1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUAliasAnalysis.h" 19 #include "AMDGPUCallLowering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "R600MachineScheduler.h" 28 #include "SIMachineScheduler.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/LegacyPassManager.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Target/TargetLoweringObjectFile.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/IPO/AlwaysInliner.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Vectorize.h" 49 #include <memory> 50 51 using namespace llvm; 52 53 static cl::opt<bool> EnableR600StructurizeCFG( 54 "r600-ir-structurize", 55 cl::desc("Use StructurizeCFG IR pass"), 56 cl::init(true)); 57 58 static cl::opt<bool> EnableSROA( 59 "amdgpu-sroa", 60 cl::desc("Run SROA after promote alloca pass"), 61 cl::ReallyHidden, 62 cl::init(true)); 63 64 static cl::opt<bool> 65 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 66 cl::desc("Run early if-conversion"), 67 cl::init(false)); 68 69 static cl::opt<bool> EnableR600IfConvert( 70 "r600-if-convert", 71 cl::desc("Use if conversion pass"), 72 cl::ReallyHidden, 73 cl::init(true)); 74 75 // Option to disable vectorizer for tests. 76 static cl::opt<bool> EnableLoadStoreVectorizer( 77 "amdgpu-load-store-vectorizer", 78 cl::desc("Enable load store vectorizer"), 79 cl::init(true), 80 cl::Hidden); 81 82 // Option to control global loads scalarization 83 static cl::opt<bool> ScalarizeGlobal( 84 "amdgpu-scalarize-global-loads", 85 cl::desc("Enable global load scalarization"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to run internalize pass. 90 static cl::opt<bool> InternalizeSymbols( 91 "amdgpu-internalize-symbols", 92 cl::desc("Enable elimination of non-kernel functions and unused globals"), 93 cl::init(false), 94 cl::Hidden); 95 96 // Option to inline all early. 97 static cl::opt<bool> EarlyInlineAll( 98 "amdgpu-early-inline-all", 99 cl::desc("Inline all functions early"), 100 cl::init(false), 101 cl::Hidden); 102 103 static cl::opt<bool> EnableSDWAPeephole( 104 "amdgpu-sdwa-peephole", 105 cl::desc("Enable SDWA peepholer"), 106 cl::init(true)); 107 108 // Enable address space based alias analysis 109 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 110 cl::desc("Enable AMDGPU Alias Analysis"), 111 cl::init(true)); 112 113 // Option to run late CFG structurizer 114 static cl::opt<bool, true> LateCFGStructurize( 115 "amdgpu-late-structurize", 116 cl::desc("Enable late CFG structurization"), 117 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 118 cl::Hidden); 119 120 static cl::opt<bool> EnableAMDGPUFunctionCalls( 121 "amdgpu-function-calls", 122 cl::Hidden, 123 cl::desc("Enable AMDGPU function call support"), 124 cl::init(false)); 125 126 // Enable lib calls simplifications 127 static cl::opt<bool> EnableLibCallSimplify( 128 "amdgpu-simplify-libcall", 129 cl::desc("Enable mdgpu library simplifications"), 130 cl::init(true), 131 cl::Hidden); 132 133 extern "C" void LLVMInitializeAMDGPUTarget() { 134 // Register the target 135 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 136 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 137 138 PassRegistry *PR = PassRegistry::getPassRegistry(); 139 initializeR600ClauseMergePassPass(*PR); 140 initializeR600ControlFlowFinalizerPass(*PR); 141 initializeR600PacketizerPass(*PR); 142 initializeR600ExpandSpecialInstrsPassPass(*PR); 143 initializeR600VectorRegMergerPass(*PR); 144 initializeGlobalISel(*PR); 145 initializeAMDGPUDAGToDAGISelPass(*PR); 146 initializeSILowerI1CopiesPass(*PR); 147 initializeSIFixSGPRCopiesPass(*PR); 148 initializeSIFixVGPRCopiesPass(*PR); 149 initializeSIFoldOperandsPass(*PR); 150 initializeSIPeepholeSDWAPass(*PR); 151 initializeSIShrinkInstructionsPass(*PR); 152 initializeSIOptimizeExecMaskingPreRAPass(*PR); 153 initializeSILoadStoreOptimizerPass(*PR); 154 initializeAMDGPUAlwaysInlinePass(*PR); 155 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 156 initializeAMDGPUAnnotateUniformValuesPass(*PR); 157 initializeAMDGPUArgumentUsageInfoPass(*PR); 158 initializeAMDGPULowerKernelAttributesPass(*PR); 159 