1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUExportClustering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 28 #include "R600MachineScheduler.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "SIMachineScheduler.h" 31 #include "TargetInfo/AMDGPUTargetInfo.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 34 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 35 #include "llvm/CodeGen/GlobalISel/Localizer.h" 36 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 37 #include "llvm/CodeGen/MIRParser/MIParser.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/LegacyPassManager.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Target/TargetLoweringObjectFile.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Scalar/GVN.h" 54 #include "llvm/Transforms/Utils.h" 55 #include "llvm/Transforms/Vectorize.h" 56 #include <memory> 57 58 using namespace llvm; 59 60 static cl::opt<bool> EnableR600StructurizeCFG( 61 "r600-ir-structurize", 62 cl::desc("Use StructurizeCFG IR pass"), 63 cl::init(true)); 64 65 static cl::opt<bool> EnableSROA( 66 "amdgpu-sroa", 67 cl::desc("Run SROA after promote alloca pass"), 68 cl::ReallyHidden, 69 cl::init(true)); 70 71 static cl::opt<bool> 72 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 73 cl::desc("Run early if-conversion"), 74 cl::init(false)); 75 76 static cl::opt<bool> 77 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 78 cl::desc("Run pre-RA exec mask optimizations"), 79 cl::init(true)); 80 81 static cl::opt<bool> EnableR600IfConvert( 82 "r600-if-convert", 83 cl::desc("Use if conversion pass"), 84 cl::ReallyHidden, 85 cl::init(true)); 86 87 // Option to disable vectorizer for tests. 88 static cl::opt<bool> EnableLoadStoreVectorizer( 89 "amdgpu-load-store-vectorizer", 90 cl::desc("Enable load store vectorizer"), 91 cl::init(true), 92 cl::Hidden); 93 94 // Option to control global loads scalarization 95 static cl::opt<bool> ScalarizeGlobal( 96 "amdgpu-scalarize-global-loads", 97 cl::desc("Enable global load scalarization"), 98 cl::init(true), 99 cl::Hidden); 100 101 // Option to run internalize pass. 102 static cl::opt<bool> InternalizeSymbols( 103 "amdgpu-internalize-symbols", 104 cl::desc("Enable elimination of non-kernel functions and unused globals"), 105 cl::init(false), 106 cl::Hidden); 107 108 // Option to inline all early. 109 static cl::opt<bool> EarlyInlineAll( 110 "amdgpu-early-inline-all", 111 cl::desc("Inline all functions early"), 112 cl::init(false), 113 cl::Hidden); 114 115 static cl::opt<bool> EnableSDWAPeephole( 116 "amdgpu-sdwa-peephole", 117 cl::desc("Enable SDWA peepholer"), 118 cl::init(true)); 119 120 static cl::opt<bool> EnableDPPCombine( 121 "amdgpu-dpp-combine", 122 cl::desc("Enable DPP combiner"), 123 cl::init(true)); 124 125 // Enable address space based alias analysis 126 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 127 cl::desc("Enable AMDGPU Alias Analysis"), 128 cl::init(true)); 129 130 // Option to run late CFG structurizer 131 static cl::opt<bool, true> LateCFGStructurize( 132 "amdgpu-late-structurize", 133 cl::desc("Enable late CFG structurization"), 134 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 135 cl::Hidden); 136 137 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 138 "amdgpu-function-calls", 139 cl::desc("Enable AMDGPU function call support"), 140 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 141 cl::init(true), 142 cl::Hidden); 143 144 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 145 "amdgpu-fixed-function-abi", 146 cl::desc("Enable all implicit function arguments"), 147 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 148 cl::init(false), 149 cl::Hidden); 150 151 // Enable lib calls simplifications 152 static cl::opt<bool> EnableLibCallSimplify( 153 "amdgpu-simplify-libcall", 154 cl::desc("Enable amdgpu library simplifications"), 155 cl::init(true), 156 cl::Hidden); 157 158 static cl::opt<bool> EnableLowerKernelArguments( 159 "amdgpu-ir-lower-kernel-arguments", 160 cl::desc("Lower kernel argument loads in IR pass"), 161 cl::init(true), 162 cl::Hidden); 163 164 static cl::opt<bool> EnableRegReassign( 165 "amdgpu-reassign-regs", 166 cl::desc("Enable register reassign optimizations on gfx10+"), 167 cl::init(true), 168 cl::Hidden); 169 170 // Enable atomic optimization 171 static cl::opt<bool> EnableAtomicOptimizations( 172 "amdgpu-atomic-optimizations", 173 cl::desc("Enable atomic optimizations"), 174 cl::init(false), 175 cl::Hidden); 176 177 // Enable Mode register optimization 178 static cl::opt<bool> EnableSIModeRegisterPass( 179 "amdgpu-mode-register", 180 cl::desc("Enable mode register pass"), 181 cl::init(true), 182 cl::Hidden); 183 184 // Option is used in lit tests to prevent deadcoding of patterns inspected. 