1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for SI+ GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUIGroupLP.h" 20 #include "AMDGPUMacroFusion.h" 21 #include "AMDGPUTargetObjectFile.h" 22 #include "AMDGPUTargetTransformInfo.h" 23 #include "GCNIterativeScheduler.h" 24 #include "GCNSchedStrategy.h" 25 #include "R600.h" 26 #include "R600TargetMachine.h" 27 #include "SIMachineFunctionInfo.h" 28 #include "SIMachineScheduler.h" 29 #include "TargetInfo/AMDGPUTargetInfo.h" 30 #include "llvm/Analysis/CGSCCPassManager.h" 31 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 34 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 35 #include "llvm/CodeGen/GlobalISel/Localizer.h" 36 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 37 #include "llvm/CodeGen/MIRParser/MIParser.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/RegAllocRegistry.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/IR/IntrinsicsAMDGPU.h" 42 #include "llvm/IR/LegacyPassManager.h" 43 #include "llvm/IR/PassManager.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/MC/TargetRegistry.h" 47 #include "llvm/Passes/PassBuilder.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/IPO/AlwaysInliner.h" 50 #include "llvm/Transforms/IPO/GlobalDCE.h" 51 #include "llvm/Transforms/IPO/Internalize.h" 52 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 53 #include "llvm/Transforms/Scalar.h" 54 #include "llvm/Transforms/Scalar/GVN.h" 55 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 56 #include "llvm/Transforms/Utils.h" 57 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 58 #include "llvm/Transforms/Vectorize.h" 59 60 using namespace llvm; 61 using namespace llvm::PatternMatch; 62 63 namespace { 64 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> { 65 public: 66 SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 67 : RegisterRegAllocBase(N, D, C) {} 68 }; 69 70 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> { 71 public: 72 VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 73 : RegisterRegAllocBase(N, D, C) {} 74 }; 75 76 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI, 77 const TargetRegisterClass &RC) { 78 return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 79 } 80 81 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI, 82 const TargetRegisterClass &RC) { 83 return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 84 } 85 86 87 /// -{sgpr|vgpr}-regalloc=... command line option. 88 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; } 89 90 /// A dummy default pass factory indicates whether the register allocator is 91 /// overridden on the command line. 92 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag; 93 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag; 94 95 static SGPRRegisterRegAlloc 96 defaultSGPRRegAlloc("default", 97 "pick SGPR register allocator based on -O option", 98 useDefaultRegisterAllocator); 99 100 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false, 101 RegisterPassParser<SGPRRegisterRegAlloc>> 102 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 103 cl::desc("Register allocator to use for SGPRs")); 104 105 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false, 106 RegisterPassParser<VGPRRegisterRegAlloc>> 107 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 108 cl::desc("Register allocator to use for VGPRs")); 109 110 111 static void initializeDefaultSGPRRegisterAllocatorOnce() { 112 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 113 114 if (!Ctor) { 115 Ctor = SGPRRegAlloc; 116 SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc); 117 } 118 } 119 120 static void initializeDefaultVGPRRegisterAllocatorOnce() { 121 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 122 123 if (!Ctor) { 124 Ctor = VGPRRegAlloc; 125 VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc); 126 } 127 } 128 129 static FunctionPass *createBasicSGPRRegisterAllocator() { 130 return createBasicRegisterAllocator(onlyAllocateSGPRs); 131 } 132 133 static FunctionPass *createGreedySGPRRegisterAllocator() { 134 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 135 } 136 137 static FunctionPass *createFastSGPRRegisterAllocator() { 138 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 139 } 140 141 static FunctionPass *createBasicVGPRRegisterAllocator() { 142 return createBasicRegisterAllocator(onlyAllocateVGPRs); 143 } 144 145 static FunctionPass *createGreedyVGPRRegisterAllocator() { 146 return createGreedyRegisterAllocator(onlyAllocateVGPRs); 147 } 148 149 static FunctionPass *createFastVGPRRegisterAllocator() { 150 return createFastRegisterAllocator(onlyAllocateVGPRs, true); 151 } 152 153 static SGPRRegisterRegAlloc basicRegAllocSGPR( 154 "basic", "basic register allocator", createBasicSGPRRegisterAllocator); 155 static SGPRRegisterRegAlloc greedyRegAllocSGPR( 156 "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator); 157 158 static SGPRRegisterRegAlloc fastRegAllocSGPR( 159 "fast", "fast register allocator", createFastSGPRRegisterAllocator); 160 161 162 static VGPRRegisterRegAlloc basicRegAllocVGPR( 163 "basic", "basic register allocator", createBasicVGPRRegisterAllocator); 164 static VGPRRegisterRegAlloc greedyRegAllocVGPR( 165 "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator); 166 167 static VGPRRegisterRegAlloc fastRegAllocVGPR( 168 "fast", "fast register allocator", createFastVGPRRegisterAllocator); 169 } 170 171 static cl::opt<bool> EnableSROA( 172 "amdgpu-sroa", 173 cl::desc("Run SROA after promote alloca pass"), 174 cl::ReallyHidden, 175 cl::init(true)); 176 177 static cl::opt<bool> 178 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 179 cl::desc("Run early if-conversion"), 180 cl::init(false)); 181 182 static cl::opt<bool> 183 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 184 cl::desc("Run pre-RA exec mask optimizations"), 185 cl::init(true)); 186 187 // Option to disable vectorizer for tests. 188 static cl::opt<bool> EnableLoadStoreVectorizer( 189 "amdgpu-load-store-vectorizer", 190 cl::desc("Enable load store vectorizer"), 191 cl::init(true), 192 cl::Hidden); 193 194 // Option to control global loads scalarization 195 static cl::opt<bool> ScalarizeGlobal( 196 "amdgpu-scalarize-global-loads", 197 cl::desc("Enable global load scalarization"), 198 cl::init(true), 199 cl::Hidden); 200 201 // Option to run internalize pass. 202 static cl::opt<bool> InternalizeSymbols( 203 "amdgpu-internalize-symbols", 204 cl::desc("Enable elimination of non-kernel functions and unused globals"), 205 cl::init(false), 206 cl::Hidden); 207 208 // Option to inline all early. 