1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUInstructionSelector.h" 20 #include "AMDGPULegalizerInfo.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPUTargetObjectFile.h" 23 #include "AMDGPUTargetTransformInfo.h" 24 #include "GCNIterativeScheduler.h" 25 #include "GCNSchedStrategy.h" 26 #include "R600MachineScheduler.h" 27 #include "SIMachineFunctionInfo.h" 28 #include "SIMachineScheduler.h" 29 #include "TargetInfo/AMDGPUTargetInfo.h" 30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/LegacyPassManager.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Compiler.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Target/TargetLoweringObjectFile.h" 45 #include "llvm/Transforms/IPO.h" 46 #include "llvm/Transforms/IPO/AlwaysInliner.h" 47 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 48 #include "llvm/Transforms/Scalar.h" 49 #include "llvm/Transforms/Scalar/GVN.h" 50 #include "llvm/Transforms/Utils.h" 51 #include "llvm/Transforms/Vectorize.h" 52 #include <memory> 53 54 using namespace llvm; 55 56 static cl::opt<bool> EnableR600StructurizeCFG( 57 "r600-ir-structurize", 58 cl::desc("Use StructurizeCFG IR pass"), 59 cl::init(true)); 60 61 static cl::opt<bool> EnableSROA( 62 "amdgpu-sroa", 63 cl::desc("Run SROA after promote alloca pass"), 64 cl::ReallyHidden, 65 cl::init(true)); 66 67 static cl::opt<bool> 68 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 69 cl::desc("Run early if-conversion"), 70 cl::init(false)); 71 72 static cl::opt<bool> 73 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 74 cl::desc("Run pre-RA exec mask optimizations"), 75 cl::init(true)); 76 77 static cl::opt<bool> EnableR600IfConvert( 78 "r600-if-convert", 79 cl::desc("Use if conversion pass"), 80 cl::ReallyHidden, 81 cl::init(true)); 82 83 // Option to disable vectorizer for tests. 84 static cl::opt<bool> EnableLoadStoreVectorizer( 85 "amdgpu-load-store-vectorizer", 86 cl::desc("Enable load store vectorizer"), 87 cl::init(true), 88 cl::Hidden); 89 90 // Option to control global loads scalarization 91 static cl::opt<bool> ScalarizeGlobal( 92 "amdgpu-scalarize-global-loads", 93 cl::desc("Enable global load scalarization"), 94 cl::init(true), 95 cl::Hidden); 96 97 // Option to run internalize pass. 98 static cl::opt<bool> InternalizeSymbols( 99 "amdgpu-internalize-symbols", 100 cl::desc("Enable elimination of non-kernel functions and unused globals"), 101 cl::init(false), 102 cl::Hidden); 103 104 // Option to inline all early. 105 static cl::opt<bool> EarlyInlineAll( 106 "amdgpu-early-inline-all", 107 cl::desc("Inline all functions early"), 108 cl::init(false), 109 cl::Hidden); 110 111 static cl::opt<bool> EnableSDWAPeephole( 112 "amdgpu-sdwa-peephole", 113 cl::desc("Enable SDWA peepholer"), 114 cl::init(true)); 115 116 static cl::opt<bool> EnableDPPCombine( 117 "amdgpu-dpp-combine", 118 cl::desc("Enable DPP combiner"), 119 cl::init(true)); 120 121 // Enable address space based alias analysis 122 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 123 cl::desc("Enable AMDGPU Alias Analysis"), 124 cl::init(true)); 125 126 // Option to run late CFG structurizer 127 static cl::opt<bool, true> LateCFGStructurize( 128 "amdgpu-late-structurize", 129 cl::desc("Enable late CFG structurization"), 130 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 131 cl::Hidden); 132 133 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 134 "amdgpu-function-calls", 135 cl::desc("Enable AMDGPU function call support"), 136 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 137 cl::init(true), 138 cl::Hidden); 139 140 // Enable lib calls simplifications 141 static cl::opt<bool> EnableLibCallSimplify( 142 "amdgpu-simplify-libcall", 143 cl::desc("Enable amdgpu library simplifications"), 144 cl::init(true), 145 cl::Hidden); 146 147 static cl::opt<bool> EnableLowerKernelArguments( 148 "amdgpu-ir-lower-kernel-arguments", 149 cl::desc("Lower kernel argument loads in IR pass"), 150 cl::init(true), 151 cl::Hidden); 152 153 static cl::opt<bool> EnableRegReassign( 154 "amdgpu-reassign-regs", 155 cl::desc("Enable register reassign optimizations on gfx10+"), 156 cl::init(true), 157 cl::Hidden); 158 159 // Enable atomic optimization 160 static cl::opt<bool> EnableAtomicOptimizations( 161 "amdgpu-atomic-optimizations", 162 cl::desc("Enable atomic optimizations"), 163 cl::init(false), 164 cl::Hidden); 165 166 // Enable Mode register optimization 167 static cl::opt<bool> EnableSIModeRegisterPass( 168 "amdgpu-mode-register", 169 cl::desc("Enable mode register pass"), 170 cl::init(true), 171 cl::Hidden); 172 173 // Option is used in lit tests to prevent deadcoding of patterns inspected. 