185 static cl::opt<bool> 186 EnableDCEInRA("amdgpu-dce-in-ra", 187 cl::init(true), cl::Hidden, 188 cl::desc("Enable machine DCE inside regalloc")); 189 190 static cl::opt<bool> EnableScalarIRPasses( 191 "amdgpu-scalar-ir-passes", 192 cl::desc("Enable scalar IR passes"), 193 cl::init(true), 194 cl::Hidden); 195 196 static cl::opt<bool> EnableStructurizerWorkarounds( 197 "amdgpu-enable-structurizer-workarounds", 198 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(false), 199 cl::Hidden); 200 201 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 202 // Register the target 203 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 204 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 205 206 PassRegistry *PR = PassRegistry::getPassRegistry(); 207 initializeR600ClauseMergePassPass(*PR); 208 initializeR600ControlFlowFinalizerPass(*PR); 209 initializeR600PacketizerPass(*PR); 210 initializeR600ExpandSpecialInstrsPassPass(*PR); 211 initializeR600VectorRegMergerPass(*PR); 212 initializeGlobalISel(*PR); 213 initializeAMDGPUDAGToDAGISelPass(*PR); 214 initializeGCNDPPCombinePass(*PR); 215 initializeSILowerI1CopiesPass(*PR); 216 initializeSILowerSGPRSpillsPass(*PR); 217 initializeSIFixSGPRCopiesPass(*PR); 218 initializeSIFixVGPRCopiesPass(*PR); 219 initializeSIFixupVectorISelPass(*PR); 220 initializeSIFoldOperandsPass(*PR); 221 initializeSIPeepholeSDWAPass(*PR); 222 initializeSIShrinkInstructionsPass(*PR); 223 initializeSIOptimizeExecMaskingPreRAPass(*PR); 224 initializeSILoadStoreOptimizerPass(*PR); 225 initializeAMDGPUFixFunctionBitcastsPass(*PR); 226 initializeAMDGPUAlwaysInlinePass(*PR); 227 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 228 initializeAMDGPUAnnotateUniformValuesPass(*PR); 229 initializeAMDGPUArgumentUsageInfoPass(*PR); 230 initializeAMDGPUAtomicOptimizerPass(*PR); 231 initializeAMDGPULowerKernelArgumentsPass(*PR); 232 initializeAMDGPULowerKernelAttributesPass(*PR); 233 initializeAMDGPULowerIntrinsicsPass(*PR); 234 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 235 initializeAMDGPUPostLegalizerCombinerPass(*PR); 236 initializeAMDGPUPreLegalizerCombinerPass(*PR); 237 initializeAMDGPUPromoteAllocaPass(*PR); 238 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 239 initializeAMDGPUCodeGenPreparePass(*PR); 240 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 241 initializeAMDGPUPropagateAttributesLatePass(*PR); 242 initializeAMDGPURewriteOutArgumentsPass(*PR); 243 initializeAMDGPUUnifyMetadataPass(*PR); 244 initializeSIAnnotateControlFlowPass(*PR); 245 initializeSIInsertHardClausesPass(*PR); 246 initializeSIInsertWaitcntsPass(*PR); 247 initializeSIModeRegisterPass(*PR); 248 initializeSIWholeQuadModePass(*PR); 249 initializeSILowerControlFlowPass(*PR); 250 initializeSIRemoveShortExecBranchesPass(*PR); 251 initializeSIPreEmitPeepholePass(*PR); 252 initializeSIInsertSkipsPass(*PR); 253 initializeSIMemoryLegalizerPass(*PR); 254 initializeSIOptimizeExecMaskingPass(*PR); 255 initializeSIPreAllocateWWMRegsPass(*PR); 256 initializeSIFormMemoryClausesPass(*PR); 257 initializeSIPostRABundlerPass(*PR); 258 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 259 initializeAMDGPUAAWrapperPassPass(*PR); 260 initializeAMDGPUExternalAAWrapperPass(*PR); 261 initializeAMDGPUUseNativeCallsPass(*PR); 262 initializeAMDGPUSimplifyLibCallsPass(*PR); 263 initializeAMDGPUInlinerPass(*PR); 264 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 265 initializeGCNRegBankReassignPass(*PR); 266 initializeGCNNSAReassignPass(*PR); 267 initializeSIAddIMGInitPass(*PR); 268 } 269 270 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 271 return std::make_unique<AMDGPUTargetObjectFile>(); 272 } 273 274 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 275 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 276 } 277 278 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 279 return new SIScheduleDAGMI(C); 280 } 281 282 static ScheduleDAGInstrs * 283 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 284 ScheduleDAGMILive *DAG = 285 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 286 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 287 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 288 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 289 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 290 return DAG; 291 } 292 293 static ScheduleDAGInstrs * 294 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 295 auto DAG = new GCNIterativeScheduler(C, 296 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 297 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 298 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 299 return DAG; 300 } 301 302 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 303 return new GCNIterativeScheduler(C, 304 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 305 } 306 307 static ScheduleDAGInstrs * 308 createIterativeILPMachineScheduler(MachineSchedContext *C) { 309 auto DAG = new GCNIterativeScheduler(C, 310 GCNIterativeScheduler::SCHEDULE_ILP); 311 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 312 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 313 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 314 return DAG; 315 } 316 317 static MachineSchedRegistry 318 R600SchedRegistry("r600", "Run R600's custom scheduler", 319 createR600MachineScheduler); 320 321 static MachineSchedRegistry 322 SISchedRegistry("si", "Run SI's custom scheduler", 323 createSIMachineScheduler); 324 325 static MachineSchedRegistry 326 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 