209 static cl::opt<bool> EarlyInlineAll( 210 "amdgpu-early-inline-all", 211 cl::desc("Inline all functions early"), 212 cl::init(false), 213 cl::Hidden); 214 215 static cl::opt<bool> EnableSDWAPeephole( 216 "amdgpu-sdwa-peephole", 217 cl::desc("Enable SDWA peepholer"), 218 cl::init(true)); 219 220 static cl::opt<bool> EnableDPPCombine( 221 "amdgpu-dpp-combine", 222 cl::desc("Enable DPP combiner"), 223 cl::init(true)); 224 225 // Enable address space based alias analysis 226 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 227 cl::desc("Enable AMDGPU Alias Analysis"), 228 cl::init(true)); 229 230 // Option to run late CFG structurizer 231 static cl::opt<bool, true> LateCFGStructurize( 232 "amdgpu-late-structurize", 233 cl::desc("Enable late CFG structurization"), 234 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 235 cl::Hidden); 236 237 // Enable lib calls simplifications 238 static cl::opt<bool> EnableLibCallSimplify( 239 "amdgpu-simplify-libcall", 240 cl::desc("Enable amdgpu library simplifications"), 241 cl::init(true), 242 cl::Hidden); 243 244 static cl::opt<bool> EnableLowerKernelArguments( 245 "amdgpu-ir-lower-kernel-arguments", 246 cl::desc("Lower kernel argument loads in IR pass"), 247 cl::init(true), 248 cl::Hidden); 249 250 static cl::opt<bool> EnableRegReassign( 251 "amdgpu-reassign-regs", 252 cl::desc("Enable register reassign optimizations on gfx10+"), 253 cl::init(true), 254 cl::Hidden); 255 256 static cl::opt<bool> OptVGPRLiveRange( 257 "amdgpu-opt-vgpr-liverange", 258 cl::desc("Enable VGPR liverange optimizations for if-else structure"), 259 cl::init(true), cl::Hidden); 260 261 // Enable atomic optimization 262 static cl::opt<bool> EnableAtomicOptimizations( 263 "amdgpu-atomic-optimizations", 264 cl::desc("Enable atomic optimizations"), 265 cl::init(false), 266 cl::Hidden); 267 268 // Enable Mode register optimization 269 static cl::opt<bool> EnableSIModeRegisterPass( 270 "amdgpu-mode-register", 271 cl::desc("Enable mode register pass"), 272 cl::init(true), 273 cl::Hidden); 274 275 // Enable GFX11+ s_delay_alu insertion 276 static cl::opt<bool> 277 EnableInsertDelayAlu("amdgpu-enable-delay-alu", 278 cl::desc("Enable s_delay_alu insertion"), 279 cl::init(true), cl::Hidden); 280 281 // Option is used in lit tests to prevent deadcoding of patterns inspected. 282 static cl::opt<bool> 283 EnableDCEInRA("amdgpu-dce-in-ra", 284 cl::init(true), cl::Hidden, 285 cl::desc("Enable machine DCE inside regalloc")); 286 287 static cl::opt<bool> EnableSetWavePriority("amdgpu-set-wave-priority", 288 cl::desc("Adjust wave priority"), 289 cl::init(false), cl::Hidden); 290 291 static cl::opt<bool> EnableScalarIRPasses( 292 "amdgpu-scalar-ir-passes", 293 cl::desc("Enable scalar IR passes"), 294 cl::init(true), 295 cl::Hidden); 296 297 static cl::opt<bool> EnableStructurizerWorkarounds( 298 "amdgpu-enable-structurizer-workarounds", 299 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 300 cl::Hidden); 301 302 static cl::opt<bool> EnableLDSReplaceWithPointer( 303 "amdgpu-enable-lds-replace-with-pointer", 304 cl::desc("Enable LDS replace with pointer pass"), cl::init(false), 305 cl::Hidden); 306 307 static cl::opt<bool, true> EnableLowerModuleLDS( 308 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), 309 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), 310 cl::Hidden); 311 312 static cl::opt<bool> EnablePreRAOptimizations( 313 "amdgpu-enable-pre-ra-optimizations", 314 cl::desc("Enable Pre-RA optimizations pass"), cl::init(true), 315 cl::Hidden); 316 317 static cl::opt<bool> EnablePromoteKernelArguments( 318 "amdgpu-enable-promote-kernel-arguments", 319 cl::desc("Enable promotion of flat kernel pointer arguments to global"), 320 cl::Hidden, cl::init(true)); 321 322 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 323 // Register the target 324 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 325 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 326 327 PassRegistry *PR = PassRegistry::getPassRegistry(); 328 initializeR600ClauseMergePassPass(*PR); 329 initializeR600ControlFlowFinalizerPass(*PR); 330 initializeR600PacketizerPass(*PR); 331 initializeR600ExpandSpecialInstrsPassPass(*PR); 332 initializeR600VectorRegMergerPass(*PR); 333 initializeGlobalISel(*PR); 334 initializeAMDGPUDAGToDAGISelPass(*PR); 335 initializeGCNDPPCombinePass(*PR); 336 initializeSILowerI1CopiesPass(*PR); 337 initializeSILowerSGPRSpillsPass(*PR); 338 initializeSIFixSGPRCopiesPass(*PR); 339 initializeSIFixVGPRCopiesPass(*PR); 340 initializeSIFoldOperandsPass(*PR); 341 initializeSIPeepholeSDWAPass(*PR); 342 initializeSIShrinkInstructionsPass(*PR); 343 initializeSIOptimizeExecMaskingPreRAPass(*PR); 344 initializeSIOptimizeVGPRLiveRangePass(*PR); 345 initializeSILoadStoreOptimizerPass(*PR); 346 initializeAMDGPUCtorDtorLoweringPass(*PR); 347 initializeAMDGPUAlwaysInlinePass(*PR); 348 initializeAMDGPUAttributorPass(*PR); 349 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 350 initializeAMDGPUAnnotateUniformValuesPass(*PR); 351 initializeAMDGPUArgumentUsageInfoPass(*PR); 352 initializeAMDGPUAtomicOptimizerPass(*PR); 353 initializeAMDGPULowerKernelArgumentsPass(*PR); 354 initializeAMDGPUPromoteKernelArgumentsPass(*PR); 355 initializeAMDGPULowerKernelAttributesPass(*PR); 356 initializeAMDGPULowerIntrinsicsPass(*PR); 357 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 358 initializeAMDGPUPostLegalizerCombinerPass(*PR); 359 initializeAMDGPUPreLegalizerCombinerPass(*PR); 360 initializeAMDGPURegBankCombinerPass(*PR); 361 initializeAMDGPUPromoteAllocaPass(*PR); 362 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 363 initializeAMDGPUCodeGenPreparePass(*PR); 364 initializeAMDGPULateCodeGenPreparePass(*PR); 365 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 366 initializeAMDGPUPropagateAttributesLatePass(*PR); 367 initializeAMDGPUReplaceLDSUseWithPointerPass(*PR); 368 initializeAMDGPULowerModuleLDSPass(*PR); 369 initializeAMDGPURewriteOutArgumentsPass(*PR); 370 initializeAMDGPUUnifyMetadataPass(*PR); 371 initializeSIAnnotateControlFlowPass(*PR); 372 initializeAMDGPUInsertDelayAluPass(*PR); 373 initializeSIInsertHardClausesPass(*PR); 374 initializeSIInsertWaitcntsPass(*PR); 375 initializeSIModeRegisterPass(*PR); 376 initializeSIWholeQuadModePass(*PR); 377 initializeSILowerControlFlowPass(*PR); 378 initializeSIPreEmitPeepholePass(*PR); 379 initializeSILateBranchLoweringPass(*PR); 380 initializeSIMemoryLegalizerPass(*PR); 381 initializeSIOptimizeExecMaskingPass(*PR); 382 initializeSIPreAllocateWWMRegsPass(*PR); 383 initializeSIFormMemoryClausesPass(*PR); 384 initializeSIPostRABundlerPass(*PR); 385 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 386 initializeAMDGPUAAWrapperPassPass(*PR); 387 initializeAMDGPUExternalAAWrapperPass(*PR); 388 initializeAMDGPUUseNativeCallsPass(*PR); 389 initializeAMDGPUSimplifyLibCallsPass(*PR); 390 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 391 initializeAMDGPUResourceUsageAnalysisPass(*PR); 392 initializeGCNNSAReassignPass(*PR); 393 initializeGCNPreRAOptimizationsPass(*PR); 394 } 395 396 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 397 return std::make_unique<AMDGPUTargetObjectFile>(); 398 } 399 400 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 401 return new SIScheduleDAGMI(C); 402 } 403 404 static ScheduleDAGInstrs * 405 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 406 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 407 ScheduleDAGMILive *DAG = 408 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 409 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 410 if (ST.shouldClusterStores()) 411 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 