initializeAMDGPULowerIntrinsicsPass(*PR); 160 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 161 initializeAMDGPUPromoteAllocaPass(*PR); 162 initializeAMDGPUCodeGenPreparePass(*PR); 163 initializeAMDGPURewriteOutArgumentsPass(*PR); 164 initializeAMDGPUUnifyMetadataPass(*PR); 165 initializeSIAnnotateControlFlowPass(*PR); 166 initializeSIInsertWaitcntsPass(*PR); 167 initializeSIWholeQuadModePass(*PR); 168 initializeSILowerControlFlowPass(*PR); 169 initializeSIInsertSkipsPass(*PR); 170 initializeSIMemoryLegalizerPass(*PR); 171 initializeSIDebuggerInsertNopsPass(*PR); 172 initializeSIOptimizeExecMaskingPass(*PR); 173 initializeSIFixWWMLivenessPass(*PR); 174 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 175 initializeAMDGPUAAWrapperPassPass(*PR); 176 initializeAMDGPUUseNativeCallsPass(*PR); 177 initializeAMDGPUSimplifyLibCallsPass(*PR); 178 initializeAMDGPUInlinerPass(*PR); 179 } 180 181 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 182 return llvm::make_unique<AMDGPUTargetObjectFile>(); 183 } 184 185 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 186 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 187 } 188 189 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 190 return new SIScheduleDAGMI(C); 191 } 192 193 static ScheduleDAGInstrs * 194 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 195 ScheduleDAGMILive *DAG = 196 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 197 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 198 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 199 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 200 return DAG; 201 } 202 203 static ScheduleDAGInstrs * 204 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 205 auto DAG = new GCNIterativeScheduler(C, 206 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 207 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 208 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 209 return DAG; 210 } 211 212 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 213 return new GCNIterativeScheduler(C, 214 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 215 } 216 217 static ScheduleDAGInstrs * 218 createIterativeILPMachineScheduler(MachineSchedContext *C) { 219 auto DAG = new GCNIterativeScheduler(C, 220 GCNIterativeScheduler::SCHEDULE_ILP); 221 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 222 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 223 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 224 return DAG; 225 } 226 227 static MachineSchedRegistry 228 R600SchedRegistry("r600", "Run R600's custom scheduler", 229 createR600MachineScheduler); 230 231 static MachineSchedRegistry 232 SISchedRegistry("si", "Run SI's custom scheduler", 233 createSIMachineScheduler); 234 235 static MachineSchedRegistry 236 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 237 "Run GCN scheduler to maximize occupancy", 238 createGCNMaxOccupancyMachineScheduler); 239 240 static MachineSchedRegistry 241 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 242 "Run GCN scheduler to maximize occupancy (experimental)", 243 createIterativeGCNMaxOccupancyMachineScheduler); 244 245 static MachineSchedRegistry 246 GCNMinRegSchedRegistry("gcn-minreg", 247 "Run GCN iterative scheduler for minimal register usage (experimental)", 248 createMinRegScheduler); 249 250 static MachineSchedRegistry 251 GCNILPSchedRegistry("gcn-ilp", 252 "Run GCN iterative scheduler for ILP scheduling (experimental)", 253 createIterativeILPMachineScheduler); 254 255 static StringRef computeDataLayout(const Triple &TT) { 256 if (TT.getArch() == Triple::r600) { 257 // 32-bit pointers. 258 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 259 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 260 } 261 262 // 32-bit private, local, and region pointers. 