327 "Run GCN scheduler to maximize occupancy", 328 createGCNMaxOccupancyMachineScheduler); 329 330 static MachineSchedRegistry 331 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 332 "Run GCN scheduler to maximize occupancy (experimental)", 333 createIterativeGCNMaxOccupancyMachineScheduler); 334 335 static MachineSchedRegistry 336 GCNMinRegSchedRegistry("gcn-minreg", 337 "Run GCN iterative scheduler for minimal register usage (experimental)", 338 createMinRegScheduler); 339 340 static MachineSchedRegistry 341 GCNILPSchedRegistry("gcn-ilp", 342 "Run GCN iterative scheduler for ILP scheduling (experimental)", 343 createIterativeILPMachineScheduler); 344 345 static StringRef computeDataLayout(const Triple &TT) { 346 if (TT.getArch() == Triple::r600) { 347 // 32-bit pointers. 348 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 349 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 350 } 351 352 // 32-bit private, local, and region pointers. 64-bit global, constant and 353 // flat, non-integral buffer fat pointers. 354 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 355 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 356 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 357 "-ni:7"; 358 } 359 360 LLVM_READNONE 361 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 362 if (!GPU.empty()) 363 return GPU; 364 365 // Need to default to a target with flat support for HSA. 366 if (TT.getArch() == Triple::amdgcn) 367 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 368 369 return "r600"; 370 } 371 372 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 373 // The AMDGPU toolchain only supports generating shared objects, so we 374 // must always use PIC. 375 return Reloc::PIC_; 376 } 377 378 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 379 StringRef CPU, StringRef FS, 380 TargetOptions Options, 381 Optional<Reloc::Model> RM, 382 Optional<CodeModel::Model> CM, 383 CodeGenOpt::Level OptLevel) 384 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 385 FS, Options, getEffectiveRelocModel(RM), 386 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 387 TLOF(createTLOF(getTargetTriple())) { 388 initAsmInfo(); 389 if (TT.getArch() == Triple::amdgcn) { 390 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 391 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 392 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 393 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 394 } 395 } 396 397 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 398 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 399 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 400 401 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 402 403 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 404 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 405 return GPUAttr.hasAttribute(Attribute::None) ? 406 getTargetCPU() : GPUAttr.getValueAsString(); 407 } 408 409 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 410 Attribute FSAttr = F.getFnAttribute("target-features"); 411 412 return FSAttr.hasAttribute(Attribute::None) ? 413 getTargetFeatureString() : 414 FSAttr.getValueAsString(); 415 } 416 417 /// Predicate for Internalize pass. 418 static bool mustPreserveGV(const GlobalValue &GV) { 419 if (const Function *F = dyn_cast<Function>(&GV)) 420 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 421 422 return !GV.use_empty(); 423 } 424 425 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 426 Builder.DivergentTarget = true; 427 428 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 429 bool Internalize = InternalizeSymbols; 430 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 431 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 432 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 433 434 if (EnableFunctionCalls) { 435 delete Builder.Inliner; 436 Builder.Inliner = createAMDGPUFunctionInliningPass(); 437 } 438 439 Builder.addExtension( 440 PassManagerBuilder::EP_ModuleOptimizerEarly, 441 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 442 legacy::PassManagerBase &PM) { 443 if (AMDGPUAA) { 444 PM.add(createAMDGPUAAWrapperPass()); 445 PM.add(createAMDGPUExternalAAWrapperPass()); 446 } 447 PM.add(createAMDGPUUnifyMetadataPass()); 448 PM.add(createAMDGPUPrintfRuntimeBinding()); 449 if (Internalize) 450 PM.add(createInternalizePass(mustPreserveGV)); 451 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 452 if (Internalize) 453 PM.add(createGlobalDCEPass()); 454 if (EarlyInline) 455 PM.add(createAMDGPUAlwaysInlinePass(false)); 456 }); 457 458 Builder.addExtension( 459 PassManagerBuilder::EP_EarlyAsPossible, 460 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 461 legacy::PassManagerBase &PM) { 462 if (AMDGPUAA) { 463 PM.add(createAMDGPUAAWrapperPass()); 464 PM.add(createAMDGPUExternalAAWrapperPass()); 465 } 466 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 467 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 468 if (LibCallSimplify) 469 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 470 }); 471 472 Builder.addExtension( 473 PassManagerBuilder::EP_CGSCCOptimizerLate, 474 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 475 // Add infer address spaces pass to the opt pipeline after inlining 476 // but before SROA to increase SROA opportunities. 