412 DAG->addMutation(createIGroupLPDAGMutation()); 413 DAG->addMutation(createSchedBarrierDAGMutation()); 414 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 415 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 416 return DAG; 417 } 418 419 static ScheduleDAGInstrs * 420 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 421 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 422 auto DAG = new GCNIterativeScheduler(C, 423 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 424 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 425 if (ST.shouldClusterStores()) 426 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 427 return DAG; 428 } 429 430 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 431 return new GCNIterativeScheduler(C, 432 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 433 } 434 435 static ScheduleDAGInstrs * 436 createIterativeILPMachineScheduler(MachineSchedContext *C) { 437 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 438 auto DAG = new GCNIterativeScheduler(C, 439 GCNIterativeScheduler::SCHEDULE_ILP); 440 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 441 if (ST.shouldClusterStores()) 442 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 443 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 444 return DAG; 445 } 446 447 static MachineSchedRegistry 448 SISchedRegistry("si", "Run SI's custom scheduler", 449 createSIMachineScheduler); 450 451 static MachineSchedRegistry 452 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 453 "Run GCN scheduler to maximize occupancy", 454 createGCNMaxOccupancyMachineScheduler); 455 456 static MachineSchedRegistry 457 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 458 "Run GCN scheduler to maximize occupancy (experimental)", 459 createIterativeGCNMaxOccupancyMachineScheduler); 460 461 static MachineSchedRegistry 462 GCNMinRegSchedRegistry("gcn-minreg", 463 "Run GCN iterative scheduler for minimal register usage (experimental)", 464 createMinRegScheduler); 465 466 static MachineSchedRegistry 467 GCNILPSchedRegistry("gcn-ilp", 468 "Run GCN iterative scheduler for ILP scheduling (experimental)", 469 createIterativeILPMachineScheduler); 470 471 static StringRef computeDataLayout(const Triple &TT) { 472 if (TT.getArch() == Triple::r600) { 473 // 32-bit pointers. 474 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 475 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 476 } 477 478 // 32-bit private, local, and region pointers. 64-bit global, constant and 479 // flat, non-integral buffer fat pointers. 480 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 481 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 482 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 483 "-ni:7"; 484 } 485 486 LLVM_READNONE 487 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 488 if (!GPU.empty()) 489 return GPU; 490 491 // Need to default to a target with flat support for HSA. 492 if (TT.getArch() == Triple::amdgcn) 493 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 494 495 return "r600"; 496 } 497 498 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 499 // The AMDGPU toolchain only supports generating shared objects, so we 500 // must always use PIC. 501 return Reloc::PIC_; 502 } 503 504 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 505 StringRef CPU, StringRef FS, 506 TargetOptions Options, 507 Optional<Reloc::Model> RM, 508 Optional<CodeModel::Model> CM, 509 CodeGenOpt::Level OptLevel) 510 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 511 FS, Options, getEffectiveRelocModel(RM), 512 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 513 TLOF(createTLOF(getTargetTriple())) { 514 initAsmInfo(); 515 if (TT.getArch() == Triple::amdgcn) { 516 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 517 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 518 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 519 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 520 } 521 } 522 523 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 524 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 525 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; 526 527 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 528 529 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 530 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 531 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 532 } 533 534 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 535 Attribute FSAttr = F.getFnAttribute("target-features"); 536 537 return FSAttr.isValid() ? FSAttr.getValueAsString() 538 : getTargetFeatureString(); 539 } 540 541 /// Predicate for Internalize pass. 542 static bool mustPreserveGV(const GlobalValue &GV) { 543 if (const Function *F = dyn_cast<Function>(&GV)) 544 return F->isDeclaration() || F->getName().startswith("__asan_") || 545 F->getName().startswith("__sanitizer_") || 546 AMDGPU::isEntryFunctionCC(F->getCallingConv()); 547 548 GV.removeDeadConstantUsers(); 549 return !GV.use_empty(); 550 } 551 552 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 553 Builder.DivergentTarget = true; 554 555 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 556 bool Internalize = InternalizeSymbols; 557 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 558 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 559 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 560 bool PromoteKernelArguments = 561 EnablePromoteKernelArguments && getOptLevel() > CodeGenOpt::Less; 562 563 if (EnableFunctionCalls) { 564 delete Builder.Inliner; 565 Builder.Inliner = createFunctionInliningPass(); 566 } 567 568 Builder.addExtension( 569 PassManagerBuilder::EP_ModuleOptimizerEarly, 570 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 571 legacy::PassManagerBase &PM) { 572 if (AMDGPUAA) { 573 PM.add(createAMDGPUAAWrapperPass()); 574 PM.add(createAMDGPUExternalAAWrapperPass()); 575 } 576 PM.add(createAMDGPUUnifyMetadataPass()); 577 PM.add(createAMDGPUPrintfRuntimeBinding()); 578 if (Internalize) 579 PM.add(createInternalizePass(mustPreserveGV)); 580 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 581 if (Internalize) 582 PM.add(createGlobalDCEPass()); 583 if (EarlyInline) 584 PM.add(createAMDGPUAlwaysInlinePass(false)); 585 }); 586 587 Builder.addExtension( 588 PassManagerBuilder::EP_EarlyAsPossible, 589 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 590 legacy::PassManagerBase &PM) { 591 if (AMDGPUAA) { 592 PM.add(createAMDGPUAAWrapperPass()); 593 PM.add(createAMDGPUExternalAAWrapperPass()); 594 } 595 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 596 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 597 if (LibCallSimplify) 598 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 599 }); 600 601 Builder.addExtension( 602 PassManagerBuilder::EP_CGSCCOptimizerLate, 603 [EnableOpt, PromoteKernelArguments](const PassManagerBuilder &, 604 legacy::PassManagerBase &PM) { 605 // Add promote kernel arguments pass to the opt pipeline right before 606 // infer address spaces which is needed to do actual address space 607 // rewriting. 