1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUInstructionSelector.h" 20 #include "AMDGPULegalizerInfo.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPUTargetObjectFile.h" 23 #include "AMDGPUTargetTransformInfo.h" 24 #include "GCNIterativeScheduler.h" 25 #include "GCNSchedStrategy.h" 26 #include "R600MachineScheduler.h" 27 #include "SIMachineFunctionInfo.h" 28 #include "SIMachineScheduler.h" 29 #include "TargetInfo/AMDGPUTargetInfo.h" 30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/LegacyPassManager.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Target/TargetLoweringObjectFile.h" 46 #include "llvm/Transforms/IPO.h" 47 #include "llvm/Transforms/IPO/AlwaysInliner.h" 48 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 49 #include "llvm/Transforms/Scalar.h" 50 #include "llvm/Transforms/Scalar/GVN.h" 51 #include "llvm/Transforms/Utils.h" 52 #include "llvm/Transforms/Vectorize.h" 53 #include <memory> 54 55 using namespace llvm; 56 57 static cl::opt<bool> EnableR600StructurizeCFG( 58 "r600-ir-structurize", 59 cl::desc("Use StructurizeCFG IR pass"), 60 cl::init(true)); 61 62 static cl::opt<bool> EnableSROA( 63 "amdgpu-sroa", 64 cl::desc("Run SROA after promote alloca pass"), 65 cl::ReallyHidden, 66 cl::init(true)); 67 68 static cl::opt<bool> 69 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 70 cl::desc("Run early if-conversion"), 71 cl::init(false)); 72 73 static cl::opt<bool> 74 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 75 cl::desc("Run pre-RA exec mask optimizations"), 76 cl::init(true)); 77 78 static cl::opt<bool> EnableR600IfConvert( 79 "r600-if-convert", 80 cl::desc("Use if conversion pass"), 81 cl::ReallyHidden, 82 cl::init(true)); 83 84 // Option to disable vectorizer for tests. 85 static cl::opt<bool> EnableLoadStoreVectorizer( 86 "amdgpu-load-store-vectorizer", 87 cl::desc("Enable load store vectorizer"), 88 cl::init(true), 89 cl::Hidden); 90 91 // Option to control global loads scalarization 92 static cl::opt<bool> ScalarizeGlobal( 93 "amdgpu-scalarize-global-loads", 94 cl::desc("Enable global load scalarization"), 95 cl::init(true), 96 cl::Hidden); 97 98 // Option to run internalize pass. 99 static cl::opt<bool> InternalizeSymbols( 100 "amdgpu-internalize-symbols", 101 cl::desc("Enable elimination of non-kernel functions and unused globals"), 102 cl::init(false), 103 cl::Hidden); 104 105 // Option to inline all early. 106 static cl::opt<bool> EarlyInlineAll( 107 "amdgpu-early-inline-all", 108 cl::desc("Inline all functions early"), 109 cl::init(false), 110 cl::Hidden); 111 112 static cl::opt<bool> EnableSDWAPeephole( 113 "amdgpu-sdwa-peephole", 114 cl::desc("Enable SDWA peepholer"), 115 cl::init(true)); 116 117 static cl::opt<bool> EnableDPPCombine( 118 "amdgpu-dpp-combine", 119 cl::desc("Enable DPP combiner"), 120 cl::init(true)); 121 122 // Enable address space based alias analysis 123 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 124 cl::desc("Enable AMDGPU Alias Analysis"), 125 cl::init(true)); 126 127 // Option to run late CFG structurizer 128 static cl::opt<bool, true> LateCFGStructurize( 129 "amdgpu-late-structurize", 130 cl::desc("Enable late CFG structurization"), 131 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 132 cl::Hidden); 133 134 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 135 "amdgpu-function-calls", 136 cl::desc("Enable AMDGPU function call support"), 137 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 138 cl::init(true), 139 cl::Hidden); 140 141 // Enable lib calls simplifications 142 static cl::opt<bool> EnableLibCallSimplify( 143 "amdgpu-simplify-libcall", 144 cl::desc("Enable amdgpu library simplifications"), 145 cl::init(true), 146 cl::Hidden); 147 148 static cl::opt<bool> EnableLowerKernelArguments( 149 "amdgpu-ir-lower-kernel-arguments", 150 cl::desc("Lower kernel argument loads in IR pass"), 151 cl::init(true), 152 cl::Hidden); 153 154 static cl::opt<bool> EnableRegReassign( 155 "amdgpu-reassign-regs", 156 cl::desc("Enable register reassign optimizations on gfx10+"), 157 cl::init(true), 158 cl::Hidden); 159 160 // Enable atomic optimization 161 static cl::opt<bool> EnableAtomicOptimizations( 162 "amdgpu-atomic-optimizations", 163 cl::desc("Enable atomic optimizations"), 164 cl::init(false), 165 cl::Hidden); 166 167 // Enable Mode register optimization 168 static cl::opt<bool> EnableSIModeRegisterPass( 169 "amdgpu-mode-register", 170 cl::desc("Enable mode register pass"), 171 cl::init(true), 172 cl::Hidden); 173 174 // Option is used in lit tests to prevent deadcoding of patterns inspected. 