&FuncletLayoutID); 435 } 436 437 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 438 return getTM<AMDGPUTargetMachine>(); 439 } 440 441 ScheduleDAGInstrs * 442 createMachineScheduler(MachineSchedContext *C) const override { 443 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 444 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 445 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 446 return DAG; 447 } 448 449 void addEarlyCSEOrGVNPass(); 450 void addStraightLineScalarOptimizationPasses(); 451 void addIRPasses() override; 452 void addCodeGenPrepare() override; 453 bool addPreISel() override; 454 bool addInstSelector() override; 455 bool addGCPasses() override; 456 }; 457 458 class R600PassConfig final : public AMDGPUPassConfig { 459 public: 460 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 461 : AMDGPUPassConfig(TM, PM) {} 462 463 ScheduleDAGInstrs *createMachineScheduler( 464 MachineSchedContext *C) const override { 465 return createR600MachineScheduler(C); 466 } 467 468 bool addPreISel() override; 469 void addPreRegAlloc() override; 470 void addPreSched2() override; 471 void addPreEmitPass() override; 472 }; 473 474 class GCNPassConfig final : public AMDGPUPassConfig { 475 public: 476 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 477 : AMDGPUPassConfig(TM, PM) {} 478 479 GCNTargetMachine &getGCNTargetMachine() const { 480 return getTM<GCNTargetMachine>(); 481 } 482 483 ScheduleDAGInstrs * 484 createMachineScheduler(MachineSchedContext *C) const override; 485 486 bool addPreISel() override; 487 void addMachineSSAOptimization() override; 488 bool addILPOpts() override; 489 bool addInstSelector() override; 490 #ifdef LLVM_BUILD_GLOBAL_ISEL 491 bool addIRTranslator() override; 492 bool addLegalizeMachineIR() override; 493 bool addRegBankSelect() override; 494 bool addGlobalInstructionSelect() override; 495 #endif 496 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 497 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 498 void addPreRegAlloc() override; 499 void addPostRegAlloc() override; 500 void addPreSched2() override; 501 void addPreEmitPass() override; 502 }; 503 504 } // end anonymous namespace 505 506 TargetIRAnalysis AMDGPUTargetMachine::getTargetIRAnalysis() { 507 return TargetIRAnalysis([this](const Function &F) { 508 return TargetTransformInfo(AMDGPUTTIImpl(this, F)); 509 }); 510 } 511 512 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 513 if (getOptLevel() == CodeGenOpt::Aggressive) 514 addPass(createGVNPass()); 515 else 516 addPass(createEarlyCSEPass()); 517 } 518 519 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 520 addPass(createSeparateConstOffsetFromGEPPass()); 521 addPass(createSpeculativeExecutionPass()); 522 // ReassociateGEPs exposes more opportunites for SLSR. See 523 // the example in reassociate-geps-and-slsr.ll. 524 addPass(createStraightLineStrengthReducePass()); 525 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 526 // EarlyCSE can reuse. 527 addEarlyCSEOrGVNPass(); 528 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 529 addPass(createNaryReassociatePass()); 530 // NaryReassociate on GEPs creates redundant common expressions, so run 531 // EarlyCSE after it. 532 addPass(createEarlyCSEPass()); 533 } 534 535 void AMDGPUPassConfig::addIRPasses() { 536 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 537 538 // There is no reason to run these. 539 disablePass(&StackMapLivenessID); 540 disablePass(&FuncletLayoutID); 541 disablePass(&PatchableFunctionID); 542 543 addPass(createAMDGPULowerIntrinsicsPass()); 544 545 // Function calls are not supported, so make sure we inline everything. 546 addPass(createAMDGPUAlwaysInlinePass()); 547 addPass(createAlwaysInlinerLegacyPass()); 548 // We need to add the barrier noop pass, otherwise adding the function 549 // inlining pass will cause all of the PassConfigs passes to be run 550 // one function at a time, which means if we have a nodule with two 551 // functions, then we will generate code for the first function 552 // without ever running any passes on the second. 