608 if (PromoteKernelArguments) 609 PM.add(createAMDGPUPromoteKernelArgumentsPass()); 610 611 // Add infer address spaces pass to the opt pipeline after inlining 612 // but before SROA to increase SROA opportunities. 613 PM.add(createInferAddressSpacesPass()); 614 615 // This should run after inlining to have any chance of doing anything, 616 // and before other cleanup optimizations. 617 PM.add(createAMDGPULowerKernelAttributesPass()); 618 619 // Promote alloca to vector before SROA and loop unroll. If we manage 620 // to eliminate allocas before unroll we may choose to unroll less. 621 if (EnableOpt) 622 PM.add(createAMDGPUPromoteAllocaToVector()); 623 }); 624 } 625 626 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 627 AAM.registerFunctionAnalysis<AMDGPUAA>(); 628 } 629 630 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) { 631 PB.registerPipelineParsingCallback( 632 [this](StringRef PassName, ModulePassManager &PM, 633 ArrayRef<PassBuilder::PipelineElement>) { 634 if (PassName == "amdgpu-propagate-attributes-late") { 635 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 636 return true; 637 } 638 if (PassName == "amdgpu-unify-metadata") { 639 PM.addPass(AMDGPUUnifyMetadataPass()); 640 return true; 641 } 642 if (PassName == "amdgpu-printf-runtime-binding") { 643 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 644 return true; 645 } 646 if (PassName == "amdgpu-always-inline") { 647 PM.addPass(AMDGPUAlwaysInlinePass()); 648 return true; 649 } 650 if (PassName == "amdgpu-replace-lds-use-with-pointer") { 651 PM.addPass(AMDGPUReplaceLDSUseWithPointerPass()); 652 return true; 653 } 654 if (PassName == "amdgpu-lower-module-lds") { 655 PM.addPass(AMDGPULowerModuleLDSPass()); 656 return true; 657 } 658 return false; 659 }); 660 PB.registerPipelineParsingCallback( 661 [this](StringRef PassName, FunctionPassManager &PM, 662 ArrayRef<PassBuilder::PipelineElement>) { 663 if (PassName == "amdgpu-simplifylib") { 664 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 665 return true; 666 } 667 if (PassName == "amdgpu-usenative") { 668 PM.addPass(AMDGPUUseNativeCallsPass()); 669 return true; 670 } 671 if (PassName == "amdgpu-promote-alloca") { 672 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 673 return true; 674 } 675 if (PassName == "amdgpu-promote-alloca-to-vector") { 676 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 677 return true; 678 } 679 if (PassName == "amdgpu-lower-kernel-attributes") { 680 PM.addPass(AMDGPULowerKernelAttributesPass()); 681 return true; 682 } 683 if (PassName == "amdgpu-propagate-attributes-early") { 684 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 685 return true; 686 } 687 if (PassName == "amdgpu-promote-kernel-arguments") { 688 PM.addPass(AMDGPUPromoteKernelArgumentsPass()); 689 return true; 690 } 691 return false; 692 }); 693 694 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 695 FAM.registerPass([&] { return AMDGPUAA(); }); 696 }); 697 698 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 699 if (AAName == "amdgpu-aa") { 700 AAM.registerFunctionAnalysis<AMDGPUAA>(); 701 return true; 702 } 703 return false; 704 }); 705 706 PB.registerPipelineStartEPCallback( 707 [this](ModulePassManager &PM, OptimizationLevel Level) { 708 FunctionPassManager FPM; 709 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 710 FPM.addPass(AMDGPUUseNativeCallsPass()); 711 if (EnableLibCallSimplify && Level != OptimizationLevel::O0) 712 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 713 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 714 }); 715 716 PB.registerPipelineEarlySimplificationEPCallback( 717 [this](ModulePassManager &PM, OptimizationLevel Level) { 718 if (Level == OptimizationLevel::O0) 719 return; 720 721 PM.addPass(AMDGPUUnifyMetadataPass()); 722 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 723 724 if (InternalizeSymbols) { 725 PM.addPass(InternalizePass(mustPreserveGV)); 726 } 727 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 728 if (InternalizeSymbols) { 729 PM.addPass(GlobalDCEPass()); 730 } 731 if (EarlyInlineAll && !EnableFunctionCalls) 732 PM.addPass(AMDGPUAlwaysInlinePass()); 733 }); 734 735 PB.registerCGSCCOptimizerLateEPCallback( 736 [this](CGSCCPassManager &PM, OptimizationLevel Level) { 737 if (Level == OptimizationLevel::O0) 738 return; 739 740 FunctionPassManager FPM; 741 742 // Add promote kernel arguments pass to the opt pipeline right before 743 // infer address spaces which is needed to do actual address space 744 // rewriting. 745 if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() && 746 EnablePromoteKernelArguments) 747 FPM.addPass(AMDGPUPromoteKernelArgumentsPass()); 748 749 // Add infer address spaces pass to the opt pipeline after inlining 750 // but before SROA to increase SROA opportunities. 751 FPM.addPass(InferAddressSpacesPass()); 752 753 // This should run after inlining to have any chance of doing 754 // anything, and before other cleanup optimizations. 755 FPM.addPass(AMDGPULowerKernelAttributesPass()); 756 757 if (Level != OptimizationLevel::O0) { 758 // Promote alloca to vector before SROA and loop unroll. If we 759 // manage to eliminate allocas before unroll we may choose to unroll 760 // less. 761 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 762 } 763 764 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 765 }); 766 } 767 768 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 769 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 770 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 771 AddrSpace == AMDGPUAS::REGION_ADDRESS) 772 ? -1 773 : 0; 774 } 775 776 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 777 unsigned DestAS) const { 778 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 779 AMDGPU::isFlatGlobalAddrSpace(DestAS); 780 } 781 782 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 783 const auto *LD = dyn_cast<LoadInst>(V); 784 if (!LD) 785 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 786 787 // It must be a generic pointer loaded. 788 assert(V->getType()->isPointerTy() && 789 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 790 791 const auto *Ptr = LD->getPointerOperand(); 792 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 793 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 794 // For a generic pointer loaded from the constant memory, it could be assumed 795 // as a global pointer since the constant memory is only populated on the 796 // host side. As implied by the offload programming model, only global 797 // pointers could be referenced on the host side. 798 return AMDGPUAS::GLOBAL_ADDRESS; 799 } 800 801 std::pair<const Value *, unsigned> 802 AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const { 803 if (auto *II = dyn_cast<IntrinsicInst>(V)) { 804 switch (II->getIntrinsicID()) { 805 case Intrinsic::amdgcn_is_shared: 806 return std::make_pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS); 807 case Intrinsic::amdgcn_is_private: 808 return std::make_pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS); 809 default: 810 break; 811 } 812 return std::make_pair(nullptr, -1); 813 } 814 // Check the global pointer predication based on 815 // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and 816 // the order of 'is_shared' and 'is_private' is not significant. 