175 static cl::opt<bool> 176 EnableDCEInRA("amdgpu-dce-in-ra", 177 cl::init(true), cl::Hidden, 178 cl::desc("Enable machine DCE inside regalloc")); 179 180 static cl::opt<bool> EnableScalarIRPasses( 181 "amdgpu-scalar-ir-passes", 182 cl::desc("Enable scalar IR passes"), 183 cl::init(true), 184 cl::Hidden); 185 186 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 187 // Register the target 188 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 189 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 190 191 PassRegistry *PR = PassRegistry::getPassRegistry(); 192 initializeR600ClauseMergePassPass(*PR); 193 initializeR600ControlFlowFinalizerPass(*PR); 194 initializeR600PacketizerPass(*PR); 195 initializeR600ExpandSpecialInstrsPassPass(*PR); 196 initializeR600VectorRegMergerPass(*PR); 197 initializeGlobalISel(*PR); 198 initializeAMDGPUDAGToDAGISelPass(*PR); 199 initializeGCNDPPCombinePass(*PR); 200 initializeSILowerI1CopiesPass(*PR); 201 initializeSILowerSGPRSpillsPass(*PR); 202 initializeSIFixSGPRCopiesPass(*PR); 203 initializeSIFixVGPRCopiesPass(*PR); 204 initializeSIFixupVectorISelPass(*PR); 205 initializeSIFoldOperandsPass(*PR); 206 initializeSIPeepholeSDWAPass(*PR); 207 initializeSIShrinkInstructionsPass(*PR); 208 initializeSIOptimizeExecMaskingPreRAPass(*PR); 209 initializeSILoadStoreOptimizerPass(*PR); 210 initializeAMDGPUFixFunctionBitcastsPass(*PR); 211 initializeAMDGPUAlwaysInlinePass(*PR); 212 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 213 initializeAMDGPUAnnotateUniformValuesPass(*PR); 214 initializeAMDGPUArgumentUsageInfoPass(*PR); 215 initializeAMDGPUAtomicOptimizerPass(*PR); 216 initializeAMDGPULowerKernelArgumentsPass(*PR); 217 initializeAMDGPULowerKernelAttributesPass(*PR); 218 initializeAMDGPULowerIntrinsicsPass(*PR); 219 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 220 initializeAMDGPUPreLegalizerCombinerPass(*PR); 221 initializeAMDGPUPromoteAllocaPass(*PR); 222 initializeAMDGPUCodeGenPreparePass(*PR); 223 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 224 initializeAMDGPUPropagateAttributesLatePass(*PR); 225 initializeAMDGPURewriteOutArgumentsPass(*PR); 226 initializeAMDGPUUnifyMetadataPass(*PR); 227 initializeSIAnnotateControlFlowPass(*PR); 228 initializeSIInsertWaitcntsPass(*PR); 229 initializeSIModeRegisterPass(*PR); 230 initializeSIWholeQuadModePass(*PR); 231 initializeSILowerControlFlowPass(*PR); 232 initializeSIRemoveShortExecBranchesPass(*PR); 233 initializeSIInsertSkipsPass(*PR); 234 initializeSIMemoryLegalizerPass(*PR); 235 initializeSIOptimizeExecMaskingPass(*PR); 236 initializeSIPreAllocateWWMRegsPass(*PR); 237 initializeSIFormMemoryClausesPass(*PR); 238 initializeSIPostRABundlerPass(*PR); 239 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 240 initializeAMDGPUAAWrapperPassPass(*PR); 241 initializeAMDGPUExternalAAWrapperPass(*PR); 242 initializeAMDGPUUseNativeCallsPass(*PR); 243 initializeAMDGPUSimplifyLibCallsPass(*PR); 244 initializeAMDGPUInlinerPass(*PR); 245 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 246 initializeGCNRegBankReassignPass(*PR); 247 initializeGCNNSAReassignPass(*PR); 248 initializeSIAddIMGInitPass(*PR); 249 } 250 251 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 252 return std::make_unique<AMDGPUTargetObjectFile>(); 253 } 254 255 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 256 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 257 } 258 259 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 260 return new SIScheduleDAGMI(C); 261 } 262 263 static ScheduleDAGInstrs * 264 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 265 ScheduleDAGMILive *DAG = 266 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 267 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 268 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 269 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 270 return DAG; 271 } 272 273 static ScheduleDAGInstrs * 274 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 275 auto DAG = new GCNIterativeScheduler(C, 276 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 277 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 278 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 279 return DAG; 280 } 281 282 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 283 return new GCNIterativeScheduler(C, 284 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 