553 addPass(createBarrierNoopPass()); 554 555 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 556 // TODO: May want to move later or split into an early and late one. 557 558 addPass(createAMDGPUCodeGenPreparePass()); 559 } 560 561 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 562 addPass(createAMDGPUOpenCLImageTypeLoweringPass()); 563 564 if (TM.getOptLevel() > CodeGenOpt::None) { 565 addPass(createInferAddressSpacesPass()); 566 addPass(createAMDGPUPromoteAlloca()); 567 568 if (EnableSROA) 569 addPass(createSROAPass()); 570 571 addStraightLineScalarOptimizationPasses(); 572 573 if (EnableAMDGPUAliasAnalysis) { 574 addPass(createAMDGPUAAWrapperPass()); 575 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 576 AAResults &AAR) { 577 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 578 AAR.addAAResult(WrapperPass->getResult()); 579 })); 580 } 581 } 582 583 TargetPassConfig::addIRPasses(); 584 585 // EarlyCSE is not always strong enough to clean up what LSR produces. For 586 // example, GVN can combine 587 // 588 // %0 = add %a, %b 589 // %1 = add %b, %a 590 // 591 // and 592 // 593 // %0 = shl nsw %a, 2 594 // %1 = shl %a, 2 595 // 596 // but EarlyCSE can do neither of them. 597 if (getOptLevel() != CodeGenOpt::None) 598 addEarlyCSEOrGVNPass(); 599 } 600 601 void AMDGPUPassConfig::addCodeGenPrepare() { 602 TargetPassConfig::addCodeGenPrepare(); 603 604 if (EnableLoadStoreVectorizer) 605 addPass(createLoadStoreVectorizerPass()); 606 } 607 608 bool AMDGPUPassConfig::addPreISel() { 609 addPass(createFlattenCFGPass()); 610 return false; 611 } 612 613 bool AMDGPUPassConfig::addInstSelector() { 614 addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel())); 615 return false; 616 } 617 618 bool AMDGPUPassConfig::addGCPasses() { 619 // Do nothing. GC is not supported. 620 return false; 621 } 622 623 //===----------------------------------------------------------------------===// 624 // R600 Pass Setup 625 //===----------------------------------------------------------------------===// 626 627 bool R600PassConfig::addPreISel() { 628 AMDGPUPassConfig::addPreISel(); 629 630 if (EnableR600StructurizeCFG) 631 addPass(createStructurizeCFGPass()); 632 return false; 633 } 634 635 void R600PassConfig::addPreRegAlloc() { 636 addPass(createR600VectorRegMerger()); 637 } 638 639 void R600PassConfig::addPreSched2() { 640 addPass(createR600EmitClauseMarkers(), false); 641 if (EnableR600IfConvert) 642 addPass(&IfConverterID, false); 643 addPass(createR600ClauseMergePass(), false); 644 } 645 646 void R600PassConfig::addPreEmitPass() { 647 addPass(createAMDGPUCFGStructurizerPass(), false); 648 addPass(createR600ExpandSpecialInstrsPass(), false); 649 addPass(&FinalizeMachineBundlesID, false); 650 addPass(createR600Packetizer(), false); 651 addPass(createR600ControlFlowFinalizer(), false); 652 } 653 654 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 655 return new R600PassConfig(*this, PM); 656 } 657 658 //===----------------------------------------------------------------------===// 659 // GCN Pass Setup 660 //===----------------------------------------------------------------------===// 661 662 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 663 MachineSchedContext *C) const { 664 const SISubtarget &ST = C->MF->getSubtarget<SISubtarget>(); 665 if (ST.enableSIScheduler()) 666 return createSIMachineScheduler(C); 667 return createGCNMaxOccupancyMachineScheduler(C); 668 } 669 670 bool GCNPassConfig::addPreISel() { 671 AMDGPUPassConfig::addPreISel(); 672 673 // FIXME: We need to run a pass to propagate the attributes when calls are 674 // supported. 675 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 676 677 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 678 // regions formed by them. 679 addPass(&AMDGPUUnifyDivergentExitNodesID); 680 if (!LateCFGStructurize) { 681 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 682 } 683 addPass(createSinkingPass()); 684 addPass(createAMDGPUAnnotateUniformValues()); 685 if (!LateCFGStructurize) { 686 addPass(createSIAnnotateControlFlowPass()); 687 } 688 689 return false; 690 } 691 692 void GCNPassConfig::addMachineSSAOptimization() { 693 TargetPassConfig::addMachineSSAOptimization(); 694 695 // We want to fold operands after PeepholeOptimizer has run (or as part of 696 // it), because it will eliminate extra copies making it easier to fold the 697 // real source operand. We want to eliminate dead instructions after, so that 698 // we see fewer uses of the copies. We then need to clean up the dead 699 // instructions leftover after the operands are folded as well. 700 // 701 // XXX - Can we get away without running DeadMachineInstructionElim again? 