174 static cl::opt<bool> 175 EnableDCEInRA("amdgpu-dce-in-ra", 176 cl::init(true), cl::Hidden, 177 cl::desc("Enable machine DCE inside regalloc")); 178 179 static cl::opt<bool> EnableScalarIRPasses( 180 "amdgpu-scalar-ir-passes", 181 cl::desc("Enable scalar IR passes"), 182 cl::init(true), 183 cl::Hidden); 184 185 extern "C" void LLVMInitializeAMDGPUTarget() { 186 // Register the target 187 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 188 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 189 190 PassRegistry *PR = PassRegistry::getPassRegistry(); 191 initializeR600ClauseMergePassPass(*PR); 192 initializeR600ControlFlowFinalizerPass(*PR); 193 initializeR600PacketizerPass(*PR); 194 initializeR600ExpandSpecialInstrsPassPass(*PR); 195 initializeR600VectorRegMergerPass(*PR); 196 initializeGlobalISel(*PR); 197 initializeAMDGPUDAGToDAGISelPass(*PR); 198 initializeGCNDPPCombinePass(*PR); 199 initializeSILowerI1CopiesPass(*PR); 200 initializeSILowerSGPRSpillsPass(*PR); 201 initializeSIFixSGPRCopiesPass(*PR); 202 initializeSIFixVGPRCopiesPass(*PR); 203 initializeSIFixupVectorISelPass(*PR); 204 initializeSIFoldOperandsPass(*PR); 205 initializeSIPeepholeSDWAPass(*PR); 206 initializeSIShrinkInstructionsPass(*PR); 207 initializeSIOptimizeExecMaskingPreRAPass(*PR); 208 initializeSILoadStoreOptimizerPass(*PR); 209 initializeAMDGPUFixFunctionBitcastsPass(*PR); 210 initializeAMDGPUAlwaysInlinePass(*PR); 211 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 212 initializeAMDGPUAnnotateUniformValuesPass(*PR); 213 initializeAMDGPUArgumentUsageInfoPass(*PR); 214 initializeAMDGPUAtomicOptimizerPass(*PR); 215 initializeAMDGPULowerKernelArgumentsPass(*PR); 216 initializeAMDGPULowerKernelAttributesPass(*PR); 217 initializeAMDGPULowerIntrinsicsPass(*PR); 218 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 219 initializeAMDGPUPromoteAllocaPass(*PR); 220 initializeAMDGPUCodeGenPreparePass(*PR); 221 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 222 initializeAMDGPUPropagateAttributesLatePass(*PR); 223 initializeAMDGPURewriteOutArgumentsPass(*PR); 224 initializeAMDGPUUnifyMetadataPass(*PR); 225 initializeSIAnnotateControlFlowPass(*PR); 226 initializeSIInsertWaitcntsPass(*PR); 227 initializeSIModeRegisterPass(*PR); 228 initializeSIWholeQuadModePass(*PR); 229 initializeSILowerControlFlowPass(*PR); 230 initializeSIInsertSkipsPass(*PR); 231 initializeSIMemoryLegalizerPass(*PR); 232 initializeSIOptimizeExecMaskingPass(*PR); 233 initializeSIPreAllocateWWMRegsPass(*PR); 234 initializeSIFormMemoryClausesPass(*PR); 235 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 236 initializeAMDGPUAAWrapperPassPass(*PR); 237 initializeAMDGPUExternalAAWrapperPass(*PR); 238 initializeAMDGPUUseNativeCallsPass(*PR); 239 initializeAMDGPUSimplifyLibCallsPass(*PR); 240 initializeAMDGPUInlinerPass(*PR); 241 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 242 initializeGCNRegBankReassignPass(*PR); 243 initializeGCNNSAReassignPass(*PR); 244 } 245 246 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 247 return std::make_unique<AMDGPUTargetObjectFile>(); 248 } 249 250 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 251 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 252 } 253 254 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 255 return new SIScheduleDAGMI(C); 256 } 257 258 static ScheduleDAGInstrs * 259 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 260 ScheduleDAGMILive *DAG = 261 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 262 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 263 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 264 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 265 return DAG; 266 } 267 268 static ScheduleDAGInstrs * 269 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 270 auto DAG = new GCNIterativeScheduler(C, 271 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 272 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 273 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 274 return DAG; 275 } 276 277 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 278 return new GCNIterativeScheduler(C, 279 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 280 } 281 282 static ScheduleDAGInstrs * 283 createIterativeILPMachineScheduler(MachineSchedContext *C) { 284 auto DAG = new GCNIterativeScheduler(C, 285 GCNIterativeScheduler::SCHEDULE_ILP); 286 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 287 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 288 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 289 return DAG; 290 } 291 292 static MachineSchedRegistry 293 R600SchedRegistry("r600", "Run R600's custom scheduler", 294 createR600MachineScheduler); 295 296 static MachineSchedRegistry 297 SISchedRegistry("si", "Run SI's custom scheduler", 298 createSIMachineScheduler); 299 300 static MachineSchedRegistry 301 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 302 "Run GCN scheduler to maximize occupancy", 303 createGCNMaxOccupancyMachineScheduler); 304 305 static MachineSchedRegistry 306 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 307 "Run GCN scheduler to maximize occupancy (experimental)", 308 createIterativeGCNMaxOccupancyMachineScheduler); 309 310 static MachineSchedRegistry 311 GCNMinRegSchedRegistry("gcn-minreg", 312 "Run GCN iterative scheduler for minimal register usage (experimental)", 313 createMinRegScheduler); 314 315 static MachineSchedRegistry 316 GCNILPSchedRegistry("gcn-ilp", 317 "Run GCN iterative scheduler for ILP scheduling (experimental)", 318 createIterativeILPMachineScheduler); 319 320 static StringRef computeDataLayout(const Triple &TT) { 321 if (TT.getArch() == Triple::r600) { 322 // 32-bit pointers. 