817 Value *Ptr; 818 if (match( 819 const_cast<Value *>(V), 820 m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))), 821 m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>( 822 m_Deferred(Ptr)))))) 823 return std::make_pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS); 824 825 return std::make_pair(nullptr, -1); 826 } 827 828 unsigned 829 AMDGPUTargetMachine::getAddressSpaceForPseudoSourceKind(unsigned Kind) const { 830 switch (Kind) { 831 case PseudoSourceValue::Stack: 832 case PseudoSourceValue::FixedStack: 833 return AMDGPUAS::PRIVATE_ADDRESS; 834 case PseudoSourceValue::ConstantPool: 835 case PseudoSourceValue::GOT: 836 case PseudoSourceValue::JumpTable: 837 case PseudoSourceValue::GlobalValueCallEntry: 838 case PseudoSourceValue::ExternalSymbolCallEntry: 839 case PseudoSourceValue::TargetCustom: 840 return AMDGPUAS::CONSTANT_ADDRESS; 841 } 842 return AMDGPUAS::FLAT_ADDRESS; 843 } 844 845 //===----------------------------------------------------------------------===// 846 // GCN Target Machine (SI+) 847 //===----------------------------------------------------------------------===// 848 849 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 850 StringRef CPU, StringRef FS, 851 TargetOptions Options, 852 Optional<Reloc::Model> RM, 853 Optional<CodeModel::Model> CM, 854 CodeGenOpt::Level OL, bool JIT) 855 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 856 857 const TargetSubtargetInfo * 858 GCNTargetMachine::getSubtargetImpl(const Function &F) const { 859 StringRef GPU = getGPUName(F); 860 StringRef FS = getFeatureString(F); 861 862 SmallString<128> SubtargetKey(GPU); 863 SubtargetKey.append(FS); 864 865 auto &I = SubtargetMap[SubtargetKey]; 866 if (!I) { 867 // This needs to be done before we create a new subtarget since any 868 // creation will depend on the TM and the code generation flags on the 869 // function that reside in TargetOptions. 870 resetTargetOptions(F); 871 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 872 } 873 874 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 875 876 return I.get(); 877 } 878 879 TargetTransformInfo 880 GCNTargetMachine::getTargetTransformInfo(const Function &F) const { 881 return TargetTransformInfo(GCNTTIImpl(this, F)); 882 } 883 884 //===----------------------------------------------------------------------===// 885 // AMDGPU Pass Setup 886 //===----------------------------------------------------------------------===// 887 888 std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const { 889 return getStandardCSEConfigForOpt(TM->getOptLevel()); 890 } 891 892 namespace { 893 894 class GCNPassConfig final : public AMDGPUPassConfig { 895 public: 896 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 897 : AMDGPUPassConfig(TM, PM) { 898 // It is necessary to know the register usage of the entire call graph. We 899 // allow calls without EnableAMDGPUFunctionCalls if they are marked 900 // noinline, so this is always required. 901 setRequiresCodeGenSCCOrder(true); 902 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 903 } 904 905 GCNTargetMachine &getGCNTargetMachine() const { 906 return getTM<GCNTargetMachine>(); 907 } 908 909 ScheduleDAGInstrs * 910 createMachineScheduler(MachineSchedContext *C) const override; 911 912 ScheduleDAGInstrs * 913 createPostMachineScheduler(MachineSchedContext *C) const override { 914 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 915 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 916 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 917 if (ST.shouldClusterStores()) 918 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 919 DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII)); 920 DAG->addMutation(createIGroupLPDAGMutation()); 921 DAG->addMutation(createSchedBarrierDAGMutation()); 922 return DAG; 923 } 924 925 bool addPreISel() override; 926 void addMachineSSAOptimization() override; 927 bool addILPOpts() override; 928 bool addInstSelector() override; 929 bool addIRTranslator() override; 930 void addPreLegalizeMachineIR() override; 931 bool addLegalizeMachineIR() override; 932 void addPreRegBankSelect() override; 933 bool addRegBankSelect() override; 934 void addPreGlobalInstructionSelect() override; 935 bool addGlobalInstructionSelect() override; 936 void addFastRegAlloc() override; 937 void addOptimizedRegAlloc() override; 938 939 FunctionPass *createSGPRAllocPass(bool Optimized); 940 FunctionPass *createVGPRAllocPass(bool Optimized); 941 FunctionPass *createRegAllocPass(bool Optimized) override; 942 943 bool addRegAssignAndRewriteFast() override; 944 bool addRegAssignAndRewriteOptimized() override; 945 946 void addPreRegAlloc() override; 947 bool addPreRewrite() override; 948 void addPostRegAlloc() override; 949 void addPreSched2() override; 950 void addPreEmitPass() override; 951 }; 952 953 } // end anonymous namespace 954 955 AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 956 : TargetPassConfig(TM, PM) { 957 // Exceptions and StackMaps are not supported, so these passes will never do 958 // anything. 959 disablePass(&StackMapLivenessID); 960 disablePass(&FuncletLayoutID); 961 // Garbage collection is not supported. 962 disablePass(&GCLoweringID); 963 disablePass(&ShadowStackGCLoweringID); 964 } 965 966 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 967 if (getOptLevel() == CodeGenOpt::Aggressive) 968 addPass(createGVNPass()); 969 else 970 addPass(createEarlyCSEPass()); 971 } 972 973 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 974 addPass(createLICMPass()); 975 addPass(createSeparateConstOffsetFromGEPPass()); 976 addPass(createSpeculativeExecutionPass()); 977 // ReassociateGEPs exposes more opportunities for SLSR. See 978 // the example in reassociate-geps-and-slsr.ll. 979 addPass(createStraightLineStrengthReducePass()); 980 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 981 // EarlyCSE can reuse. 982 addEarlyCSEOrGVNPass(); 983 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 984 addPass(createNaryReassociatePass()); 985 // NaryReassociate on GEPs creates redundant common expressions, so run 986 // EarlyCSE after it. 987 addPass(createEarlyCSEPass()); 988 } 989 990 void AMDGPUPassConfig::addIRPasses() { 991 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 992 993 // There is no reason to run these. 994 disablePass(&StackMapLivenessID); 995 disablePass(&FuncletLayoutID); 996 disablePass(&PatchableFunctionID); 997 998 addPass(createAMDGPUPrintfRuntimeBinding()); 999 addPass(createAMDGPUCtorDtorLoweringPass()); 1000 1001 // A call to propagate attributes pass in the backend in case opt was not run. 1002 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 1003 1004 addPass(createAMDGPULowerIntrinsicsPass()); 1005 1006 // Function calls are not supported, so make sure we inline everything. 