477 PM.add(createInferAddressSpacesPass()); 478 479 // This should run after inlining to have any chance of doing anything, 480 // and before other cleanup optimizations. 481 PM.add(createAMDGPULowerKernelAttributesPass()); 482 483 // Promote alloca to vector before SROA and loop unroll. If we manage 484 // to eliminate allocas before unroll we may choose to unroll less. 485 if (EnableOpt) 486 PM.add(createAMDGPUPromoteAllocaToVector()); 487 }); 488 } 489 490 //===----------------------------------------------------------------------===// 491 // R600 Target Machine (R600 -> Cayman) 492 //===----------------------------------------------------------------------===// 493 494 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 495 StringRef CPU, StringRef FS, 496 TargetOptions Options, 497 Optional<Reloc::Model> RM, 498 Optional<CodeModel::Model> CM, 499 CodeGenOpt::Level OL, bool JIT) 500 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 501 setRequiresStructuredCFG(true); 502 503 // Override the default since calls aren't supported for r600. 504 if (EnableFunctionCalls && 505 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 506 EnableFunctionCalls = false; 507 } 508 509 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 510 const Function &F) const { 511 StringRef GPU = getGPUName(F); 512 StringRef FS = getFeatureString(F); 513 514 SmallString<128> SubtargetKey(GPU); 515 SubtargetKey.append(FS); 516 517 auto &I = SubtargetMap[SubtargetKey]; 518 if (!I) { 519 // This needs to be done before we create a new subtarget since any 520 // creation will depend on the TM and the code generation flags on the 521 // function that reside in TargetOptions. 522 resetTargetOptions(F); 523 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 524 } 525 526 return I.get(); 527 } 528 529 TargetTransformInfo 530 R600TargetMachine::getTargetTransformInfo(const Function &F) { 531 return TargetTransformInfo(R600TTIImpl(this, F)); 532 } 533 534 //===----------------------------------------------------------------------===// 535 // GCN Target Machine (SI+) 536 //===----------------------------------------------------------------------===// 537 538 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 539 StringRef CPU, StringRef FS, 540 TargetOptions Options, 541 Optional<Reloc::Model> RM, 542 Optional<CodeModel::Model> CM, 543 CodeGenOpt::Level OL, bool JIT) 544 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 545 546 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 547 StringRef GPU = getGPUName(F); 548 StringRef FS = getFeatureString(F); 549 550 SmallString<128> SubtargetKey(GPU); 551 SubtargetKey.append(FS); 552 553 auto &I = SubtargetMap[SubtargetKey]; 554 if (!I) { 555 // This needs to be done before we create a new subtarget since any 556 // creation will depend on the TM and the code generation flags on the 557 // function that reside in TargetOptions. 558 resetTargetOptions(F); 559 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 560 } 561 562 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 563 564 return I.get(); 565 } 566 567 TargetTransformInfo 568 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 569 return TargetTransformInfo(GCNTTIImpl(this, F)); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // AMDGPU Pass Setup 574 //===----------------------------------------------------------------------===// 575 576 namespace { 577 578 class AMDGPUPassConfig : public TargetPassConfig { 579 public: 580 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 581 : TargetPassConfig(TM, PM) { 582 // Exceptions and StackMaps are not supported, so these passes will never do 583 // anything. 584 disablePass(&StackMapLivenessID); 585 disablePass(&FuncletLayoutID); 586 } 587 588 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 589 return getTM<AMDGPUTargetMachine>(); 590 } 591 592 ScheduleDAGInstrs * 593 createMachineScheduler(MachineSchedContext *C) const override { 594 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 595 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 596 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 597 return DAG; 598 } 599 600 void addEarlyCSEOrGVNPass(); 601 void addStraightLineScalarOptimizationPasses(); 602 void addIRPasses() override; 603 void addCodeGenPrepare() override; 604 bool addPreISel() override; 605 bool addInstSelector() override; 606 bool addGCPasses() override; 607 608 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 609 }; 610 611 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 612 return getStandardCSEConfigForOpt(TM->getOptLevel()); 613 } 614 615 class R600PassConfig final : public AMDGPUPassConfig { 616 public: 617 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 618 : AMDGPUPassConfig(TM, PM) {} 619 620 ScheduleDAGInstrs *createMachineScheduler( 621 MachineSchedContext *C) const override { 622 return createR600MachineScheduler(C); 623 } 624 625 bool addPreISel() override; 626 bool addInstSelector() override; 627 void addPreRegAlloc() override; 628 void addPreSched2() override; 629 void addPreEmitPass() override; 630 }; 631 632 class GCNPassConfig final : public AMDGPUPassConfig { 633 public: 634 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 635 : AMDGPUPassConfig(TM, PM) { 636 // It is necessary to know the register usage of the entire call graph. We 637 // allow calls without EnableAMDGPUFunctionCalls if they are marked 638 // noinline, so this is always required. 