323 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 324 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 325 } 326 327 // 32-bit private, local, and region pointers. 64-bit global, constant and 328 // flat, non-integral buffer fat pointers. 329 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 330 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 331 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 332 "-ni:7"; 333 } 334 335 LLVM_READNONE 336 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 337 if (!GPU.empty()) 338 return GPU; 339 340 // Need to default to a target with flat support for HSA. 341 if (TT.getArch() == Triple::amdgcn) 342 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 343 344 return "r600"; 345 } 346 347 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 348 // The AMDGPU toolchain only supports generating shared objects, so we 349 // must always use PIC. 350 return Reloc::PIC_; 351 } 352 353 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 354 StringRef CPU, StringRef FS, 355 TargetOptions Options, 356 Optional<Reloc::Model> RM, 357 Optional<CodeModel::Model> CM, 358 CodeGenOpt::Level OptLevel) 359 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 360 FS, Options, getEffectiveRelocModel(RM), 361 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 362 TLOF(createTLOF(getTargetTriple())) { 363 initAsmInfo(); 364 } 365 366 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 367 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 368 369 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 370 371 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 372 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 373 return GPUAttr.hasAttribute(Attribute::None) ? 374 getTargetCPU() : GPUAttr.getValueAsString(); 375 } 376 377 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 378 Attribute FSAttr = F.getFnAttribute("target-features"); 379 380 return FSAttr.hasAttribute(Attribute::None) ? 381 getTargetFeatureString() : 382 FSAttr.getValueAsString(); 383 } 384 385 /// Predicate for Internalize pass. 386 static bool mustPreserveGV(const GlobalValue &GV) { 387 if (const Function *F = dyn_cast<Function>(&GV)) 388 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 389 390 return !GV.use_empty(); 391 } 392 393 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 394 Builder.DivergentTarget = true; 395 396 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 397 bool Internalize = InternalizeSymbols; 398 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 399 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 400 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 401 402 if (EnableFunctionCalls) { 403 delete Builder.Inliner; 404 Builder.Inliner = createAMDGPUFunctionInliningPass(); 405 } 406 407 Builder.addExtension( 408 PassManagerBuilder::EP_ModuleOptimizerEarly, 409 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 410 legacy::PassManagerBase &PM) { 411 if (AMDGPUAA) { 412 PM.add(createAMDGPUAAWrapperPass()); 413 PM.add(createAMDGPUExternalAAWrapperPass()); 414 } 415 PM.add(createAMDGPUUnifyMetadataPass()); 416 PM.add(createAMDGPUPrintfRuntimeBinding()); 417 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 418 if (Internalize) { 419 PM.add(createInternalizePass(mustPreserveGV)); 420 PM.add(createGlobalDCEPass()); 421 } 422 if (EarlyInline) 423 PM.add(createAMDGPUAlwaysInlinePass(false)); 424 }); 425 426 const auto &Opt = Options; 427 Builder.addExtension( 428 PassManagerBuilder::EP_EarlyAsPossible, 429 [AMDGPUAA, LibCallSimplify, &Opt, this](const PassManagerBuilder &, 430 legacy::PassManagerBase &PM) { 431 if (AMDGPUAA) { 432 PM.add(createAMDGPUAAWrapperPass()); 433 PM.add(createAMDGPUExternalAAWrapperPass()); 434 } 435 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 436 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 437 if (LibCallSimplify) 438 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt, this)); 439 }); 440 441 Builder.addExtension( 442 PassManagerBuilder::EP_CGSCCOptimizerLate, 443 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 444 // Add infer address spaces pass to the opt pipeline after inlining 445 // but before SROA to increase SROA opportunities. 