1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUMacroFusion.h" 20 #include "AMDGPUTargetObjectFile.h" 21 #include "AMDGPUTargetTransformInfo.h" 22 #include "GCNIterativeScheduler.h" 23 #include "GCNSchedStrategy.h" 24 #include "R600MachineScheduler.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIMachineScheduler.h" 27 #include "TargetInfo/AMDGPUTargetInfo.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/Localizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/TargetPassConfig.h" 36 #include "llvm/IR/LegacyPassManager.h" 37 #include "llvm/IR/PassManager.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/TargetRegistry.h" 41 #include "llvm/Transforms/IPO.h" 42 #include "llvm/Transforms/IPO/AlwaysInliner.h" 43 #include "llvm/Transforms/IPO/GlobalDCE.h" 44 #include "llvm/Transforms/IPO/Internalize.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 #include "llvm/Transforms/Vectorize.h" 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableR600StructurizeCFG( 56 "r600-ir-structurize", 57 cl::desc("Use StructurizeCFG IR pass"), 58 cl::init(true)); 59 60 static cl::opt<bool> EnableSROA( 61 "amdgpu-sroa", 62 cl::desc("Run SROA after promote alloca pass"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 static cl::opt<bool> 67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 68 cl::desc("Run early if-conversion"), 69 cl::init(false)); 70 71 static cl::opt<bool> 72 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 73 cl::desc("Run pre-RA exec mask optimizations"), 74 cl::init(true)); 75 76 static cl::opt<bool> EnableR600IfConvert( 77 "r600-if-convert", 78 cl::desc("Use if conversion pass"), 79 cl::ReallyHidden, 80 cl::init(true)); 81 82 // Option to disable vectorizer for tests. 83 static cl::opt<bool> EnableLoadStoreVectorizer( 84 "amdgpu-load-store-vectorizer", 85 cl::desc("Enable load store vectorizer"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to control global loads scalarization 90 static cl::opt<bool> ScalarizeGlobal( 91 "amdgpu-scalarize-global-loads", 92 cl::desc("Enable global load scalarization"), 93 cl::init(true), 94 cl::Hidden); 95 96 // Option to run internalize pass. 97 static cl::opt<bool> InternalizeSymbols( 98 "amdgpu-internalize-symbols", 99 cl::desc("Enable elimination of non-kernel functions and unused globals"), 100 cl::init(false), 101 cl::Hidden); 102 103 // Option to inline all early. 104 static cl::opt<bool> EarlyInlineAll( 105 "amdgpu-early-inline-all", 106 cl::desc("Inline all functions early"), 107 cl::init(false), 108 cl::Hidden); 109 110 static cl::opt<bool> EnableSDWAPeephole( 111 "amdgpu-sdwa-peephole", 112 cl::desc("Enable SDWA peepholer"), 113 cl::init(true)); 114 115 static cl::opt<bool> EnableDPPCombine( 116 "amdgpu-dpp-combine", 117 cl::desc("Enable DPP combiner"), 118 cl::init(true)); 119 120 // Enable address space based alias analysis 121 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 122 cl::desc("Enable AMDGPU Alias Analysis"), 123 cl::init(true)); 124 125 // Option to run late CFG structurizer 126 static cl::opt<bool, true> LateCFGStructurize( 127 "amdgpu-late-structurize", 128 cl::desc("Enable late CFG structurization"), 129 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 130 cl::Hidden); 131 132 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 133 "amdgpu-function-calls", 134 cl::desc("Enable AMDGPU function call support"), 135 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 136 cl::init(true), 137 cl::Hidden); 138 139 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 140 "amdgpu-fixed-function-abi", 141 cl::desc("Enable all implicit function arguments"), 142 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 143 cl::init(false), 144 cl::Hidden); 145 146 // Enable lib calls simplifications 147 static cl::opt<bool> EnableLibCallSimplify( 148 "amdgpu-simplify-libcall", 149 cl::desc("Enable amdgpu library simplifications"), 150 cl::init(true), 151 cl::Hidden); 152 153 static cl::opt<bool> EnableLowerKernelArguments( 154 "amdgpu-ir-lower-kernel-arguments", 155 cl::desc("Lower kernel argument loads in IR pass"), 156 cl::init(true), 157 cl::Hidden); 158 159 static cl::opt<bool> EnableRegReassign( 160 "amdgpu-reassign-regs", 161 cl::desc("Enable register reassign optimizations on gfx10+"), 162 cl::init(true), 163 cl::Hidden); 164 165 // Enable atomic optimization 166 static cl::opt<bool> EnableAtomicOptimizations( 167 "amdgpu-atomic-optimizations", 168 cl::desc("Enable atomic optimizations"), 169 cl::init(false), 170 cl::Hidden); 171 172 // Enable Mode register optimization 173 static cl::opt<bool> EnableSIModeRegisterPass( 174 "amdgpu-mode-register", 175 cl::desc("Enable mode register pass"), 176 cl::init(true), 177 cl::Hidden); 178 179 // Option is used in lit tests to prevent deadcoding of patterns inspected. 180 static cl::opt<bool> 181 EnableDCEInRA("amdgpu-dce-in-ra", 182 cl::init(true), cl::Hidden, 183 cl::desc("Enable machine DCE inside regalloc")); 184 185 static cl::opt<bool> EnableScalarIRPasses( 186 "amdgpu-scalar-ir-passes", 187 cl::desc("Enable scalar IR passes"), 188 cl::init(true), 189 cl::Hidden); 190 191 static cl::opt<bool> EnableStructurizerWorkarounds( 192 "amdgpu-enable-structurizer-workarounds", 193 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 194 cl::Hidden); 195 196 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 197 // Register the target 198 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 199 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 200 201 PassRegistry *PR = PassRegistry::getPassRegistry(); 202 initializeR600ClauseMergePassPass(*PR); 203 initializeR600ControlFlowFinalizerPass(*PR); 204 initializeR600PacketizerPass(*PR); 205 initializeR600ExpandSpecialInstrsPassPass(*PR); 206 initializeR600VectorRegMergerPass(*PR); 207 initializeGlobalISel(*PR); 208 initializeAMDGPUDAGToDAGISelPass(*PR); 209 initializeGCNDPPCombinePass(*PR); 210 