1007 addPass(createAMDGPUAlwaysInlinePass()); 1008 addPass(createAlwaysInlinerLegacyPass()); 1009 // We need to add the barrier noop pass, otherwise adding the function 1010 // inlining pass will cause all of the PassConfigs passes to be run 1011 // one function at a time, which means if we have a module with two 1012 // functions, then we will generate code for the first function 1013 // without ever running any passes on the second. 1014 addPass(createBarrierNoopPass()); 1015 1016 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 1017 if (TM.getTargetTriple().getArch() == Triple::r600) 1018 addPass(createR600OpenCLImageTypeLoweringPass()); 1019 1020 // Replace OpenCL enqueued block function pointers with global variables. 1021 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 1022 1023 // Can increase LDS used by kernel so runs before PromoteAlloca 1024 if (EnableLowerModuleLDS) { 1025 // The pass "amdgpu-replace-lds-use-with-pointer" need to be run before the 1026 // pass "amdgpu-lower-module-lds", and also it required to be run only if 1027 // "amdgpu-lower-module-lds" pass is enabled. 1028 if (EnableLDSReplaceWithPointer) 1029 addPass(createAMDGPUReplaceLDSUseWithPointerPass()); 1030 1031 addPass(createAMDGPULowerModuleLDSPass()); 1032 } 1033 1034 if (TM.getOptLevel() > CodeGenOpt::None) 1035 addPass(createInferAddressSpacesPass()); 1036 1037 addPass(createAtomicExpandPass()); 1038 1039 if (TM.getOptLevel() > CodeGenOpt::None) { 1040 addPass(createAMDGPUPromoteAlloca()); 1041 1042 if (EnableSROA) 1043 addPass(createSROAPass()); 1044 if (isPassEnabled(EnableScalarIRPasses)) 1045 addStraightLineScalarOptimizationPasses(); 1046 1047 if (EnableAMDGPUAliasAnalysis) { 1048 addPass(createAMDGPUAAWrapperPass()); 1049 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 1050 AAResults &AAR) { 1051 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 1052 AAR.addAAResult(WrapperPass->getResult()); 1053 })); 1054 } 1055 1056 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1057 // TODO: May want to move later or split into an early and late one. 1058 addPass(createAMDGPUCodeGenPreparePass()); 1059 } 1060 } 1061 1062 TargetPassConfig::addIRPasses(); 1063 1064 // EarlyCSE is not always strong enough to clean up what LSR produces. For 1065 // example, GVN can combine 1066 // 1067 // %0 = add %a, %b 1068 // %1 = add %b, %a 1069 // 1070 // and 1071 // 1072 // %0 = shl nsw %a, 2 1073 // %1 = shl %a, 2 1074 // 1075 // but EarlyCSE can do neither of them. 1076 if (isPassEnabled(EnableScalarIRPasses)) 1077 addEarlyCSEOrGVNPass(); 1078 } 1079 1080 void AMDGPUPassConfig::addCodeGenPrepare() { 1081 if (TM->getTargetTriple().getArch() == Triple::amdgcn) { 1082 addPass(createAMDGPUAttributorPass()); 1083 1084 // FIXME: This pass adds 2 hacky attributes that can be replaced with an 1085 // analysis, and should be removed. 1086 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 1087 } 1088 1089 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 1090 EnableLowerKernelArguments) 1091 addPass(createAMDGPULowerKernelArgumentsPass()); 1092 1093 TargetPassConfig::addCodeGenPrepare(); 1094 1095 if (isPassEnabled(EnableLoadStoreVectorizer)) 1096 addPass(createLoadStoreVectorizerPass()); 1097 1098 // LowerSwitch pass may introduce unreachable blocks that can 1099 // cause unexpected behavior for subsequent passes. Placing it 1100 // here seems better that these blocks would get cleaned up by 1101 // UnreachableBlockElim inserted next in the pass flow. 1102 addPass(createLowerSwitchPass()); 1103 } 1104 1105 bool AMDGPUPassConfig::addPreISel() { 1106 if (TM->getOptLevel() > CodeGenOpt::None) 1107 addPass(createFlattenCFGPass()); 1108 return false; 1109 } 1110 1111 bool AMDGPUPassConfig::addInstSelector() { 1112 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 1113 return false; 1114 } 1115 1116 bool AMDGPUPassConfig::addGCPasses() { 1117 // Do nothing. GC is not supported. 1118 return false; 1119 } 1120 1121 llvm::ScheduleDAGInstrs * 1122 AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const { 1123 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1124 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 1125 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 1126 if (ST.shouldClusterStores()) 1127 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 1128 return DAG; 1129 } 1130 1131 //===----------------------------------------------------------------------===// 1132 // GCN Pass Setup 1133 //===----------------------------------------------------------------------===// 1134 1135 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1136 MachineSchedContext *C) const { 1137 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1138 if (ST.enableSIScheduler()) 1139 return createSIMachineScheduler(C); 1140 return createGCNMaxOccupancyMachineScheduler(C); 1141 } 1142 1143 bool GCNPassConfig::addPreISel() { 1144 AMDGPUPassConfig::addPreISel(); 1145 1146 if (TM->getOptLevel() > CodeGenOpt::None) 1147 addPass(createAMDGPULateCodeGenPreparePass()); 1148 1149 if (isPassEnabled(EnableAtomicOptimizations, CodeGenOpt::Less)) { 1150 addPass(createAMDGPUAtomicOptimizerPass()); 1151 } 1152 1153 if (TM->getOptLevel() > CodeGenOpt::None) 1154 addPass(createSinkingPass()); 1155 1156 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1157 // regions formed by them. 1158 addPass(&AMDGPUUnifyDivergentExitNodesID); 1159 if (!LateCFGStructurize) { 1160 if (EnableStructurizerWorkarounds) { 1161 addPass(createFixIrreduciblePass()); 1162 addPass(createUnifyLoopExitsPass()); 1163 } 1164 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1165 } 1166 addPass(createAMDGPUAnnotateUniformValues()); 1167 if (!LateCFGStructurize) { 1168 addPass(createSIAnnotateControlFlowPass()); 1169 } 1170 addPass(createLCSSAPass()); 1171 1172 if (TM->getOptLevel() > CodeGenOpt::Less) 1173 addPass(&AMDGPUPerfHintAnalysisID); 1174 1175 return false; 1176 } 1177 1178 void GCNPassConfig::addMachineSSAOptimization() { 1179 TargetPassConfig::addMachineSSAOptimization(); 1180 1181 // We want to fold operands after PeepholeOptimizer has run (or as part of 1182 // it), because it will eliminate extra copies making it easier to fold the 1183 // real source operand. We want to eliminate dead instructions after, so that 1184 // we see fewer uses of the copies. We then need to clean up the dead 1185 // instructions leftover after the operands are folded as well. 1186 // 1187 // XXX - Can we get away without running DeadMachineInstructionElim again? 