446 PM.add(createInferAddressSpacesPass()); 447 448 // This should run after inlining to have any chance of doing anything, 449 // and before other cleanup optimizations. 450 PM.add(createAMDGPULowerKernelAttributesPass()); 451 }); 452 } 453 454 //===----------------------------------------------------------------------===// 455 // R600 Target Machine (R600 -> Cayman) 456 //===----------------------------------------------------------------------===// 457 458 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 459 StringRef CPU, StringRef FS, 460 TargetOptions Options, 461 Optional<Reloc::Model> RM, 462 Optional<CodeModel::Model> CM, 463 CodeGenOpt::Level OL, bool JIT) 464 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 465 setRequiresStructuredCFG(true); 466 467 // Override the default since calls aren't supported for r600. 468 if (EnableFunctionCalls && 469 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 470 EnableFunctionCalls = false; 471 } 472 473 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 474 const Function &F) const { 475 StringRef GPU = getGPUName(F); 476 StringRef FS = getFeatureString(F); 477 478 SmallString<128> SubtargetKey(GPU); 479 SubtargetKey.append(FS); 480 481 auto &I = SubtargetMap[SubtargetKey]; 482 if (!I) { 483 // This needs to be done before we create a new subtarget since any 484 // creation will depend on the TM and the code generation flags on the 485 // function that reside in TargetOptions. 486 resetTargetOptions(F); 487 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 488 } 489 490 return I.get(); 491 } 492 493 TargetTransformInfo 494 R600TargetMachine::getTargetTransformInfo(const Function &F) { 495 return TargetTransformInfo(R600TTIImpl(this, F)); 496 } 497 498 //===----------------------------------------------------------------------===// 499 // GCN Target Machine (SI+) 500 //===----------------------------------------------------------------------===// 501 502 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 503 StringRef CPU, StringRef FS, 504 TargetOptions Options, 505 Optional<Reloc::Model> RM, 506 Optional<CodeModel::Model> CM, 507 CodeGenOpt::Level OL, bool JIT) 508 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 509 510 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 511 StringRef GPU = getGPUName(F); 512 StringRef FS = getFeatureString(F); 513 514 SmallString<128> SubtargetKey(GPU); 515 SubtargetKey.append(FS); 516 517 auto &I = SubtargetMap[SubtargetKey]; 518 if (!I) { 519 // This needs to be done before we create a new subtarget since any 520 // creation will depend on the TM and the code generation flags on the 521 // function that reside in TargetOptions. 522 resetTargetOptions(F); 523 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 524 } 525 526 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 527 528 return I.get(); 529 } 530 531 TargetTransformInfo 532 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 533 return TargetTransformInfo(GCNTTIImpl(this, F)); 534 } 535 536 //===----------------------------------------------------------------------===// 537 // AMDGPU Pass Setup 538 //===----------------------------------------------------------------------===// 539 540 namespace { 541 542 class AMDGPUPassConfig : public TargetPassConfig { 543 public: 544 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 545 : TargetPassConfig(TM, PM) { 546 // Exceptions and StackMaps are not supported, so these passes will never do 547 // anything. 548 disablePass(&StackMapLivenessID); 549 disablePass(&FuncletLayoutID); 550 } 551 552 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 553 return getTM<AMDGPUTargetMachine>(); 554 } 555 556 ScheduleDAGInstrs * 557 createMachineScheduler(MachineSchedContext *C) const override { 558 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 559 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 560 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 561 return DAG; 562 } 563 564 void addEarlyCSEOrGVNPass(); 565 void addStraightLineScalarOptimizationPasses(); 566 void addIRPasses() override; 567 void addCodeGenPrepare() override; 568 bool addPreISel() override; 569 bool addInstSelector() override; 570 bool addGCPasses() override; 571 572 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 573 }; 574 575 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 576 return getStandardCSEConfigForOpt(TM->getOptLevel()); 577 } 578 579 class R600PassConfig final : public AMDGPUPassConfig { 580 public: 581 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 582 : AMDGPUPassConfig(TM, PM) {} 583 584 ScheduleDAGInstrs *createMachineScheduler( 585 MachineSchedContext *C) const override { 586 return createR600MachineScheduler(C); 587 } 588 589 bool addPreISel() override; 590 bool addInstSelector() override; 591 void addPreRegAlloc() override; 592 void addPreSched2() override; 593 void addPreEmitPass() override; 594 }; 595 596 class GCNPassConfig final : public AMDGPUPassConfig { 597 public: 598 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 599 : AMDGPUPassConfig(TM, PM) { 600 // It is necessary to know the register usage of the entire call graph. We 601 // allow calls without EnableAMDGPUFunctionCalls if they are marked 602 // noinline, so this is always required. 