initializeSILowerI1CopiesPass(*PR); 211 initializeSILowerSGPRSpillsPass(*PR); 212 initializeSIFixSGPRCopiesPass(*PR); 213 initializeSIFixVGPRCopiesPass(*PR); 214 initializeSIFoldOperandsPass(*PR); 215 initializeSIPeepholeSDWAPass(*PR); 216 initializeSIShrinkInstructionsPass(*PR); 217 initializeSIOptimizeExecMaskingPreRAPass(*PR); 218 initializeSILoadStoreOptimizerPass(*PR); 219 initializeAMDGPUFixFunctionBitcastsPass(*PR); 220 initializeAMDGPUAlwaysInlinePass(*PR); 221 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 222 initializeAMDGPUAnnotateUniformValuesPass(*PR); 223 initializeAMDGPUArgumentUsageInfoPass(*PR); 224 initializeAMDGPUAtomicOptimizerPass(*PR); 225 initializeAMDGPULowerKernelArgumentsPass(*PR); 226 initializeAMDGPULowerKernelAttributesPass(*PR); 227 initializeAMDGPULowerIntrinsicsPass(*PR); 228 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 229 initializeAMDGPUPostLegalizerCombinerPass(*PR); 230 initializeAMDGPUPreLegalizerCombinerPass(*PR); 231 initializeAMDGPURegBankCombinerPass(*PR); 232 initializeAMDGPUPromoteAllocaPass(*PR); 233 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 234 initializeAMDGPUCodeGenPreparePass(*PR); 235 initializeAMDGPULateCodeGenPreparePass(*PR); 236 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 237 initializeAMDGPUPropagateAttributesLatePass(*PR); 238 initializeAMDGPURewriteOutArgumentsPass(*PR); 239 initializeAMDGPUUnifyMetadataPass(*PR); 240 initializeSIAnnotateControlFlowPass(*PR); 241 initializeSIInsertHardClausesPass(*PR); 242 initializeSIInsertWaitcntsPass(*PR); 243 initializeSIModeRegisterPass(*PR); 244 initializeSIWholeQuadModePass(*PR); 245 initializeSILowerControlFlowPass(*PR); 246 initializeSIRemoveShortExecBranchesPass(*PR); 247 initializeSIPreEmitPeepholePass(*PR); 248 initializeSIInsertSkipsPass(*PR); 249 initializeSIMemoryLegalizerPass(*PR); 250 initializeSIOptimizeExecMaskingPass(*PR); 251 initializeSIPreAllocateWWMRegsPass(*PR); 252 initializeSIFormMemoryClausesPass(*PR); 253 initializeSIPostRABundlerPass(*PR); 254 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 255 initializeAMDGPUAAWrapperPassPass(*PR); 256 initializeAMDGPUExternalAAWrapperPass(*PR); 257 initializeAMDGPUUseNativeCallsPass(*PR); 258 initializeAMDGPUSimplifyLibCallsPass(*PR); 259 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 260 initializeGCNRegBankReassignPass(*PR); 261 initializeGCNNSAReassignPass(*PR); 262 initializeSIAddIMGInitPass(*PR); 263 } 264 265 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 266 return std::make_unique<AMDGPUTargetObjectFile>(); 267 } 268 269 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 270 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 271 } 272 273 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 274 return new SIScheduleDAGMI(C); 275 } 276 277 static ScheduleDAGInstrs * 278 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 279 ScheduleDAGMILive *DAG = 280 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 281 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 282 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 283 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 284 return DAG; 285 } 286 287 static ScheduleDAGInstrs * 288 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 289 auto DAG = new GCNIterativeScheduler(C, 290 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 291 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 292 return DAG; 293 } 294 295 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 296 return new GCNIterativeScheduler(C, 297 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 298 } 299 300 static ScheduleDAGInstrs * 301 createIterativeILPMachineScheduler(MachineSchedContext *C) { 302 auto DAG = new GCNIterativeScheduler(C, 303 GCNIterativeScheduler::SCHEDULE_ILP); 304 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 305 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 306 return DAG; 307 } 308 309 static MachineSchedRegistry 310 R600SchedRegistry("r600", "Run R600's custom scheduler", 311 createR600MachineScheduler); 312 313 static MachineSchedRegistry 314 SISchedRegistry("si", "Run SI's custom scheduler", 315 createSIMachineScheduler); 316 317 static MachineSchedRegistry 318 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 319 "Run GCN scheduler to maximize occupancy", 320 createGCNMaxOccupancyMachineScheduler); 321 322 static MachineSchedRegistry 323 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 324 "Run GCN scheduler to maximize occupancy (experimental)", 325 createIterativeGCNMaxOccupancyMachineScheduler); 326 327 static MachineSchedRegistry 328 GCNMinRegSchedRegistry("gcn-minreg", 329 "Run GCN iterative scheduler for minimal register usage (experimental)", 330 createMinRegScheduler); 331 332 static MachineSchedRegistry 333 GCNILPSchedRegistry("gcn-ilp", 334 "Run GCN iterative scheduler for ILP scheduling (experimental)", 335 createIterativeILPMachineScheduler); 336 337 static StringRef computeDataLayout(const Triple &TT) { 338 if (TT.getArch() == Triple::r600) { 339 // 32-bit pointers. 340 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 341 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 342 } 343 344 // 32-bit private, local, and region pointers. 64-bit global, constant and 345 // flat, non-integral buffer fat pointers. 