64-bit global, constant and 263 // flat. 264 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 265 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 266 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 267 } 268 269 LLVM_READNONE 270 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 271 if (!GPU.empty()) 272 return GPU; 273 274 if (TT.getArch() == Triple::amdgcn) 275 return "generic"; 276 277 return "r600"; 278 } 279 280 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 281 // The AMDGPU toolchain only supports generating shared objects, so we 282 // must always use PIC. 283 return Reloc::PIC_; 284 } 285 286 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM) { 287 if (CM) 288 return *CM; 289 return CodeModel::Small; 290 } 291 292 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 293 StringRef CPU, StringRef FS, 294 TargetOptions Options, 295 Optional<Reloc::Model> RM, 296 Optional<CodeModel::Model> CM, 297 CodeGenOpt::Level OptLevel) 298 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 299 FS, Options, getEffectiveRelocModel(RM), 300 getEffectiveCodeModel(CM), OptLevel), 301 TLOF(createTLOF(getTargetTriple())) { 302 AS = AMDGPU::getAMDGPUAS(TT); 303 initAsmInfo(); 304 } 305 306 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 307 308 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 309 310 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 311 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 312 return GPUAttr.hasAttribute(Attribute::None) ? 313 getTargetCPU() : GPUAttr.getValueAsString(); 314 } 315 316 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 317 Attribute FSAttr = F.getFnAttribute("target-features"); 318 319 return FSAttr.hasAttribute(Attribute::None) ? 320 getTargetFeatureString() : 321 FSAttr.getValueAsString(); 322 } 323 324 static ImmutablePass *createAMDGPUExternalAAWrapperPass() { 325 return createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) { 326 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 327 AAR.addAAResult(WrapperPass->getResult()); 328 }); 329 } 330 331 /// Predicate for Internalize pass. 332 static bool mustPreserveGV(const GlobalValue &GV) { 333 if (const Function *F = dyn_cast<Function>(&GV)) 334 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 335 336 return !GV.use_empty(); 337 } 338 339 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 340 Builder.DivergentTarget = true; 341 342 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 343 bool Internalize = InternalizeSymbols; 344 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableAMDGPUFunctionCalls; 345 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 346 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 347 348 if (EnableAMDGPUFunctionCalls) { 349 delete Builder.Inliner; 350 Builder.Inliner = createAMDGPUFunctionInliningPass(); 351 } 352 353 if (Internalize) { 354 // If we're generating code, we always have the whole program available. The 355 // relocations expected for externally visible functions aren't supported, 356 // so make sure every non-entry function is hidden. 357 Builder.addExtension( 358 PassManagerBuilder::EP_EnabledOnOptLevel0, 359 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 360 PM.add(createInternalizePass(mustPreserveGV)); 361 }); 362 } 363 364 Builder.addExtension( 365 PassManagerBuilder::EP_ModuleOptimizerEarly, 366 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 367 legacy::PassManagerBase &PM) { 368 if (AMDGPUAA) { 369 PM.add(createAMDGPUAAWrapperPass()); 370 PM.add(createAMDGPUExternalAAWrapperPass()); 371 } 372 PM.add(createAMDGPUUnifyMetadataPass()); 373 if (Internalize) { 374 PM.add(createInternalizePass(mustPreserveGV)); 375 PM.add(createGlobalDCEPass()); 376 } 377 if (EarlyInline) 378 PM.add(createAMDGPUAlwaysInlinePass(false)); 379 }); 380 381 const auto &Opt = Options; 382 Builder.addExtension( 383 PassManagerBuilder::EP_EarlyAsPossible, 384 [AMDGPUAA, LibCallSimplify, &Opt](const PassManagerBuilder &, 385 legacy::PassManagerBase &PM) { 386 if (AMDGPUAA) { 387 PM.add(createAMDGPUAAWrapperPass()); 388 PM.add(createAMDGPUExternalAAWrapperPass()); 389 } 390 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 391 if (LibCallSimplify) 392 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt)); 393 }); 394 395 Builder.addExtension( 396 PassManagerBuilder::EP_CGSCCOptimizerLate, 397 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 398 // Add infer address spaces pass to the opt pipeline after inlining 399 // but before SROA to increase SROA opportunities. 