603 setRequiresCodeGenSCCOrder(true); 604 } 605 606 GCNTargetMachine &getGCNTargetMachine() const { 607 return getTM<GCNTargetMachine>(); 608 } 609 610 ScheduleDAGInstrs * 611 createMachineScheduler(MachineSchedContext *C) const override; 612 613 bool addPreISel() override; 614 void addMachineSSAOptimization() override; 615 bool addILPOpts() override; 616 bool addInstSelector() override; 617 bool addIRTranslator() override; 618 bool addLegalizeMachineIR() override; 619 bool addRegBankSelect() override; 620 bool addGlobalInstructionSelect() override; 621 void addFastRegAlloc() override; 622 void addOptimizedRegAlloc() override; 623 void addPreRegAlloc() override; 624 bool addPreRewrite() override; 625 void addPostRegAlloc() override; 626 void addPreSched2() override; 627 void addPreEmitPass() override; 628 }; 629 630 } // end anonymous namespace 631 632 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 633 if (getOptLevel() == CodeGenOpt::Aggressive) 634 addPass(createGVNPass()); 635 else 636 addPass(createEarlyCSEPass()); 637 } 638 639 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 640 addPass(createLICMPass()); 641 addPass(createSeparateConstOffsetFromGEPPass()); 642 addPass(createSpeculativeExecutionPass()); 643 // ReassociateGEPs exposes more opportunites for SLSR. See 644 // the example in reassociate-geps-and-slsr.ll. 645 addPass(createStraightLineStrengthReducePass()); 646 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 647 // EarlyCSE can reuse. 648 addEarlyCSEOrGVNPass(); 649 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 650 addPass(createNaryReassociatePass()); 651 // NaryReassociate on GEPs creates redundant common expressions, so run 652 // EarlyCSE after it. 653 addPass(createEarlyCSEPass()); 654 } 655 656 void AMDGPUPassConfig::addIRPasses() { 657 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 658 659 // There is no reason to run these. 660 disablePass(&StackMapLivenessID); 661 disablePass(&FuncletLayoutID); 662 disablePass(&PatchableFunctionID); 663 664 addPass(createAMDGPUPrintfRuntimeBinding()); 665 666 // This must occur before inlining, as the inliner will not look through 667 // bitcast calls. 668 addPass(createAMDGPUFixFunctionBitcastsPass()); 669 670 // A call to propagate attributes pass in the backend in case opt was not run. 671 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 672 673 addPass(createAtomicExpandPass()); 674 675 676 addPass(createAMDGPULowerIntrinsicsPass()); 677 678 // Function calls are not supported, so make sure we inline everything. 679 addPass(createAMDGPUAlwaysInlinePass()); 680 addPass(createAlwaysInlinerLegacyPass()); 681 // We need to add the barrier noop pass, otherwise adding the function 682 // inlining pass will cause all of the PassConfigs passes to be run 683 // one function at a time, which means if we have a nodule with two 684 // functions, then we will generate code for the first function 685 // without ever running any passes on the second. 686 addPass(createBarrierNoopPass()); 687 688 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 689 // TODO: May want to move later or split into an early and late one. 690 691 addPass(createAMDGPUCodeGenPreparePass()); 692 } 693 694 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 695 if (TM.getTargetTriple().getArch() == Triple::r600) 696 addPass(createR600OpenCLImageTypeLoweringPass()); 697 698 // Replace OpenCL enqueued block function pointers with global variables. 699 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 700 701 if (TM.getOptLevel() > CodeGenOpt::None) { 702 addPass(createInferAddressSpacesPass()); 703 addPass(createAMDGPUPromoteAlloca()); 704 705 if (EnableSROA) 706 addPass(createSROAPass()); 707 708 if (EnableScalarIRPasses) 709 addStraightLineScalarOptimizationPasses(); 710 711 if (EnableAMDGPUAliasAnalysis) { 712 addPass(createAMDGPUAAWrapperPass()); 713 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 714 AAResults &AAR) { 715 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 716 AAR.addAAResult(WrapperPass->getResult()); 717 })); 718 } 719 } 720 721 TargetPassConfig::addIRPasses(); 722 723 // EarlyCSE is not always strong enough to clean up what LSR produces. For 724 // example, GVN can combine 725 // 726 // %0 = add %a, %b 727 // %1 = add %b, %a 728 // 729 // and 730 // 731 // %0 = shl nsw %a, 2 732 // %1 = shl %a, 2 733 // 734 // but EarlyCSE can do neither of them. 735 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 736 