346 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 347 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 348 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 349 "-ni:7"; 350 } 351 352 LLVM_READNONE 353 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 354 if (!GPU.empty()) 355 return GPU; 356 357 // Need to default to a target with flat support for HSA. 358 if (TT.getArch() == Triple::amdgcn) 359 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 360 361 return "r600"; 362 } 363 364 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 365 // The AMDGPU toolchain only supports generating shared objects, so we 366 // must always use PIC. 367 return Reloc::PIC_; 368 } 369 370 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 371 StringRef CPU, StringRef FS, 372 TargetOptions Options, 373 Optional<Reloc::Model> RM, 374 Optional<CodeModel::Model> CM, 375 CodeGenOpt::Level OptLevel) 376 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 377 FS, Options, getEffectiveRelocModel(RM), 378 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 379 TLOF(createTLOF(getTargetTriple())) { 380 initAsmInfo(); 381 if (TT.getArch() == Triple::amdgcn) { 382 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 383 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 384 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 385 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 386 } 387 // Set -fixed-function-abi to true if not provided.. 388 if (TT.getOS() == Triple::AMDHSA && 389 EnableAMDGPUFixedFunctionABIOpt.getNumOccurrences() == 0) 390 EnableFixedFunctionABI = true; 391 } 392 393 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 394 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 395 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 396 397 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 398 399 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 400 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 401 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 402 } 403 404 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 405 Attribute FSAttr = F.getFnAttribute("target-features"); 406 407 return FSAttr.isValid() ? FSAttr.getValueAsString() 408 : getTargetFeatureString(); 409 } 410 411 /// Predicate for Internalize pass. 412 static bool mustPreserveGV(const GlobalValue &GV) { 413 if (const Function *F = dyn_cast<Function>(&GV)) 414 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 415 416 return !GV.use_empty(); 417 } 418 419 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 420 Builder.DivergentTarget = true; 421 422 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 423 bool Internalize = InternalizeSymbols; 424 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 425 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 426 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 427 428 if (EnableFunctionCalls) { 429 delete Builder.Inliner; 430 Builder.Inliner = createFunctionInliningPass(); 431 } 432 433 Builder.addExtension( 434 PassManagerBuilder::EP_ModuleOptimizerEarly, 435 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 436 legacy::PassManagerBase &PM) { 437 if (AMDGPUAA) { 438 PM.add(createAMDGPUAAWrapperPass()); 439 PM.add(createAMDGPUExternalAAWrapperPass()); 440 } 441 PM.add(createAMDGPUUnifyMetadataPass()); 442 PM.add(createAMDGPUPrintfRuntimeBinding()); 443 if (Internalize) 444 PM.add(createInternalizePass(mustPreserveGV)); 445 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 446 if (Internalize) 447 PM.add(createGlobalDCEPass()); 448 if (EarlyInline) 449 PM.add(createAMDGPUAlwaysInlinePass(false)); 450 }); 451 452 Builder.addExtension( 453 PassManagerBuilder::EP_EarlyAsPossible, 454 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 455 legacy::PassManagerBase &PM) { 456 if (AMDGPUAA) { 457 PM.add(createAMDGPUAAWrapperPass()); 458 PM.add(createAMDGPUExternalAAWrapperPass()); 459 } 460 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 461 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 462 if (LibCallSimplify) 463 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 464 }); 465 466 Builder.addExtension( 467 PassManagerBuilder::EP_CGSCCOptimizerLate, 468 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 469 // Add infer address spaces pass to the opt pipeline after inlining 470 // but before SROA to increase SROA opportunities. 471 PM.add(createInferAddressSpacesPass()); 472 473 // This should run after inlining to have any chance of doing anything, 474 // and before other cleanup optimizations. 475 PM.add(createAMDGPULowerKernelAttributesPass()); 476 477 // Promote alloca to vector before SROA and loop unroll. If we manage 478 // to eliminate allocas before unroll we may choose to unroll less. 479 if (EnableOpt) 480 PM.add(createAMDGPUPromoteAllocaToVector()); 481 }); 482 } 483 484 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 485 AAM.registerFunctionAnalysis<AMDGPUAA>(); 486 } 487 488 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB, 489 bool DebugPassManager) { 490 PB.registerPipelineParsingCallback( 491 [this](StringRef PassName, ModulePassManager &PM, 492 ArrayRef<PassBuilder::PipelineElement>) { 493 if (PassName == "amdgpu-propagate-attributes-late") { 494 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 495 return true; 496 } 497 if (PassName == "amdgpu-unify-metadata") { 498 PM.addPass(AMDGPUUnifyMetadataPass()); 499 return true; 500 } 501 if (PassName == "amdgpu-printf-runtime-binding") { 502 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 503 return true; 504 } 505 if (PassName == "amdgpu-always-inline") { 506 PM.addPass(AMDGPUAlwaysInlinePass()); 507 return true; 508 } 509 return false; 510 }); 511 PB.registerPipelineParsingCallback( 512 [this](StringRef PassName, FunctionPassManager &PM, 513 ArrayRef<PassBuilder::PipelineElement>) { 514 if (PassName == "amdgpu-simplifylib") { 515 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 516 return true; 517 } 518 if (PassName == "amdgpu-usenative") { 519 PM.addPass(AMDGPUUseNativeCallsPass()); 520 return true; 521 } 522 if (PassName == "amdgpu-promote-alloca") { 523 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 524 return true; 525 } 526 if (PassName == "amdgpu-promote-alloca-to-vector") { 527 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 528 return true; 529 } 530 if (PassName == "amdgpu-lower-kernel-attributes") { 531 PM.addPass(AMDGPULowerKernelAttributesPass()); 532 return true; 