639 setRequiresCodeGenSCCOrder(true); 640 } 641 642 GCNTargetMachine &getGCNTargetMachine() const { 643 return getTM<GCNTargetMachine>(); 644 } 645 646 ScheduleDAGInstrs * 647 createMachineScheduler(MachineSchedContext *C) const override; 648 649 bool addPreISel() override; 650 void addMachineSSAOptimization() override; 651 bool addILPOpts() override; 652 bool addInstSelector() override; 653 bool addIRTranslator() override; 654 void addPreLegalizeMachineIR() override; 655 bool addLegalizeMachineIR() override; 656 void addPreRegBankSelect() override; 657 bool addRegBankSelect() override; 658 bool addGlobalInstructionSelect() override; 659 void addFastRegAlloc() override; 660 void addOptimizedRegAlloc() override; 661 void addPreRegAlloc() override; 662 bool addPreRewrite() override; 663 void addPostRegAlloc() override; 664 void addPreSched2() override; 665 void addPreEmitPass() override; 666 }; 667 668 } // end anonymous namespace 669 670 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 671 if (getOptLevel() == CodeGenOpt::Aggressive) 672 addPass(createGVNPass()); 673 else 674 addPass(createEarlyCSEPass()); 675 } 676 677 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 678 addPass(createLICMPass()); 679 addPass(createSeparateConstOffsetFromGEPPass()); 680 addPass(createSpeculativeExecutionPass()); 681 // ReassociateGEPs exposes more opportunites for SLSR. See 682 // the example in reassociate-geps-and-slsr.ll. 683 addPass(createStraightLineStrengthReducePass()); 684 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 685 // EarlyCSE can reuse. 686 addEarlyCSEOrGVNPass(); 687 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 688 addPass(createNaryReassociatePass()); 689 // NaryReassociate on GEPs creates redundant common expressions, so run 690 // EarlyCSE after it. 691 addPass(createEarlyCSEPass()); 692 } 693 694 void AMDGPUPassConfig::addIRPasses() { 695 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 696 697 // There is no reason to run these. 698 disablePass(&StackMapLivenessID); 699 disablePass(&FuncletLayoutID); 700 disablePass(&PatchableFunctionID); 701 702 addPass(createAMDGPUPrintfRuntimeBinding()); 703 704 // This must occur before inlining, as the inliner will not look through 705 // bitcast calls. 706 addPass(createAMDGPUFixFunctionBitcastsPass()); 707 708 // A call to propagate attributes pass in the backend in case opt was not run. 709 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 710 711 addPass(createAtomicExpandPass()); 712 713 714 addPass(createAMDGPULowerIntrinsicsPass()); 715 716 // Function calls are not supported, so make sure we inline everything. 717 addPass(createAMDGPUAlwaysInlinePass()); 718 addPass(createAlwaysInlinerLegacyPass()); 719 // We need to add the barrier noop pass, otherwise adding the function 720 // inlining pass will cause all of the PassConfigs passes to be run 721 // one function at a time, which means if we have a nodule with two 722 // functions, then we will generate code for the first function 723 // without ever running any passes on the second. 724 addPass(createBarrierNoopPass()); 725 726 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 727 if (TM.getTargetTriple().getArch() == Triple::r600) 728 addPass(createR600OpenCLImageTypeLoweringPass()); 729 730 // Replace OpenCL enqueued block function pointers with global variables. 731 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 732 733 if (TM.getOptLevel() > CodeGenOpt::None) { 734 addPass(createInferAddressSpacesPass()); 735 addPass(createAMDGPUPromoteAlloca()); 736 737 if (EnableSROA) 738 addPass(createSROAPass()); 739 740 if (EnableScalarIRPasses) 741 addStraightLineScalarOptimizationPasses(); 742 743 if (EnableAMDGPUAliasAnalysis) { 744 addPass(createAMDGPUAAWrapperPass()); 745 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 746 AAResults &AAR) { 747 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 748 AAR.addAAResult(WrapperPass->getResult()); 749 })); 750 } 751 } 752 753 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 754 // TODO: May want to move later or split into an early and late one. 755 addPass(createAMDGPUCodeGenPreparePass()); 756 } 757 758 TargetPassConfig::addIRPasses(); 759 760 // EarlyCSE is not always strong enough to clean up what LSR produces. For 761 // example, GVN can combine 762 // 763 // %0 = add %a, %b 764 // %1 = add %b, %a 765 // 766 // and 767 // 768 // %0 = shl nsw %a, 2 769 // %1 = shl %a, 2 770 // 771 // but EarlyCSE can do neither of them. 772 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 773 addEarlyCSEOrGVNPass(); 774 } 775 776 void AMDGPUPassConfig::addCodeGenPrepare() { 777 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 778 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 779 780 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 781 EnableLowerKernelArguments) 782 addPass(createAMDGPULowerKernelArgumentsPass()); 783 784 addPass(&AMDGPUPerfHintAnalysisID); 785 786 TargetPassConfig::addCodeGenPrepare(); 787 788 if (EnableLoadStoreVectorizer) 789 addPass(createLoadStoreVectorizerPass()); 790 } 791 792 bool AMDGPUPassConfig::addPreISel() { 793 addPass(createLowerSwitchPass()); 794 addPass(createFlattenCFGPass()); 795 return false; 796 } 797 798 bool AMDGPUPassConfig::addInstSelector() { 799 // Defer the verifier until FinalizeISel. 