addEarlyCSEOrGVNPass(); 737 } 738 739 void AMDGPUPassConfig::addCodeGenPrepare() { 740 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 741 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 742 743 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 744 EnableLowerKernelArguments) 745 addPass(createAMDGPULowerKernelArgumentsPass()); 746 747 addPass(&AMDGPUPerfHintAnalysisID); 748 749 TargetPassConfig::addCodeGenPrepare(); 750 751 if (EnableLoadStoreVectorizer) 752 addPass(createLoadStoreVectorizerPass()); 753 } 754 755 bool AMDGPUPassConfig::addPreISel() { 756 addPass(createLowerSwitchPass()); 757 addPass(createFlattenCFGPass()); 758 return false; 759 } 760 761 bool AMDGPUPassConfig::addInstSelector() { 762 // Defer the verifier until FinalizeISel. 763 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 764 return false; 765 } 766 767 bool AMDGPUPassConfig::addGCPasses() { 768 // Do nothing. GC is not supported. 769 return false; 770 } 771 772 //===----------------------------------------------------------------------===// 773 // R600 Pass Setup 774 //===----------------------------------------------------------------------===// 775 776 bool R600PassConfig::addPreISel() { 777 AMDGPUPassConfig::addPreISel(); 778 779 if (EnableR600StructurizeCFG) 780 addPass(createStructurizeCFGPass()); 781 return false; 782 } 783 784 bool R600PassConfig::addInstSelector() { 785 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 786 return false; 787 } 788 789 void R600PassConfig::addPreRegAlloc() { 790 addPass(createR600VectorRegMerger()); 791 } 792 793 void R600PassConfig::addPreSched2() { 794 addPass(createR600EmitClauseMarkers(), false); 795 if (EnableR600IfConvert) 796 addPass(&IfConverterID, false); 797 addPass(createR600ClauseMergePass(), false); 798 } 799 800 void R600PassConfig::addPreEmitPass() { 801 addPass(createAMDGPUCFGStructurizerPass(), false); 802 addPass(createR600ExpandSpecialInstrsPass(), false); 803 addPass(&FinalizeMachineBundlesID, false); 804 addPass(createR600Packetizer(), false); 805 addPass(createR600ControlFlowFinalizer(), false); 806 } 807 808 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 809 return new R600PassConfig(*this, PM); 810 } 811 812 //===----------------------------------------------------------------------===// 813 // GCN Pass Setup 814 //===----------------------------------------------------------------------===// 815 816 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 817 MachineSchedContext *C) const { 818 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 819 if (ST.enableSIScheduler()) 820 return createSIMachineScheduler(C); 821 return createGCNMaxOccupancyMachineScheduler(C); 822 } 823 824 bool GCNPassConfig::addPreISel() { 825 AMDGPUPassConfig::addPreISel(); 826 827 if (EnableAtomicOptimizations) { 828 addPass(createAMDGPUAtomicOptimizerPass()); 829 } 830 831 // FIXME: We need to run a pass to propagate the attributes when calls are 832 // supported. 833 834 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 835 // regions formed by them. 836 addPass(&AMDGPUUnifyDivergentExitNodesID); 837 if (!LateCFGStructurize) { 838 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 839 } 840 addPass(createSinkingPass()); 841 addPass(createAMDGPUAnnotateUniformValues()); 842 if (!LateCFGStructurize) { 843 addPass(createSIAnnotateControlFlowPass()); 844 } 845 addPass(createLCSSAPass()); 846 847 return false; 848 } 849 850 void GCNPassConfig::addMachineSSAOptimization() { 851 TargetPassConfig::addMachineSSAOptimization(); 852 853 // We want to fold operands after PeepholeOptimizer has run (or as part of 854 // it), because it will eliminate extra copies making it easier to fold the 855 // real source operand. We want to eliminate dead instructions after, so that 856 // we see fewer uses of the copies. We then need to clean up the dead 857 // instructions leftover after the operands are folded as well. 858 // 859 // XXX - Can we get away without running DeadMachineInstructionElim again? 860 addPass(&SIFoldOperandsID); 861 if (EnableDPPCombine) 862 addPass(&GCNDPPCombineID); 863 addPass(&DeadMachineInstructionElimID); 864 addPass(&SILoadStoreOptimizerID); 865 if (EnableSDWAPeephole) { 866 addPass(&SIPeepholeSDWAID); 867 addPass(&EarlyMachineLICMID); 868 addPass(&MachineCSEID); 869 addPass(&SIFoldOperandsID); 870 addPass(&DeadMachineInstructionElimID); 871 } 872 addPass(createSIShrinkInstructionsPass()); 873 } 874 875 bool GCNPassConfig::addILPOpts() { 876 if (EnableEarlyIfConversion) 877 addPass(&EarlyIfConverterID); 878 879 TargetPassConfig::addILPOpts(); 880 return false; 881 } 882 883 bool GCNPassConfig::addInstSelector() { 884 AMDGPUPassConfig::addInstSelector(); 885 addPass(&SIFixSGPRCopiesID); 886 addPass(createSILowerI1CopiesPass()); 887 addPass(createSIFixupVectorISelPass()); 888 addPass(createSIAddIMGInitPass()); 889 // FIXME: Remove this once the phi on CF_END is cleaned up by either removing 890 // LCSSA or other ways. 891 addPass(&UnreachableMachineBlockElimID); 892 return false; 893 } 894 895 bool GCNPassConfig::addIRTranslator() { 896 addPass(new IRTranslator()); 897 return false; 898 } 899 900 bool GCNPassConfig::addLegalizeMachineIR() { 901 addPass(new Legalizer()); 902 return false; 903 } 904 905 bool GCNPassConfig::addRegBankSelect() { 906 addPass(new RegBankSelect()); 907 return false; 908 } 909 910 bool GCNPassConfig::addGlobalInstructionSelect() { 911 addPass(new InstructionSelect()); 912 return false; 913 } 914 915 void GCNPassConfig::addPreRegAlloc() { 916 if (LateCFGStructurize) { 917 addPass(createAMDGPUMachineCFGStructurizerPass()); 918 } 919 addPass(createSIWholeQuadModePass()); 920 } 921 922 void GCNPassConfig::addFastRegAlloc() { 923 // FIXME: We have to disable the verifier here because of PHIElimination + 924 // TwoAddressInstructions disabling it. 925 926 // This must be run immediately after phi elimination and before 927 // TwoAddressInstructions, otherwise the processing of the tied operand of 928 // SI_ELSE will introduce a copy of the tied operand source after the else. 929 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 930 931 // This must be run just after RegisterCoalescing. 932 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 933 934 TargetPassConfig::addFastRegAlloc(); 935 } 936 937 void GCNPassConfig::addOptimizedRegAlloc() { 938 if (OptExecMaskPreRA) { 939 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 940 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 941 } else { 942 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 943 } 944 945 // This must be run immediately after phi elimination and before 946 // TwoAddressInstructions, otherwise the processing of the tied operand of 947 // SI_ELSE will introduce a copy of the tied operand source after the else. 948 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 949 950 // This must be run just after RegisterCoalescing. 951 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 952 953 if (EnableDCEInRA) 954 insertPass(&RenameIndependentSubregsID, &DeadMachineInstructionElimID); 955 956 TargetPassConfig::addOptimizedRegAlloc(); 957 } 958 959 bool GCNPassConfig::addPreRewrite() { 960 if (EnableRegReassign) { 961 addPass(&GCNNSAReassignID); 962 addPass(&GCNRegBankReassignID); 963 } 964 return true; 965 } 966 967 void GCNPassConfig::addPostRegAlloc() { 968 addPass(&SIFixVGPRCopiesID); 969 if (getOptLevel() > CodeGenOpt::None) 970 addPass(&SIOptimizeExecMaskingID); 971 TargetPassConfig::addPostRegAlloc(); 972 973 // Equivalent of PEI for SGPRs. 974 addPass(&SILowerSGPRSpillsID); 975 } 976 977 void GCNPassConfig::addPreSched2() { 978 } 979 980 void GCNPassConfig::addPreEmitPass() { 981 addPass(createSIMemoryLegalizerPass()); 982 addPass(createSIInsertWaitcntsPass()); 983 addPass(createSIShrinkInstructionsPass()); 984 addPass(createSIModeRegisterPass()); 985 986 // The hazard recognizer that runs as part of the post-ra scheduler does not 987 // guarantee to be able handle all hazards correctly. This is because if there 988 // are multiple scheduling regions in a basic block, the regions are scheduled 989 // bottom up, so when we begin to schedule a region we don't know what 990 // instructions were emitted directly before it. 991 // 992 // Here we add a stand-alone hazard recognizer pass which can handle all 993 // cases. 994 // 995 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 996 // be better for it to emit S_NOP <N> when possible. 997 addPass(&PostRAHazardRecognizerID); 998 999 addPass(&SIInsertSkipsPassID); 1000 addPass(&BranchRelaxationPassID); 1001 } 1002 1003 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1004 return new GCNPassConfig(*this, PM); 1005 } 1006 1007 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1008 return new yaml::SIMachineFunctionInfo(); 1009 } 1010 1011 yaml::MachineFunctionInfo * 1012 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1013 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1014 return new yaml::SIMachineFunctionInfo(*MFI, 1015 *MF.getSubtarget().getRegisterInfo()); 1016 } 1017 1018 bool GCNTargetMachine::parseMachineFunctionInfo( 1019 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1020 SMDiagnostic &Error, SMRange &SourceRange) const { 1021 const yaml::SIMachineFunctionInfo &YamlMFI = 1022 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1023 MachineFunction &MF = PFS.MF; 1024 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1025 1026 MFI->initializeBaseYamlFields(YamlMFI); 1027 1028 auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) { 1029 if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) { 1030 SourceRange = RegName.SourceRange; 1031 return true; 1032 } 1033 1034 return false; 1035 }; 1036 1037 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1038 // Create a diagnostic for a the register string literal. 