533 } 534 if (PassName == "amdgpu-propagate-attributes-early") { 535 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 536 return true; 537 } 538 539 return false; 540 }); 541 542 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 543 FAM.registerPass([&] { return AMDGPUAA(); }); 544 }); 545 546 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 547 if (AAName == "amdgpu-aa") { 548 AAM.registerFunctionAnalysis<AMDGPUAA>(); 549 return true; 550 } 551 return false; 552 }); 553 554 PB.registerPipelineStartEPCallback([this, DebugPassManager]( 555 ModulePassManager &PM, 556 PassBuilder::OptimizationLevel Level) { 557 FunctionPassManager FPM(DebugPassManager); 558 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 559 FPM.addPass(AMDGPUUseNativeCallsPass()); 560 if (EnableLibCallSimplify && Level != PassBuilder::OptimizationLevel::O0) 561 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 562 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 563 }); 564 565 PB.registerPipelineEarlySimplificationEPCallback( 566 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) { 567 if (Level == PassBuilder::OptimizationLevel::O0) 568 return; 569 570 PM.addPass(AMDGPUUnifyMetadataPass()); 571 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 572 573 if (InternalizeSymbols) { 574 PM.addPass(InternalizePass(mustPreserveGV)); 575 } 576 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 577 if (InternalizeSymbols) { 578 PM.addPass(GlobalDCEPass()); 579 } 580 if (EarlyInlineAll && !EnableFunctionCalls) 581 PM.addPass(AMDGPUAlwaysInlinePass()); 582 }); 583 584 PB.registerCGSCCOptimizerLateEPCallback( 585 [this, DebugPassManager](CGSCCPassManager &PM, 586 PassBuilder::OptimizationLevel Level) { 587 if (Level == PassBuilder::OptimizationLevel::O0) 588 return; 589 590 FunctionPassManager FPM(DebugPassManager); 591 592 // Add infer address spaces pass to the opt pipeline after inlining 593 // but before SROA to increase SROA opportunities. 594 FPM.addPass(InferAddressSpacesPass()); 595 596 // This should run after inlining to have any chance of doing 597 // anything, and before other cleanup optimizations. 598 FPM.addPass(AMDGPULowerKernelAttributesPass()); 599 600 if (Level != PassBuilder::OptimizationLevel::O0) { 601 // Promote alloca to vector before SROA and loop unroll. If we 602 // manage to eliminate allocas before unroll we may choose to unroll 603 // less. 604 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 605 } 606 607 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 608 }); 609 } 610 611 //===----------------------------------------------------------------------===// 612 // R600 Target Machine (R600 -> Cayman) 613 //===----------------------------------------------------------------------===// 614 615 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 616 StringRef CPU, StringRef FS, 617 TargetOptions Options, 618 Optional<Reloc::Model> RM, 619 Optional<CodeModel::Model> CM, 620 CodeGenOpt::Level OL, bool JIT) 621 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 622 setRequiresStructuredCFG(true); 623 624 // Override the default since calls aren't supported for r600. 625 if (EnableFunctionCalls && 626 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 627 EnableFunctionCalls = false; 628 } 629 630 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 631 const Function &F) const { 632 StringRef GPU = getGPUName(F); 633 StringRef FS = getFeatureString(F); 634 635 SmallString<128> SubtargetKey(GPU); 636 SubtargetKey.append(FS); 637 638 auto &I = SubtargetMap[SubtargetKey]; 639 if (!I) { 640 // This needs to be done before we create a new subtarget since any 641 // creation will depend on the TM and the code generation flags on the 642 // function that reside in TargetOptions. 643 resetTargetOptions(F); 644 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 645 } 646 647 return I.get(); 648 } 649 650 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 651 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 652 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 653 AddrSpace == AMDGPUAS::REGION_ADDRESS) 654 ? -1 655 : 0; 656 } 657 658 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 659 unsigned DestAS) const { 660 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 661 AMDGPU::isFlatGlobalAddrSpace(DestAS); 662 } 663 664 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 665 const auto *LD = dyn_cast<LoadInst>(V); 666 if (!LD) 667 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 668 669 // It must be a generic pointer loaded. 670 assert(V->getType()->isPointerTy() && 671 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 672 673 const auto *Ptr = LD->getPointerOperand(); 674 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 675 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 676 // For a generic pointer loaded from the constant memory, it could be assumed 677 // as a global pointer since the constant memory is only populated on the 678 // host side. As implied by the offload programming model, only global 679 // pointers could be referenced on the host side. 680 return AMDGPUAS::GLOBAL_ADDRESS; 681 } 682 683 TargetTransformInfo 684 R600TargetMachine::getTargetTransformInfo(const Function &F) { 685 return TargetTransformInfo(R600TTIImpl(this, F)); 686 } 687 688 //===----------------------------------------------------------------------===// 689 // GCN Target Machine (SI+) 690 //===----------------------------------------------------------------------===// 691 692 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 693 StringRef CPU, StringRef FS, 694 TargetOptions Options, 695 Optional<Reloc::Model> RM, 696 Optional<CodeModel::Model> CM, 697 CodeGenOpt::Level OL, bool JIT) 698 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 699 700 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 701 StringRef GPU = getGPUName(F); 702 StringRef FS = getFeatureString(F); 703 704 SmallString<128> SubtargetKey(GPU); 705 SubtargetKey.append(FS); 706 707 auto &I = SubtargetMap[SubtargetKey]; 708 if (!I) { 709 // This needs to be done before we create a new subtarget since any 710 // creation will depend on the TM and the code generation flags on the 711 // function that reside in TargetOptions. 