1188 addPass(&SIFoldOperandsID); 1189 if (EnableDPPCombine) 1190 addPass(&GCNDPPCombineID); 1191 addPass(&SILoadStoreOptimizerID); 1192 if (isPassEnabled(EnableSDWAPeephole)) { 1193 addPass(&SIPeepholeSDWAID); 1194 addPass(&EarlyMachineLICMID); 1195 addPass(&MachineCSEID); 1196 addPass(&SIFoldOperandsID); 1197 } 1198 addPass(&DeadMachineInstructionElimID); 1199 addPass(createSIShrinkInstructionsPass()); 1200 } 1201 1202 bool GCNPassConfig::addILPOpts() { 1203 if (EnableEarlyIfConversion) 1204 addPass(&EarlyIfConverterID); 1205 1206 TargetPassConfig::addILPOpts(); 1207 return false; 1208 } 1209 1210 bool GCNPassConfig::addInstSelector() { 1211 AMDGPUPassConfig::addInstSelector(); 1212 addPass(&SIFixSGPRCopiesID); 1213 addPass(createSILowerI1CopiesPass()); 1214 return false; 1215 } 1216 1217 bool GCNPassConfig::addIRTranslator() { 1218 addPass(new IRTranslator(getOptLevel())); 1219 return false; 1220 } 1221 1222 void GCNPassConfig::addPreLegalizeMachineIR() { 1223 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1224 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1225 addPass(new Localizer()); 1226 } 1227 1228 bool GCNPassConfig::addLegalizeMachineIR() { 1229 addPass(new Legalizer()); 1230 return false; 1231 } 1232 1233 void GCNPassConfig::addPreRegBankSelect() { 1234 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1235 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1236 } 1237 1238 bool GCNPassConfig::addRegBankSelect() { 1239 addPass(new RegBankSelect()); 1240 return false; 1241 } 1242 1243 void GCNPassConfig::addPreGlobalInstructionSelect() { 1244 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1245 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1246 } 1247 1248 bool GCNPassConfig::addGlobalInstructionSelect() { 1249 addPass(new InstructionSelect(getOptLevel())); 1250 return false; 1251 } 1252 1253 void GCNPassConfig::addPreRegAlloc() { 1254 if (LateCFGStructurize) { 1255 addPass(createAMDGPUMachineCFGStructurizerPass()); 1256 } 1257 } 1258 1259 void GCNPassConfig::addFastRegAlloc() { 1260 // FIXME: We have to disable the verifier here because of PHIElimination + 1261 // TwoAddressInstructions disabling it. 1262 1263 // This must be run immediately after phi elimination and before 1264 // TwoAddressInstructions, otherwise the processing of the tied operand of 1265 // SI_ELSE will introduce a copy of the tied operand source after the else. 1266 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1267 1268 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1269 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1270 1271 TargetPassConfig::addFastRegAlloc(); 1272 } 1273 1274 void GCNPassConfig::addOptimizedRegAlloc() { 1275 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1276 // instructions that cause scheduling barriers. 1277 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1278 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1279 1280 if (OptExecMaskPreRA) 1281 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1282 1283 if (isPassEnabled(EnablePreRAOptimizations)) 1284 insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID); 1285 1286 // This is not an essential optimization and it has a noticeable impact on 1287 // compilation time, so we only enable it from O2. 1288 if (TM->getOptLevel() > CodeGenOpt::Less) 1289 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1290 1291 // FIXME: when an instruction has a Killed operand, and the instruction is 1292 // inside a bundle, seems only the BUNDLE instruction appears as the Kills of 1293 // the register in LiveVariables, this would trigger a failure in verifier, 1294 // we should fix it and enable the verifier. 1295 if (OptVGPRLiveRange) 1296 insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID); 1297 // This must be run immediately after phi elimination and before 1298 // TwoAddressInstructions, otherwise the processing of the tied operand of 1299 // SI_ELSE will introduce a copy of the tied operand source after the else. 1300 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1301 1302 if (EnableDCEInRA) 1303 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1304 1305 TargetPassConfig::addOptimizedRegAlloc(); 1306 } 1307 1308 bool GCNPassConfig::addPreRewrite() { 1309 if (EnableRegReassign) 1310 addPass(&GCNNSAReassignID); 1311 return true; 1312 } 1313 1314 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) { 1315 // Initialize the global default. 1316 llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag, 1317 initializeDefaultSGPRRegisterAllocatorOnce); 1318 1319 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 1320 if (Ctor != useDefaultRegisterAllocator) 1321 return Ctor(); 1322 1323 if (Optimized) 1324 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 1325 1326 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 1327 } 1328 1329 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) { 1330 // Initialize the global default. 1331 llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag, 1332 initializeDefaultVGPRRegisterAllocatorOnce); 1333 1334 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 1335 if (Ctor != useDefaultRegisterAllocator) 1336 return Ctor(); 1337 1338 if (Optimized) 1339 return createGreedyVGPRRegisterAllocator(); 1340 1341 return createFastVGPRRegisterAllocator(); 1342 } 1343 1344 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) { 1345 llvm_unreachable("should not be used"); 1346 } 1347 1348 static const char RegAllocOptNotSupportedMessage[] = 1349 "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc"; 1350 1351 bool GCNPassConfig::addRegAssignAndRewriteFast() { 1352 if (!usingDefaultRegAlloc()) 1353 report_fatal_error(RegAllocOptNotSupportedMessage); 1354 1355 addPass(createSGPRAllocPass(false)); 1356 1357 // Equivalent of PEI for SGPRs. 1358 addPass(&SILowerSGPRSpillsID); 1359 1360 addPass(createVGPRAllocPass(false)); 1361 return true; 1362 } 1363 1364 bool GCNPassConfig::addRegAssignAndRewriteOptimized() { 1365 if (!usingDefaultRegAlloc()) 1366 report_fatal_error(RegAllocOptNotSupportedMessage); 1367 1368 addPass(createSGPRAllocPass(true)); 1369 1370 // Commit allocated register changes. This is mostly necessary because too 1371 // many things rely on the use lists of the physical registers, such as the 1372 // verifier. This is only necessary with allocators which use LiveIntervals, 1373 // since FastRegAlloc does the replacements itself. 1374 addPass(createVirtRegRewriter(false)); 1375 1376 // Equivalent of PEI for SGPRs. 1377 addPass(&SILowerSGPRSpillsID); 1378 1379 addPass(createVGPRAllocPass(true)); 1380 1381 addPreRewrite(); 1382 addPass(&VirtRegRewriterID); 1383 1384 return true; 1385 } 1386 1387 void GCNPassConfig::addPostRegAlloc() { 1388 addPass(&SIFixVGPRCopiesID); 1389 if (getOptLevel() > CodeGenOpt::None) 1390 addPass(&SIOptimizeExecMaskingID); 1391 TargetPassConfig::addPostRegAlloc(); 1392 } 1393 1394 void GCNPassConfig::addPreSched2() { 1395 if (TM->getOptLevel() > CodeGenOpt::None) 1396 addPass(createSIShrinkInstructionsPass()); 1397 addPass(&SIPostRABundlerID); 1398 } 1399 1400 void GCNPassConfig::addPreEmitPass() { 1401 addPass(createSIMemoryLegalizerPass()); 1402 addPass(createSIInsertWaitcntsPass()); 1403 1404 addPass(createSIModeRegisterPass()); 1405 1406 if (getOptLevel() > CodeGenOpt::None) 1407 addPass(&SIInsertHardClausesID); 1408 1409 addPass(&SILateBranchLoweringPassID); 1410 if (isPassEnabled(EnableSetWavePriority, CodeGenOpt::Less)) 1411 addPass(createAMDGPUSetWavePriorityPass()); 1412 if (getOptLevel() > CodeGenOpt::None) 1413 addPass(&SIPreEmitPeepholeID); 1414 // The hazard recognizer that runs as part of the post-ra scheduler does not 1415 // guarantee to be able handle all hazards correctly. This is because if there 1416 // are multiple scheduling regions in a basic block, the regions are scheduled 1417 // bottom up, so when we begin to schedule a region we don't know what 1418 // instructions were emitted directly before it. 1419 // 1420 // Here we add a stand-alone hazard recognizer pass which can handle all 1421 // cases. 