1039 const MemoryBuffer &Buffer = 1040 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1041 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1042 RegName.Value.size(), SourceMgr::DK_Error, 1043 "incorrect register class for field", RegName.Value, 1044 None, None); 1045 SourceRange = RegName.SourceRange; 1046 return true; 1047 }; 1048 1049 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1050 parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) || 1051 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1052 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1053 return true; 1054 1055 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1056 !AMDGPU::SReg_128RegClass.contains(MFI->ScratchRSrcReg)) { 1057 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1058 } 1059 1060 if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG && 1061 !AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) { 1062 return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg); 1063 } 1064 1065 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1066 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1067 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1068 } 1069 1070 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1071 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1072 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1073 } 1074 1075 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1076 const TargetRegisterClass &RC, 1077 ArgDescriptor &Arg, unsigned UserSGPRs, 1078 unsigned SystemSGPRs) { 1079 // Skip parsing if it's not present. 1080 if (!A) 1081 return false; 1082 1083 if (A->IsRegister) { 1084 unsigned Reg; 1085 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1086 SourceRange = A->RegisterName.SourceRange; 1087 return true; 1088 } 1089 if (!RC.contains(Reg)) 1090 return diagnoseRegisterClass(A->RegisterName); 1091 Arg = ArgDescriptor::createRegister(Reg); 1092 } else 1093 Arg = ArgDescriptor::createStack(A->StackOffset); 1094 // Check and apply the optional mask. 1095 if (A->Mask) 1096 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1097 1098 MFI->NumUserSGPRs += UserSGPRs; 1099 MFI->NumSystemSGPRs += SystemSGPRs; 1100 return false; 1101 }; 1102 1103 if (YamlMFI.ArgInfo && 1104 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1105 AMDGPU::SReg_128RegClass, 1106 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1107 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1108 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1109 2, 0) || 1110 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1111 MFI->ArgInfo.QueuePtr, 2, 0) || 1112 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1113 AMDGPU::SReg_64RegClass, 1114 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1115 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1116 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1117 2, 0) || 1118 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1119 AMDGPU::SReg_64RegClass, 1120 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1121 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1122 AMDGPU::SGPR_32RegClass, 1123 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1124 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1125 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1126 0, 1) || 1127 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1128 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1129 0, 1) || 1130 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1131 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1132 0, 1) || 1133 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1134 AMDGPU::SGPR_32RegClass, 1135 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1136 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1137 AMDGPU::SGPR_32RegClass, 1138 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1139 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1140 AMDGPU::SReg_64RegClass, 1141 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1142 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1143 AMDGPU::SReg_64RegClass, 1144 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1145 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1146 AMDGPU::VGPR_32RegClass, 1147 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1148 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1149 AMDGPU::VGPR_32RegClass, 1150 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1151 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1152 AMDGPU::VGPR_32RegClass, 1153 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1154 return true; 1155 1156 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1157 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1158 1159 return false; 1160 } 1161