712 resetTargetOptions(F); 713 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 714 } 715 716 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 717 718 return I.get(); 719 } 720 721 TargetTransformInfo 722 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 723 return TargetTransformInfo(GCNTTIImpl(this, F)); 724 } 725 726 //===----------------------------------------------------------------------===// 727 // AMDGPU Pass Setup 728 //===----------------------------------------------------------------------===// 729 730 namespace { 731 732 class AMDGPUPassConfig : public TargetPassConfig { 733 public: 734 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 735 : TargetPassConfig(TM, PM) { 736 // Exceptions and StackMaps are not supported, so these passes will never do 737 // anything. 738 disablePass(&StackMapLivenessID); 739 disablePass(&FuncletLayoutID); 740 } 741 742 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 743 return getTM<AMDGPUTargetMachine>(); 744 } 745 746 ScheduleDAGInstrs * 747 createMachineScheduler(MachineSchedContext *C) const override { 748 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 749 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 750 return DAG; 751 } 752 753 void addEarlyCSEOrGVNPass(); 754 void addStraightLineScalarOptimizationPasses(); 755 void addIRPasses() override; 756 void addCodeGenPrepare() override; 757 bool addPreISel() override; 758 bool addInstSelector() override; 759 bool addGCPasses() override; 760 761 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 762 }; 763 764 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 765 return getStandardCSEConfigForOpt(TM->getOptLevel()); 766 } 767 768 class R600PassConfig final : public AMDGPUPassConfig { 769 public: 770 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 771 : AMDGPUPassConfig(TM, PM) {} 772 773 ScheduleDAGInstrs *createMachineScheduler( 774 MachineSchedContext *C) const override { 775 return createR600MachineScheduler(C); 776 } 777 778 bool addPreISel() override; 779 bool addInstSelector() override; 780 void addPreRegAlloc() override; 781 void addPreSched2() override; 782 void addPreEmitPass() override; 783 }; 784 785 class GCNPassConfig final : public AMDGPUPassConfig { 786 public: 787 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 788 : AMDGPUPassConfig(TM, PM) { 789 // It is necessary to know the register usage of the entire call graph. We 790 // allow calls without EnableAMDGPUFunctionCalls if they are marked 791 // noinline, so this is always required. 792 setRequiresCodeGenSCCOrder(true); 793 } 794 795 GCNTargetMachine &getGCNTargetMachine() const { 796 return getTM<GCNTargetMachine>(); 797 } 798 799 ScheduleDAGInstrs * 800 createMachineScheduler(MachineSchedContext *C) const override; 801 802 bool addPreISel() override; 803 void addMachineSSAOptimization() override; 804 bool addILPOpts() override; 805 bool addInstSelector() override; 806 bool addIRTranslator() override; 807 void addPreLegalizeMachineIR() override; 808 bool addLegalizeMachineIR() override; 809 void addPreRegBankSelect() override; 810 bool addRegBankSelect() override; 811 void addPreGlobalInstructionSelect() override; 812 bool addGlobalInstructionSelect() override; 813 void addFastRegAlloc() override; 814 void addOptimizedRegAlloc() override; 815 void addPreRegAlloc() override; 816 bool addPreRewrite() override; 817 void addPostRegAlloc() override; 818 void addPreSched2() override; 819 void addPreEmitPass() override; 820 }; 821 822 } // end anonymous namespace 823 824 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 825 if (getOptLevel() == CodeGenOpt::Aggressive) 826 addPass(createGVNPass()); 827 else 828 addPass(createEarlyCSEPass()); 829 } 830 831 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 832 addPass(createLICMPass()); 833 addPass(createSeparateConstOffsetFromGEPPass()); 834 addPass(createSpeculativeExecutionPass()); 835 // ReassociateGEPs exposes more opportunites for SLSR. See 836 // the example in reassociate-geps-and-slsr.ll. 837 addPass(createStraightLineStrengthReducePass()); 838 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 839 // EarlyCSE can reuse. 840 addEarlyCSEOrGVNPass(); 841 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 842 addPass(createNaryReassociatePass()); 843 // NaryReassociate on GEPs creates redundant common expressions, so run 844 // EarlyCSE after it. 845 addPass(createEarlyCSEPass()); 846 } 847 848 void AMDGPUPassConfig::addIRPasses() { 849 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 850 851 // There is no reason to run these. 852 disablePass(&StackMapLivenessID); 853 disablePass(&FuncletLayoutID); 854 disablePass(&PatchableFunctionID); 855 856 addPass(createAMDGPUPrintfRuntimeBinding()); 857 858 // This must occur before inlining, as the inliner will not look through 859 // bitcast calls. 860 addPass(createAMDGPUFixFunctionBitcastsPass()); 861 862 // A call to propagate attributes pass in the backend in case opt was not run. 863 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 864 865 addPass(createAtomicExpandPass()); 866 867 868 addPass(createAMDGPULowerIntrinsicsPass()); 869 870 // Function calls are not supported, so make sure we inline everything. 871 addPass(createAMDGPUAlwaysInlinePass()); 872 addPass(createAlwaysInlinerLegacyPass()); 873 // We need to add the barrier noop pass, otherwise adding the function 874 // inlining pass will cause all of the PassConfigs passes to be run 875 // one function at a time, which means if we have a nodule with two 876 // functions, then we will generate code for the first function 877 // without ever running any passes on the second. 