400 PM.add(createInferAddressSpacesPass()); 401 402 // This should run after inlining to have any chance of doing anything, 403 // and before other cleanup optimizations. 404 PM.add(createAMDGPULowerKernelAttributesPass()); 405 }); 406 } 407 408 //===----------------------------------------------------------------------===// 409 // R600 Target Machine (R600 -> Cayman) 410 //===----------------------------------------------------------------------===// 411 412 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 413 StringRef CPU, StringRef FS, 414 TargetOptions Options, 415 Optional<Reloc::Model> RM, 416 Optional<CodeModel::Model> CM, 417 CodeGenOpt::Level OL, bool JIT) 418 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 419 setRequiresStructuredCFG(true); 420 } 421 422 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 423 const Function &F) const { 424 StringRef GPU = getGPUName(F); 425 StringRef FS = getFeatureString(F); 426 427 SmallString<128> SubtargetKey(GPU); 428 SubtargetKey.append(FS); 429 430 auto &I = SubtargetMap[SubtargetKey]; 431 if (!I) { 432 // This needs to be done before we create a new subtarget since any 433 // creation will depend on the TM and the code generation flags on the 434 // function that reside in TargetOptions. 435 resetTargetOptions(F); 436 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 437 } 438 439 return I.get(); 440 } 441 442 //===----------------------------------------------------------------------===// 443 // GCN Target Machine (SI+) 444 //===----------------------------------------------------------------------===// 445 446 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 447 StringRef CPU, StringRef FS, 448 TargetOptions Options, 449 Optional<Reloc::Model> RM, 450 Optional<CodeModel::Model> CM, 451 CodeGenOpt::Level OL, bool JIT) 452 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 453 454 const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 455 StringRef GPU = getGPUName(F); 456 StringRef FS = getFeatureString(F); 457 458 SmallString<128> SubtargetKey(GPU); 459 SubtargetKey.append(FS); 460 461 auto &I = SubtargetMap[SubtargetKey]; 462 if (!I) { 463 // This needs to be done before we create a new subtarget since any 464 // creation will depend on the TM and the code generation flags on the 465 // function that reside in TargetOptions. 466 resetTargetOptions(F); 467 I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this); 468 } 469 470 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 471 472 return I.get(); 473 } 474 475 //===----------------------------------------------------------------------===// 476 // AMDGPU Pass Setup 477 //===----------------------------------------------------------------------===// 478 479 namespace { 480 481 class AMDGPUPassConfig : public TargetPassConfig { 482 public: 483 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 484 : TargetPassConfig(TM, PM) { 485 // Exceptions and StackMaps are not supported, so these passes will never do 486 // anything. 487 disablePass(&StackMapLivenessID); 488 disablePass(&FuncletLayoutID); 489 } 490 491 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 492 return getTM<AMDGPUTargetMachine>(); 493 } 494 495 ScheduleDAGInstrs * 496 createMachineScheduler(MachineSchedContext *C) const override { 497 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 498 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 499 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 500 return DAG; 501 } 502 503 void addEarlyCSEOrGVNPass(); 504 void addStraightLineScalarOptimizationPasses(); 505 void addIRPasses() override; 506 void addCodeGenPrepare() override; 507 bool addPreISel() override; 508 bool addInstSelector() override; 509 bool addGCPasses() override; 510 }; 511 512 class R600PassConfig final : public AMDGPUPassConfig { 513 public: 514 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 515 : AMDGPUPassConfig(TM, PM) {} 516 517 ScheduleDAGInstrs *createMachineScheduler( 518 MachineSchedContext *C) const override { 519 return createR600MachineScheduler(C); 520 } 521 522 bool addPreISel() override; 523 bool addInstSelector() override; 524 void addPreRegAlloc() override; 525 void addPreSched2() override; 526 void addPreEmitPass() override; 527 }; 528 529 class GCNPassConfig final : public AMDGPUPassConfig { 530 public: 531 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 532 : AMDGPUPassConfig(TM, PM) { 533 // It is necessary to know the register usage of the entire call graph. We 534 // allow calls without EnableAMDGPUFunctionCalls if they are marked 535 // noinline, so this is always required. 536 setRequiresCodeGenSCCOrder(true); 537 } 538 539 GCNTargetMachine &getGCNTargetMachine() const { 540 return getTM<GCNTargetMachine>(); 541 } 542 543 ScheduleDAGInstrs * 544 createMachineScheduler(MachineSchedContext *C) const override; 545 546 bool addPreISel() override; 547 void addMachineSSAOptimization() override; 548 bool addILPOpts() override; 549 bool addInstSelector() override; 550 bool addIRTranslator() override; 551 bool addLegalizeMachineIR() override; 552 bool addRegBankSelect() override; 553 bool addGlobalInstructionSelect() override; 554 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 555 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 556 void addPreRegAlloc() override; 557 void addPostRegAlloc() override; 558 void addPreSched2() override; 559 void addPreEmitPass() override; 560 }; 561 562 } // end anonymous namespace 563 564 TargetTransformInfo 565 AMDGPUTargetMachine::getTargetTransformInfo(const Function &F) { 566 return TargetTransformInfo(AMDGPUTTIImpl(this, F)); 567 } 568 569 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 570 if (getOptLevel() == CodeGenOpt::Aggressive) 571 addPass(createGVNPass()); 572 else 573 addPass(createEarlyCSEPass()); 574 } 575 576 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 577 addPass(createSeparateConstOffsetFromGEPPass()); 578 addPass(createSpeculativeExecutionPass()); 579 // ReassociateGEPs exposes more opportunites for SLSR. See 580 // the example in reassociate-geps-and-slsr.ll. 581 addPass(createStraightLineStrengthReducePass()); 582 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 583 // EarlyCSE can reuse. 584 addEarlyCSEOrGVNPass(); 585 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 586 addPass(createNaryReassociatePass()); 587 // NaryReassociate on GEPs creates redundant common expressions, so run 588 // EarlyCSE after it. 589 addPass(createEarlyCSEPass()); 590 } 591 592 void AMDGPUPassConfig::addIRPasses() { 593 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 594 595 // There is no reason to run these. 596 disablePass(&StackMapLivenessID); 597 disablePass(&FuncletLayoutID); 598 disablePass(&PatchableFunctionID); 599 600 addPass(createAMDGPULowerIntrinsicsPass()); 601 602 if (TM.getTargetTriple().getArch() == Triple::r600 || 603 !EnableAMDGPUFunctionCalls) { 604 // Function calls are not supported, so make sure we inline everything. 605 addPass(createAMDGPUAlwaysInlinePass()); 606 addPass(createAlwaysInlinerLegacyPass()); 607 // We need to add the barrier noop pass, otherwise adding the function 608 // inlining pass will cause all of the PassConfigs passes to be run 609 // one function at a time, which means if we have a nodule with two 610 // functions, then we will generate code for the first function 611 // without ever running any passes on the second. 612 addPass(createBarrierNoopPass()); 613 } 614 615 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 616 // TODO: May want to move later or split into an early and late one. 617 618 addPass(createAMDGPUCodeGenPreparePass()); 619 } 620 621 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 622 if (TM.getTargetTriple().getArch() == Triple::r600) 623 addPass(createR600OpenCLImageTypeLoweringPass()); 624 625 // Replace OpenCL enqueued block function pointers with global variables. 