800 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 801 return false; 802 } 803 804 bool AMDGPUPassConfig::addGCPasses() { 805 // Do nothing. GC is not supported. 806 return false; 807 } 808 809 //===----------------------------------------------------------------------===// 810 // R600 Pass Setup 811 //===----------------------------------------------------------------------===// 812 813 bool R600PassConfig::addPreISel() { 814 AMDGPUPassConfig::addPreISel(); 815 816 if (EnableR600StructurizeCFG) 817 addPass(createStructurizeCFGPass()); 818 return false; 819 } 820 821 bool R600PassConfig::addInstSelector() { 822 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 823 return false; 824 } 825 826 void R600PassConfig::addPreRegAlloc() { 827 addPass(createR600VectorRegMerger()); 828 } 829 830 void R600PassConfig::addPreSched2() { 831 addPass(createR600EmitClauseMarkers(), false); 832 if (EnableR600IfConvert) 833 addPass(&IfConverterID, false); 834 addPass(createR600ClauseMergePass(), false); 835 } 836 837 void R600PassConfig::addPreEmitPass() { 838 addPass(createAMDGPUCFGStructurizerPass(), false); 839 addPass(createR600ExpandSpecialInstrsPass(), false); 840 addPass(&FinalizeMachineBundlesID, false); 841 addPass(createR600Packetizer(), false); 842 addPass(createR600ControlFlowFinalizer(), false); 843 } 844 845 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 846 return new R600PassConfig(*this, PM); 847 } 848 849 //===----------------------------------------------------------------------===// 850 // GCN Pass Setup 851 //===----------------------------------------------------------------------===// 852 853 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 854 MachineSchedContext *C) const { 855 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 856 if (ST.enableSIScheduler()) 857 return createSIMachineScheduler(C); 858 return createGCNMaxOccupancyMachineScheduler(C); 859 } 860 861 bool GCNPassConfig::addPreISel() { 862 AMDGPUPassConfig::addPreISel(); 863 864 if (EnableAtomicOptimizations) { 865 addPass(createAMDGPUAtomicOptimizerPass()); 866 } 867 868 // FIXME: We need to run a pass to propagate the attributes when calls are 869 // supported. 870 871 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 872 // regions formed by them. 873 addPass(&AMDGPUUnifyDivergentExitNodesID); 874 if (!LateCFGStructurize) { 875 if (EnableStructurizerWorkarounds) { 876 addPass(createFixIrreduciblePass()); 877 addPass(createUnifyLoopExitsPass()); 878 } 879 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 880 } 881 addPass(createSinkingPass()); 882 addPass(createAMDGPUAnnotateUniformValues()); 883 if (!LateCFGStructurize) { 884 addPass(createSIAnnotateControlFlowPass()); 885 } 886 addPass(createLCSSAPass()); 887 888 return false; 889 } 890 891 void GCNPassConfig::addMachineSSAOptimization() { 892 TargetPassConfig::addMachineSSAOptimization(); 893 894 // We want to fold operands after PeepholeOptimizer has run (or as part of 895 // it), because it will eliminate extra copies making it easier to fold the 896 // real source operand. We want to eliminate dead instructions after, so that 897 // we see fewer uses of the copies. We then need to clean up the dead 898 // instructions leftover after the operands are folded as well. 899 // 900 // XXX - Can we get away without running DeadMachineInstructionElim again? 901 addPass(&SIFoldOperandsID); 902 if (EnableDPPCombine) 903 addPass(&GCNDPPCombineID); 904 addPass(&DeadMachineInstructionElimID); 905 addPass(&SILoadStoreOptimizerID); 906 if (EnableSDWAPeephole) { 907 addPass(&SIPeepholeSDWAID); 908 addPass(&EarlyMachineLICMID); 909 addPass(&MachineCSEID); 910 addPass(&SIFoldOperandsID); 911 addPass(&DeadMachineInstructionElimID); 912 } 913 addPass(createSIShrinkInstructionsPass()); 914 } 915 916 bool GCNPassConfig::addILPOpts() { 917 if (EnableEarlyIfConversion) 918 addPass(&EarlyIfConverterID); 919 920 TargetPassConfig::addILPOpts(); 921 return false; 922 } 923 924 bool GCNPassConfig::addInstSelector() { 925 AMDGPUPassConfig::addInstSelector(); 926 addPass(&SIFixSGPRCopiesID); 927 addPass(createSILowerI1CopiesPass()); 928 // TODO: We have to add FinalizeISel 929 // to expand V_ADD/SUB_U64_PSEUDO before SIFixupVectorISel 930 // that expects V_ADD/SUB -> A_ADDC/SUBB pairs expanded. 931 // Will be removed as soon as SIFixupVectorISel is changed 932 // to work with V_ADD/SUB_U64_PSEUDO instead. 