878 addPass(createBarrierNoopPass()); 879 880 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 881 if (TM.getTargetTriple().getArch() == Triple::r600) 882 addPass(createR600OpenCLImageTypeLoweringPass()); 883 884 // Replace OpenCL enqueued block function pointers with global variables. 885 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 886 887 if (TM.getOptLevel() > CodeGenOpt::None) { 888 addPass(createInferAddressSpacesPass()); 889 addPass(createAMDGPUPromoteAlloca()); 890 891 if (EnableSROA) 892 addPass(createSROAPass()); 893 894 if (EnableScalarIRPasses) 895 addStraightLineScalarOptimizationPasses(); 896 897 if (EnableAMDGPUAliasAnalysis) { 898 addPass(createAMDGPUAAWrapperPass()); 899 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 900 AAResults &AAR) { 901 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 902 AAR.addAAResult(WrapperPass->getResult()); 903 })); 904 } 905 } 906 907 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 908 // TODO: May want to move later or split into an early and late one. 909 addPass(createAMDGPUCodeGenPreparePass()); 910 } 911 912 TargetPassConfig::addIRPasses(); 913 914 // EarlyCSE is not always strong enough to clean up what LSR produces. For 915 // example, GVN can combine 916 // 917 // %0 = add %a, %b 918 // %1 = add %b, %a 919 // 920 // and 921 // 922 // %0 = shl nsw %a, 2 923 // %1 = shl %a, 2 924 // 925 // but EarlyCSE can do neither of them. 926 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 927 addEarlyCSEOrGVNPass(); 928 } 929 930 void AMDGPUPassConfig::addCodeGenPrepare() { 931 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 932 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 933 934 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 935 EnableLowerKernelArguments) 936 addPass(createAMDGPULowerKernelArgumentsPass()); 937 938 addPass(&AMDGPUPerfHintAnalysisID); 939 940 TargetPassConfig::addCodeGenPrepare(); 941 942 if (EnableLoadStoreVectorizer) 943 addPass(createLoadStoreVectorizerPass()); 944 945 // LowerSwitch pass may introduce unreachable blocks that can 946 // cause unexpected behavior for subsequent passes. Placing it 947 // here seems better that these blocks would get cleaned up by 948 // UnreachableBlockElim inserted next in the pass flow. 949 addPass(createLowerSwitchPass()); 950 } 951 952 bool AMDGPUPassConfig::addPreISel() { 953 addPass(createFlattenCFGPass()); 954 return false; 955 } 956 957 bool AMDGPUPassConfig::addInstSelector() { 958 // Defer the verifier until FinalizeISel. 959 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 960 return false; 961 } 962 963 bool AMDGPUPassConfig::addGCPasses() { 964 // Do nothing. GC is not supported. 965 return false; 966 } 967 968 //===----------------------------------------------------------------------===// 969 // R600 Pass Setup 970 //===----------------------------------------------------------------------===// 971 972 bool R600PassConfig::addPreISel() { 973 AMDGPUPassConfig::addPreISel(); 974 975 if (EnableR600StructurizeCFG) 976 addPass(createStructurizeCFGPass()); 977 return false; 978 } 979 980 bool R600PassConfig::addInstSelector() { 981 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 982 return false; 983 } 984 985 void R600PassConfig::addPreRegAlloc() { 986 addPass(createR600VectorRegMerger()); 987 } 988 989 void R600PassConfig::addPreSched2() { 990 addPass(createR600EmitClauseMarkers(), false); 991 if (EnableR600IfConvert) 992 addPass(&IfConverterID, false); 993 addPass(createR600ClauseMergePass(), false); 994 } 995 996 void R600PassConfig::addPreEmitPass() { 997 addPass(createAMDGPUCFGStructurizerPass(), false); 998 addPass(createR600ExpandSpecialInstrsPass(), false); 999 addPass(&FinalizeMachineBundlesID, false); 1000 addPass(createR600Packetizer(), false); 1001 addPass(createR600ControlFlowFinalizer(), false); 1002 } 1003 1004 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 1005 return new R600PassConfig(*this, PM); 1006 } 1007 1008 //===----------------------------------------------------------------------===// 1009 // GCN Pass Setup 1010 //===----------------------------------------------------------------------===// 1011 1012 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1013 MachineSchedContext *C) const { 1014 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1015 if (ST.enableSIScheduler()) 1016 return createSIMachineScheduler(C); 1017 return createGCNMaxOccupancyMachineScheduler(C); 1018 } 1019 1020 bool GCNPassConfig::addPreISel() { 1021 AMDGPUPassConfig::addPreISel(); 1022 1023 addPass(createAMDGPULateCodeGenPreparePass()); 1024 if (EnableAtomicOptimizations) { 1025 addPass(createAMDGPUAtomicOptimizerPass()); 1026 } 1027 1028 // FIXME: We need to run a pass to propagate the attributes when calls are 1029 // supported. 1030 1031 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1032 // regions formed by them. 1033 addPass(&AMDGPUUnifyDivergentExitNodesID); 1034 if (!LateCFGStructurize) { 1035 if (EnableStructurizerWorkarounds) { 1036 addPass(createFixIrreduciblePass()); 1037 addPass(createUnifyLoopExitsPass()); 1038 } 1039 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1040 } 1041 addPass(createSinkingPass()); 1042 addPass(createAMDGPUAnnotateUniformValues()); 1043 if (!LateCFGStructurize) { 1044 addPass(createSIAnnotateControlFlowPass()); 1045 } 1046 addPass(createLCSSAPass()); 1047 1048 return false; 1049 } 1050 1051 void GCNPassConfig::addMachineSSAOptimization() { 1052 TargetPassConfig::addMachineSSAOptimization(); 1053 1054 // We want to fold operands after PeepholeOptimizer has run (or as part of 1055 // it), because it will eliminate extra copies making it easier to fold the 1056 // real source operand. We want to eliminate dead instructions after, so that 1057 // we see fewer uses of the copies. We then need to clean up the dead 1058 // instructions leftover after the operands are folded as well. 1059 // 1060 // XXX - Can we get away without running DeadMachineInstructionElim again? 