1422 addPass(&PostRAHazardRecognizerID); 1423 1424 if (isPassEnabled(EnableInsertDelayAlu, CodeGenOpt::Less)) 1425 addPass(&AMDGPUInsertDelayAluID); 1426 1427 addPass(&BranchRelaxationPassID); 1428 } 1429 1430 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1431 return new GCNPassConfig(*this, PM); 1432 } 1433 1434 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1435 return new yaml::SIMachineFunctionInfo(); 1436 } 1437 1438 yaml::MachineFunctionInfo * 1439 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1440 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1441 return new yaml::SIMachineFunctionInfo( 1442 *MFI, *MF.getSubtarget().getRegisterInfo(), MF); 1443 } 1444 1445 bool GCNTargetMachine::parseMachineFunctionInfo( 1446 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1447 SMDiagnostic &Error, SMRange &SourceRange) const { 1448 const yaml::SIMachineFunctionInfo &YamlMFI = 1449 static_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1450 MachineFunction &MF = PFS.MF; 1451 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1452 1453 if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange)) 1454 return true; 1455 1456 if (MFI->Occupancy == 0) { 1457 // Fixup the subtarget dependent default value. 1458 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1459 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1460 } 1461 1462 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1463 Register TempReg; 1464 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1465 SourceRange = RegName.SourceRange; 1466 return true; 1467 } 1468 RegVal = TempReg; 1469 1470 return false; 1471 }; 1472 1473 auto parseOptionalRegister = [&](const yaml::StringValue &RegName, 1474 Register &RegVal) { 1475 return !RegName.Value.empty() && parseRegister(RegName, RegVal); 1476 }; 1477 1478 if (parseOptionalRegister(YamlMFI.VGPRForAGPRCopy, MFI->VGPRForAGPRCopy)) 1479 return true; 1480 1481 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1482 // Create a diagnostic for a the register string literal. 1483 const MemoryBuffer &Buffer = 1484 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1485 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1486 RegName.Value.size(), SourceMgr::DK_Error, 1487 "incorrect register class for field", RegName.Value, 1488 None, None); 1489 SourceRange = RegName.SourceRange; 1490 return true; 1491 }; 1492 1493 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1494 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1495 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1496 return true; 1497 1498 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1499 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1500 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1501 } 1502 1503 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1504 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1505 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1506 } 1507 1508 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1509 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1510 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1511 } 1512 1513 for (const auto &YamlReg : YamlMFI.WWMReservedRegs) { 1514 Register ParsedReg; 1515 if (parseRegister(YamlReg, ParsedReg)) 1516 return true; 1517 1518 MFI->reserveWWMRegister(ParsedReg); 1519 } 1520 1521 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1522 const TargetRegisterClass &RC, 1523 ArgDescriptor &Arg, unsigned UserSGPRs, 1524 unsigned SystemSGPRs) { 1525 // Skip parsing if it's not present. 1526 if (!A) 1527 return false; 1528 1529 if (A->IsRegister) { 1530 Register Reg; 1531 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1532 SourceRange = A->RegisterName.SourceRange; 1533 return true; 1534 } 1535 if (!RC.contains(Reg)) 1536 return diagnoseRegisterClass(A->RegisterName); 1537 Arg = ArgDescriptor::createRegister(Reg); 1538 } else 1539 Arg = ArgDescriptor::createStack(A->StackOffset); 1540 // Check and apply the optional mask. 1541 if (A->Mask) 1542 Arg = ArgDescriptor::createArg(Arg, *A->Mask); 1543 1544 MFI->NumUserSGPRs += UserSGPRs; 1545 MFI->NumSystemSGPRs += SystemSGPRs; 1546 return false; 1547 }; 1548 1549 if (YamlMFI.ArgInfo && 1550 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1551 AMDGPU::SGPR_128RegClass, 1552 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1553 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1554 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1555 2, 0) || 1556 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1557 MFI->ArgInfo.QueuePtr, 2, 0) || 1558 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1559 AMDGPU::SReg_64RegClass, 1560 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1561 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1562 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1563 2, 0) || 1564 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1565 AMDGPU::SReg_64RegClass, 1566 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1567 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1568 AMDGPU::SGPR_32RegClass, 1569 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1570 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1571 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1572 0, 1) || 1573 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1574 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1575 0, 1) || 1576 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1577 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1578 0, 1) || 1579 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1580 AMDGPU::SGPR_32RegClass, 1581 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1582 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1583 AMDGPU::SGPR_32RegClass, 1584 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1585 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1586 AMDGPU::SReg_64RegClass, 1587 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1588 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1589 AMDGPU::SReg_64RegClass, 1590 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1591 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1592 AMDGPU::VGPR_32RegClass, 1593 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1594 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1595 AMDGPU::VGPR_32RegClass, 1596 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1597 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1598 AMDGPU::VGPR_32RegClass, 1599 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1600 return true; 1601 1602 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1603 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1604 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1605 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1606 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1607 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1608 1609 return false; 1610 } 1611