626 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 627 628 if (TM.getOptLevel() > CodeGenOpt::None) { 629 addPass(createInferAddressSpacesPass()); 630 addPass(createAMDGPUPromoteAlloca()); 631 632 if (EnableSROA) 633 addPass(createSROAPass()); 634 635 addStraightLineScalarOptimizationPasses(); 636 637 if (EnableAMDGPUAliasAnalysis) { 638 addPass(createAMDGPUAAWrapperPass()); 639 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 640 AAResults &AAR) { 641 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 642 AAR.addAAResult(WrapperPass->getResult()); 643 })); 644 } 645 } 646 647 TargetPassConfig::addIRPasses(); 648 649 // EarlyCSE is not always strong enough to clean up what LSR produces. For 650 // example, GVN can combine 651 // 652 // %0 = add %a, %b 653 // %1 = add %b, %a 654 // 655 // and 656 // 657 // %0 = shl nsw %a, 2 658 // %1 = shl %a, 2 659 // 660 // but EarlyCSE can do neither of them. 661 if (getOptLevel() != CodeGenOpt::None) 662 addEarlyCSEOrGVNPass(); 663 } 664 665 void AMDGPUPassConfig::addCodeGenPrepare() { 666 TargetPassConfig::addCodeGenPrepare(); 667 668 if (EnableLoadStoreVectorizer) 669 addPass(createLoadStoreVectorizerPass()); 670 } 671 672 bool AMDGPUPassConfig::addPreISel() { 673 addPass(createFlattenCFGPass()); 674 return false; 675 } 676 677 bool AMDGPUPassConfig::addInstSelector() { 678 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 679 return false; 680 } 681 682 bool AMDGPUPassConfig::addGCPasses() { 683 // Do nothing. GC is not supported. 684 return false; 685 } 686 687 //===----------------------------------------------------------------------===// 688 // R600 Pass Setup 689 //===----------------------------------------------------------------------===// 690 691 bool R600PassConfig::addPreISel() { 692 AMDGPUPassConfig::addPreISel(); 693 694 if (EnableR600StructurizeCFG) 695 addPass(createStructurizeCFGPass()); 696 return false; 697 } 698 699 bool R600PassConfig::addInstSelector() { 700 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 701 return false; 702 } 703 704 void R600PassConfig::addPreRegAlloc() { 705 addPass(createR600VectorRegMerger()); 706 } 707 708 void R600PassConfig::addPreSched2() { 709 addPass(createR600EmitClauseMarkers(), false); 710 if (EnableR600IfConvert) 711 addPass(&IfConverterID, false); 712 addPass(createR600ClauseMergePass(), false); 713 } 714 715 void R600PassConfig::addPreEmitPass() { 716 addPass(createAMDGPUCFGStructurizerPass(), false); 717 addPass(createR600ExpandSpecialInstrsPass(), false); 718 addPass(&FinalizeMachineBundlesID, false); 719 addPass(createR600Packetizer(), false); 720 addPass(createR600ControlFlowFinalizer(), false); 721 } 722 723 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 724 return new R600PassConfig(*this, PM); 725 } 726 727 //===----------------------------------------------------------------------===// 728 // GCN Pass Setup 729 //===----------------------------------------------------------------------===// 730 731 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 732 MachineSchedContext *C) const { 733 const SISubtarget &ST = C->MF->getSubtarget<SISubtarget>(); 734 if (ST.enableSIScheduler()) 735 return createSIMachineScheduler(C); 736 return createGCNMaxOccupancyMachineScheduler(C); 737 } 738 739 bool GCNPassConfig::addPreISel() { 740 AMDGPUPassConfig::addPreISel(); 741 742 // FIXME: We need to run a pass to propagate the attributes when calls are 743 // supported. 744 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 745 746 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 747 // regions formed by them. 748 addPass(&AMDGPUUnifyDivergentExitNodesID); 749 if (!LateCFGStructurize) { 750 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 751 } 752 addPass(createSinkingPass()); 753 addPass(createAMDGPUAnnotateUniformValues()); 754 if (!LateCFGStructurize) { 755 addPass(createSIAnnotateControlFlowPass()); 756 } 757 758 return false; 759 } 760 761 void GCNPassConfig::addMachineSSAOptimization() { 762 TargetPassConfig::addMachineSSAOptimization(); 763 764 // We want to fold operands after PeepholeOptimizer has run (or as part of 765 // it), because it will eliminate extra copies making it easier to fold the 766 // real source operand. We want to eliminate dead instructions after, so that 767 // we see fewer uses of the copies. We then need to clean up the dead 768 // instructions leftover after the operands are folded as well. 769 // 770 // XXX - Can we get away without running DeadMachineInstructionElim again? 