1061 addPass(&SIFoldOperandsID); 1062 if (EnableDPPCombine) 1063 addPass(&GCNDPPCombineID); 1064 addPass(&DeadMachineInstructionElimID); 1065 addPass(&SILoadStoreOptimizerID); 1066 if (EnableSDWAPeephole) { 1067 addPass(&SIPeepholeSDWAID); 1068 addPass(&EarlyMachineLICMID); 1069 addPass(&MachineCSEID); 1070 addPass(&SIFoldOperandsID); 1071 addPass(&DeadMachineInstructionElimID); 1072 } 1073 addPass(createSIShrinkInstructionsPass()); 1074 } 1075 1076 bool GCNPassConfig::addILPOpts() { 1077 if (EnableEarlyIfConversion) 1078 addPass(&EarlyIfConverterID); 1079 1080 TargetPassConfig::addILPOpts(); 1081 return false; 1082 } 1083 1084 bool GCNPassConfig::addInstSelector() { 1085 AMDGPUPassConfig::addInstSelector(); 1086 addPass(&SIFixSGPRCopiesID); 1087 addPass(createSILowerI1CopiesPass()); 1088 addPass(createSIAddIMGInitPass()); 1089 return false; 1090 } 1091 1092 bool GCNPassConfig::addIRTranslator() { 1093 addPass(new IRTranslator(getOptLevel())); 1094 return false; 1095 } 1096 1097 void GCNPassConfig::addPreLegalizeMachineIR() { 1098 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1099 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1100 addPass(new Localizer()); 1101 } 1102 1103 bool GCNPassConfig::addLegalizeMachineIR() { 1104 addPass(new Legalizer()); 1105 return false; 1106 } 1107 1108 void GCNPassConfig::addPreRegBankSelect() { 1109 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1110 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1111 } 1112 1113 bool GCNPassConfig::addRegBankSelect() { 1114 addPass(new RegBankSelect()); 1115 return false; 1116 } 1117 1118 void GCNPassConfig::addPreGlobalInstructionSelect() { 1119 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1120 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1121 } 1122 1123 bool GCNPassConfig::addGlobalInstructionSelect() { 1124 addPass(new InstructionSelect(getOptLevel())); 1125 // TODO: Fix instruction selection to do the right thing for image 1126 // instructions with tfe or lwe in the first place, instead of running a 1127 // separate pass to fix them up? 1128 addPass(createSIAddIMGInitPass()); 1129 return false; 1130 } 1131 1132 void GCNPassConfig::addPreRegAlloc() { 1133 if (LateCFGStructurize) { 1134 addPass(createAMDGPUMachineCFGStructurizerPass()); 1135 } 1136 } 1137 1138 void GCNPassConfig::addFastRegAlloc() { 1139 // FIXME: We have to disable the verifier here because of PHIElimination + 1140 // TwoAddressInstructions disabling it. 1141 1142 // This must be run immediately after phi elimination and before 1143 // TwoAddressInstructions, otherwise the processing of the tied operand of 1144 // SI_ELSE will introduce a copy of the tied operand source after the else. 1145 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1146 1147 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1148 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1149 1150 TargetPassConfig::addFastRegAlloc(); 1151 } 1152 1153 void GCNPassConfig::addOptimizedRegAlloc() { 1154 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1155 // instructions that cause scheduling barriers. 1156 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1157 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1158 1159 if (OptExecMaskPreRA) 1160 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1161 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1162 1163 // This must be run immediately after phi elimination and before 1164 // TwoAddressInstructions, otherwise the processing of the tied operand of 1165 // SI_ELSE will introduce a copy of the tied operand source after the else. 1166 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1167 1168 if (EnableDCEInRA) 1169 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1170 1171 TargetPassConfig::addOptimizedRegAlloc(); 1172 } 1173 1174 bool GCNPassConfig::addPreRewrite() { 1175 if (EnableRegReassign) { 1176 addPass(&GCNNSAReassignID); 1177 addPass(&GCNRegBankReassignID); 1178 } 1179 return true; 1180 } 1181 1182 void GCNPassConfig::addPostRegAlloc() { 1183 addPass(&SIFixVGPRCopiesID); 1184 if (getOptLevel() > CodeGenOpt::None) 1185 addPass(&SIOptimizeExecMaskingID); 1186 TargetPassConfig::addPostRegAlloc(); 1187 1188 // Equivalent of PEI for SGPRs. 1189 addPass(&SILowerSGPRSpillsID); 1190 } 1191 1192 void GCNPassConfig::addPreSched2() { 1193 addPass(&SIPostRABundlerID); 1194 } 1195 1196 void GCNPassConfig::addPreEmitPass() { 1197 addPass(createSIMemoryLegalizerPass()); 1198 addPass(createSIInsertWaitcntsPass()); 1199 addPass(createSIShrinkInstructionsPass()); 1200 addPass(createSIModeRegisterPass()); 1201 1202 if (getOptLevel() > CodeGenOpt::None) 1203 addPass(&SIInsertHardClausesID); 1204 1205 addPass(&SIRemoveShortExecBranchesID); 1206 addPass(&SIInsertSkipsPassID); 1207 addPass(&SIPreEmitPeepholeID); 1208 // The hazard recognizer that runs as part of the post-ra scheduler does not 1209 // guarantee to be able handle all hazards correctly. This is because if there 1210 // are multiple scheduling regions in a basic block, the regions are scheduled 1211 // bottom up, so when we begin to schedule a region we don't know what 1212 // instructions were emitted directly before it. 1213 // 1214 // Here we add a stand-alone hazard recognizer pass which can handle all 1215 // cases. 