702 addPass(&SIFoldOperandsID); 703 addPass(&DeadMachineInstructionElimID); 704 addPass(&SILoadStoreOptimizerID); 705 if (EnableSDWAPeephole) { 706 addPass(&SIPeepholeSDWAID); 707 addPass(&MachineLICMID); 708 addPass(&MachineCSEID); 709 addPass(&SIFoldOperandsID); 710 addPass(&DeadMachineInstructionElimID); 711 } 712 addPass(createSIShrinkInstructionsPass()); 713 } 714 715 bool GCNPassConfig::addILPOpts() { 716 if (EnableEarlyIfConversion) 717 addPass(&EarlyIfConverterID); 718 719 TargetPassConfig::addILPOpts(); 720 return false; 721 } 722 723 bool GCNPassConfig::addInstSelector() { 724 AMDGPUPassConfig::addInstSelector(); 725 addPass(createSILowerI1CopiesPass()); 726 addPass(&SIFixSGPRCopiesID); 727 return false; 728 } 729 730 #ifdef LLVM_BUILD_GLOBAL_ISEL 731 bool GCNPassConfig::addIRTranslator() { 732 addPass(new IRTranslator()); 733 return false; 734 } 735 736 bool GCNPassConfig::addLegalizeMachineIR() { 737 addPass(new Legalizer()); 738 return false; 739 } 740 741 bool GCNPassConfig::addRegBankSelect() { 742 addPass(new RegBankSelect()); 743 return false; 744 } 745 746 bool GCNPassConfig::addGlobalInstructionSelect() { 747 addPass(new InstructionSelect()); 748 return false; 749 } 750 751 #endif 752 753 void GCNPassConfig::addPreRegAlloc() { 754 if (LateCFGStructurize) { 755 addPass(createAMDGPUMachineCFGStructurizerPass()); 756 } 757 addPass(createSIWholeQuadModePass()); 758 } 759 760 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 761 // FIXME: We have to disable the verifier here because of PHIElimination + 762 // TwoAddressInstructions disabling it. 763 764 // This must be run immediately after phi elimination and before 765 // TwoAddressInstructions, otherwise the processing of the tied operand of 766 // SI_ELSE will introduce a copy of the tied operand source after the else. 767 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 768 769 TargetPassConfig::addFastRegAlloc(RegAllocPass); 770 } 771 772 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 773 // This needs to be run directly before register allocation because earlier 774 // passes might recompute live intervals. 775 insertPass(&MachineSchedulerID, &SIFixControlFlowLiveIntervalsID); 776 777 // This must be run immediately after phi elimination and before 778 // TwoAddressInstructions, otherwise the processing of the tied operand of 779 // SI_ELSE will introduce a copy of the tied operand source after the else. 780 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 781 782 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 783 } 784 785 void GCNPassConfig::addPostRegAlloc() { 786 addPass(&SIFixVGPRCopiesID); 787 addPass(&SIOptimizeExecMaskingID); 788 TargetPassConfig::addPostRegAlloc(); 789 } 790 791 void GCNPassConfig::addPreSched2() { 792 } 793 794 void GCNPassConfig::addPreEmitPass() { 795 // The hazard recognizer that runs as part of the post-ra scheduler does not 796 // guarantee to be able handle all hazards correctly. This is because if there 797 // are multiple scheduling regions in a basic block, the regions are scheduled 798 // bottom up, so when we begin to schedule a region we don't know what 799 // instructions were emitted directly before it. 800 // 801 // Here we add a stand-alone hazard recognizer pass which can handle all 802 // cases. 803 addPass(&PostRAHazardRecognizerID); 804 805 if (EnableSIInsertWaitcntsPass) 806 addPass(createSIInsertWaitcntsPass()); 807 else 808 addPass(createSIInsertWaitsPass()); 809 addPass(createSIShrinkInstructionsPass()); 810 addPass(&SIInsertSkipsPassID); 811 addPass(createSIMemoryLegalizerPass()); 812 addPass(createSIDebuggerInsertNopsPass()); 813 addPass(&BranchRelaxationPassID); 814 } 815 816 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 817 return new GCNPassConfig(*this, PM); 818 } 819 820