771 addPass(&SIFoldOperandsID); 772 addPass(&DeadMachineInstructionElimID); 773 addPass(&SILoadStoreOptimizerID); 774 if (EnableSDWAPeephole) { 775 addPass(&SIPeepholeSDWAID); 776 addPass(&EarlyMachineLICMID); 777 addPass(&MachineCSEID); 778 addPass(&SIFoldOperandsID); 779 addPass(&DeadMachineInstructionElimID); 780 } 781 addPass(createSIShrinkInstructionsPass()); 782 } 783 784 bool GCNPassConfig::addILPOpts() { 785 if (EnableEarlyIfConversion) 786 addPass(&EarlyIfConverterID); 787 788 TargetPassConfig::addILPOpts(); 789 return false; 790 } 791 792 bool GCNPassConfig::addInstSelector() { 793 AMDGPUPassConfig::addInstSelector(); 794 addPass(createSILowerI1CopiesPass()); 795 addPass(&SIFixSGPRCopiesID); 796 return false; 797 } 798 799 bool GCNPassConfig::addIRTranslator() { 800 addPass(new IRTranslator()); 801 return false; 802 } 803 804 bool GCNPassConfig::addLegalizeMachineIR() { 805 addPass(new Legalizer()); 806 return false; 807 } 808 809 bool GCNPassConfig::addRegBankSelect() { 810 addPass(new RegBankSelect()); 811 return false; 812 } 813 814 bool GCNPassConfig::addGlobalInstructionSelect() { 815 addPass(new InstructionSelect()); 816 return false; 817 } 818 819 void GCNPassConfig::addPreRegAlloc() { 820 if (LateCFGStructurize) { 821 addPass(createAMDGPUMachineCFGStructurizerPass()); 822 } 823 addPass(createSIWholeQuadModePass()); 824 } 825 826 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 827 // FIXME: We have to disable the verifier here because of PHIElimination + 828 // TwoAddressInstructions disabling it. 829 830 // This must be run immediately after phi elimination and before 831 // TwoAddressInstructions, otherwise the processing of the tied operand of 832 // SI_ELSE will introduce a copy of the tied operand source after the else. 833 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 834 835 // This must be run after SILowerControlFlow, since it needs to use the 836 // machine-level CFG, but before register allocation. 837 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 838 839 TargetPassConfig::addFastRegAlloc(RegAllocPass); 840 } 841 842 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 843 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 844 845 // This must be run immediately after phi elimination and before 846 // TwoAddressInstructions, otherwise the processing of the tied operand of 847 // SI_ELSE will introduce a copy of the tied operand source after the else. 848 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 849 850 // This must be run after SILowerControlFlow, since it needs to use the 851 // machine-level CFG, but before register allocation. 852 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 853 854 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 855 } 856 857 void GCNPassConfig::addPostRegAlloc() { 858 addPass(&SIFixVGPRCopiesID); 859 addPass(&SIOptimizeExecMaskingID); 860 TargetPassConfig::addPostRegAlloc(); 861 } 862 863 void GCNPassConfig::addPreSched2() { 864 } 865 866 void GCNPassConfig::addPreEmitPass() { 867 // The hazard recognizer that runs as part of the post-ra scheduler does not 868 // guarantee to be able handle all hazards correctly. This is because if there 869 // are multiple scheduling regions in a basic block, the regions are scheduled 870 // bottom up, so when we begin to schedule a region we don't know what 871 // instructions were emitted directly before it. 872 // 873 // Here we add a stand-alone hazard recognizer pass which can handle all 874 // cases. 875 addPass(&PostRAHazardRecognizerID); 876 877 addPass(createSIMemoryLegalizerPass()); 878 addPass(createSIInsertWaitcntsPass()); 879 addPass(createSIShrinkInstructionsPass()); 880 addPass(&SIInsertSkipsPassID); 881 addPass(createSIDebuggerInsertNopsPass()); 882 addPass(&BranchRelaxationPassID); 883 } 884 885 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 886 return new GCNPassConfig(*this, PM); 887 } 888