1216 addPass(&PostRAHazardRecognizerID); 1217 addPass(&BranchRelaxationPassID); 1218 } 1219 1220 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1221 return new GCNPassConfig(*this, PM); 1222 } 1223 1224 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1225 return new yaml::SIMachineFunctionInfo(); 1226 } 1227 1228 yaml::MachineFunctionInfo * 1229 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1230 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1231 return new yaml::SIMachineFunctionInfo(*MFI, 1232 *MF.getSubtarget().getRegisterInfo()); 1233 } 1234 1235 bool GCNTargetMachine::parseMachineFunctionInfo( 1236 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1237 SMDiagnostic &Error, SMRange &SourceRange) const { 1238 const yaml::SIMachineFunctionInfo &YamlMFI = 1239 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1240 MachineFunction &MF = PFS.MF; 1241 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1242 1243 MFI->initializeBaseYamlFields(YamlMFI); 1244 1245 if (MFI->Occupancy == 0) { 1246 // Fixup the subtarget dependent default value. 1247 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1248 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1249 } 1250 1251 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1252 Register TempReg; 1253 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1254 SourceRange = RegName.SourceRange; 1255 return true; 1256 } 1257 RegVal = TempReg; 1258 1259 return false; 1260 }; 1261 1262 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1263 // Create a diagnostic for a the register string literal. 1264 const MemoryBuffer &Buffer = 1265 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1266 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1267 RegName.Value.size(), SourceMgr::DK_Error, 1268 "incorrect register class for field", RegName.Value, 1269 None, None); 1270 SourceRange = RegName.SourceRange; 1271 return true; 1272 }; 1273 1274 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1275 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1276 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1277 return true; 1278 1279 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1280 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1281 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1282 } 1283 1284 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1285 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1286 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1287 } 1288 1289 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1290 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1291 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1292 } 1293 1294 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1295 const TargetRegisterClass &RC, 1296 ArgDescriptor &Arg, unsigned UserSGPRs, 1297 unsigned SystemSGPRs) { 1298 // Skip parsing if it's not present. 1299 if (!A) 1300 return false; 1301 1302 if (A->IsRegister) { 1303 Register Reg; 1304 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1305 SourceRange = A->RegisterName.SourceRange; 1306 return true; 1307 } 1308 if (!RC.contains(Reg)) 1309 return diagnoseRegisterClass(A->RegisterName); 1310 Arg = ArgDescriptor::createRegister(Reg); 1311 } else 1312 Arg = ArgDescriptor::createStack(A->StackOffset); 1313 // Check and apply the optional mask. 1314 if (A->Mask) 1315 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1316 1317 MFI->NumUserSGPRs += UserSGPRs; 1318 MFI->NumSystemSGPRs += SystemSGPRs; 1319 return false; 1320 }; 1321 1322 if (YamlMFI.ArgInfo && 1323 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1324 AMDGPU::SGPR_128RegClass, 1325 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1326 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1327 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1328 2, 0) || 1329 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1330 MFI->ArgInfo.QueuePtr, 2, 0) || 1331 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1332 AMDGPU::SReg_64RegClass, 1333 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1334 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1335 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1336 2, 0) || 1337 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1338 AMDGPU::SReg_64RegClass, 1339 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1340 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1341 AMDGPU::SGPR_32RegClass, 1342 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1343 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1344 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1345 0, 1) || 1346 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1347 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1348 0, 1) || 1349 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1350 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1351 0, 1) || 1352 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1353 AMDGPU::SGPR_32RegClass, 1354 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1355 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1356 AMDGPU::SGPR_32RegClass, 1357 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1358 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1359 AMDGPU::SReg_64RegClass, 1360 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1361 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1362 AMDGPU::SReg_64RegClass, 1363 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1364 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1365 AMDGPU::VGPR_32RegClass, 1366 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1367 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1368 AMDGPU::VGPR_32RegClass, 1369 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1370 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1371 AMDGPU::VGPR_32RegClass, 1372 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1373 return true; 1374 1375 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1376 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1377 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1378 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1379 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1380 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1381 1382 return false; 1383 } 1384