933 addPass(&FinalizeISelID); 934 addPass(createSIFixupVectorISelPass()); 935 addPass(createSIAddIMGInitPass()); 936 return false; 937 } 938 939 bool GCNPassConfig::addIRTranslator() { 940 addPass(new IRTranslator()); 941 return false; 942 } 943 944 void GCNPassConfig::addPreLegalizeMachineIR() { 945 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 946 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 947 addPass(new Localizer()); 948 } 949 950 bool GCNPassConfig::addLegalizeMachineIR() { 951 addPass(new Legalizer()); 952 return false; 953 } 954 955 void GCNPassConfig::addPreRegBankSelect() { 956 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 957 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 958 } 959 960 bool GCNPassConfig::addRegBankSelect() { 961 addPass(new RegBankSelect()); 962 return false; 963 } 964 965 bool GCNPassConfig::addGlobalInstructionSelect() { 966 addPass(new InstructionSelect()); 967 return false; 968 } 969 970 void GCNPassConfig::addPreRegAlloc() { 971 if (LateCFGStructurize) { 972 addPass(createAMDGPUMachineCFGStructurizerPass()); 973 } 974 addPass(createSIWholeQuadModePass()); 975 } 976 977 void GCNPassConfig::addFastRegAlloc() { 978 // FIXME: We have to disable the verifier here because of PHIElimination + 979 // TwoAddressInstructions disabling it. 980 981 // This must be run immediately after phi elimination and before 982 // TwoAddressInstructions, otherwise the processing of the tied operand of 983 // SI_ELSE will introduce a copy of the tied operand source after the else. 984 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 985 986 // This must be run just after RegisterCoalescing. 987 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 988 989 TargetPassConfig::addFastRegAlloc(); 990 } 991 992 void GCNPassConfig::addOptimizedRegAlloc() { 993 if (OptExecMaskPreRA) { 994 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 995 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 996 } else { 997 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 998 } 999 1000 // This must be run immediately after phi elimination and before 1001 // TwoAddressInstructions, otherwise the processing of the tied operand of 1002 // SI_ELSE will introduce a copy of the tied operand source after the else. 1003 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1004 1005 // This must be run just after RegisterCoalescing. 1006 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 1007 1008 if (EnableDCEInRA) 1009 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1010 1011 TargetPassConfig::addOptimizedRegAlloc(); 1012 } 1013 1014 bool GCNPassConfig::addPreRewrite() { 1015 if (EnableRegReassign) { 1016 addPass(&GCNNSAReassignID); 1017 addPass(&GCNRegBankReassignID); 1018 } 1019 return true; 1020 } 1021 1022 void GCNPassConfig::addPostRegAlloc() { 1023 addPass(&SIFixVGPRCopiesID); 1024 if (getOptLevel() > CodeGenOpt::None) 1025 addPass(&SIOptimizeExecMaskingID); 1026 TargetPassConfig::addPostRegAlloc(); 1027 1028 // Equivalent of PEI for SGPRs. 1029 addPass(&SILowerSGPRSpillsID); 1030 } 1031 1032 void GCNPassConfig::addPreSched2() { 1033 addPass(&SIPostRABundlerID); 1034 } 1035 1036 void GCNPassConfig::addPreEmitPass() { 1037 addPass(createSIMemoryLegalizerPass()); 1038 addPass(createSIInsertWaitcntsPass()); 1039 addPass(createSIShrinkInstructionsPass()); 1040 addPass(createSIModeRegisterPass()); 1041 1042 // The hazard recognizer that runs as part of the post-ra scheduler does not 1043 // guarantee to be able handle all hazards correctly. This is because if there 1044 // are multiple scheduling regions in a basic block, the regions are scheduled 1045 // bottom up, so when we begin to schedule a region we don't know what 1046 // instructions were emitted directly before it. 1047 // 1048 // Here we add a stand-alone hazard recognizer pass which can handle all 1049 // cases. 1050 // 1051 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 1052 // be better for it to emit S_NOP <N> when possible. 1053 addPass(&PostRAHazardRecognizerID); 1054 if (getOptLevel() > CodeGenOpt::None) 1055 addPass(&SIInsertHardClausesID); 1056 1057 addPass(&SIRemoveShortExecBranchesID); 1058 addPass(&SIPreEmitPeepholeID); 1059 addPass(&SIInsertSkipsPassID); 1060 addPass(&BranchRelaxationPassID); 1061 } 1062 1063 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1064 return new GCNPassConfig(*this, PM); 1065 } 1066 1067 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1068 return new yaml::SIMachineFunctionInfo(); 1069 } 1070 1071 yaml::MachineFunctionInfo * 1072 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1073 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1074 return new yaml::SIMachineFunctionInfo(*MFI, 1075 *MF.getSubtarget().getRegisterInfo()); 1076 } 1077 1078 bool GCNTargetMachine::parseMachineFunctionInfo( 1079 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1080 SMDiagnostic &Error, SMRange &SourceRange) const { 1081 const yaml::SIMachineFunctionInfo &YamlMFI = 1082 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1083 MachineFunction &MF = PFS.MF; 1084 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1085 1086 MFI->initializeBaseYamlFields(YamlMFI); 1087 1088 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1089 Register TempReg; 1090 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1091 SourceRange = RegName.SourceRange; 1092 return true; 1093 } 1094 RegVal = TempReg; 1095 1096 return false; 1097 }; 1098 1099 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1100 // Create a diagnostic for a the register string literal. 1101 const MemoryBuffer &Buffer = 1102 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1103 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1104 RegName.Value.size(), SourceMgr::DK_Error, 1105 "incorrect register class for field", RegName.Value, 1106 None, None); 1107 SourceRange = RegName.SourceRange; 1108 return true; 1109 }; 1110 1111 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1112 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1113 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1114 return true; 1115 1116 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1117 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1118 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1119 } 1120 1121 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1122 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1123 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1124 } 1125 1126 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1127 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1128 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1129 } 1130 1131 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1132 const TargetRegisterClass &RC, 1133 ArgDescriptor &Arg, unsigned UserSGPRs, 1134 unsigned SystemSGPRs) { 1135 // Skip parsing if it's not present. 1136 if (!A) 1137 return false; 1138 1139 if (A->IsRegister) { 1140 Register Reg; 1141 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1142 SourceRange = A->RegisterName.SourceRange; 1143 return true; 1144 } 1145 if (!RC.contains(Reg)) 1146 return diagnoseRegisterClass(A->RegisterName); 1147 Arg = ArgDescriptor::createRegister(Reg); 1148 } else 1149 Arg = ArgDescriptor::createStack(A->StackOffset); 1150 // Check and apply the optional mask. 1151 if (A->Mask) 1152 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1153 1154 MFI->NumUserSGPRs += UserSGPRs; 1155 MFI->NumSystemSGPRs += SystemSGPRs; 1156 return false; 1157 }; 1158 1159 if (YamlMFI.ArgInfo && 1160 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1161 AMDGPU::SGPR_128RegClass, 1162 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1163 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1164 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1165 2, 0) || 1166 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1167 MFI->ArgInfo.QueuePtr, 2, 0) || 1168 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1169 AMDGPU::SReg_64RegClass, 1170 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1171 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1172 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1173 2, 0) || 1174 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1175 AMDGPU::SReg_64RegClass, 1176 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1177 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1178 AMDGPU::SGPR_32RegClass, 1179 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1180 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1181 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1182 0, 1) || 1183 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1184 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1185 0, 1) || 1186 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1187 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1188 0, 1) || 1189 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1190 AMDGPU::SGPR_32RegClass, 1191 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1192 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1193 AMDGPU::SGPR_32RegClass, 1194 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1195 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1196 AMDGPU::SReg_64RegClass, 1197 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1198 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1199 AMDGPU::SReg_64RegClass, 1200 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1201 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1202 AMDGPU::VGPR_32RegClass, 1203 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1204 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1205 AMDGPU::VGPR_32RegClass, 1206 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1207 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1208 AMDGPU::VGPR_32RegClass, 1209 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1210 return true; 1211 1212 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1213 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1214 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1215 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1216 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1217 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1218 1219 return false; 1220 } 1221