285 } 286 287 static ScheduleDAGInstrs * 288 createIterativeILPMachineScheduler(MachineSchedContext *C) { 289 auto DAG = new GCNIterativeScheduler(C, 290 GCNIterativeScheduler::SCHEDULE_ILP); 291 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 292 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 293 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 294 return DAG; 295 } 296 297 static MachineSchedRegistry 298 R600SchedRegistry("r600", "Run R600's custom scheduler", 299 createR600MachineScheduler); 300 301 static MachineSchedRegistry 302 SISchedRegistry("si", "Run SI's custom scheduler", 303 createSIMachineScheduler); 304 305 static MachineSchedRegistry 306 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 307 "Run GCN scheduler to maximize occupancy", 308 createGCNMaxOccupancyMachineScheduler); 309 310 static MachineSchedRegistry 311 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 312 "Run GCN scheduler to maximize occupancy (experimental)", 313 createIterativeGCNMaxOccupancyMachineScheduler); 314 315 static MachineSchedRegistry 316 GCNMinRegSchedRegistry("gcn-minreg", 317 "Run GCN iterative scheduler for minimal register usage (experimental)", 318 createMinRegScheduler); 319 320 static MachineSchedRegistry 321 GCNILPSchedRegistry("gcn-ilp", 322 "Run GCN iterative scheduler for ILP scheduling (experimental)", 323 createIterativeILPMachineScheduler); 324 325 static StringRef computeDataLayout(const Triple &TT) { 326 if (TT.getArch() == Triple::r600) { 327 // 32-bit pointers. 328 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 329 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 330 } 331 332 // 32-bit private, local, and region pointers. 64-bit global, constant and 333 // flat, non-integral buffer fat pointers. 334 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 335 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 336 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 337 "-ni:7"; 338 } 339 340 LLVM_READNONE 341 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 342 if (!GPU.empty()) 343 return GPU; 344 345 // Need to default to a target with flat support for HSA. 346 if (TT.getArch() == Triple::amdgcn) 347 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 348 349 return "r600"; 350 } 351 352 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 353 // The AMDGPU toolchain only supports generating shared objects, so we 354 // must always use PIC. 355 return Reloc::PIC_; 356 } 357 358 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 359 StringRef CPU, StringRef FS, 360 TargetOptions Options, 361 Optional<Reloc::Model> RM, 362 Optional<CodeModel::Model> CM, 363 CodeGenOpt::Level OptLevel) 364 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 365 FS, Options, getEffectiveRelocModel(RM), 366 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 367 TLOF(createTLOF(getTargetTriple())) { 368 initAsmInfo(); 369 } 370 371 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 372 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 373 374 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 375 376 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 377 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 378 return GPUAttr.hasAttribute(Attribute::None) ? 379 getTargetCPU() : GPUAttr.getValueAsString(); 380 } 381 382 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 383 Attribute FSAttr = F.getFnAttribute("target-features"); 384 385 return FSAttr.hasAttribute(Attribute::None) ? 386 getTargetFeatureString() : 387 FSAttr.getValueAsString(); 388 } 389 390 /// Predicate for Internalize pass. 391 static bool mustPreserveGV(const GlobalValue &GV) { 392 if (const Function *F = dyn_cast<Function>(&GV)) 393 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 394 395 return !GV.use_empty(); 396 } 397 398 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 399 Builder.DivergentTarget = true; 400 401 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 402 bool Internalize = InternalizeSymbols; 403 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 404 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 405 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 406 407 if (EnableFunctionCalls) { 408 delete Builder.Inliner; 409 Builder.Inliner = createAMDGPUFunctionInliningPass(); 410 } 411 412 Builder.addExtension( 413 PassManagerBuilder::EP_ModuleOptimizerEarly, 414 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 415 legacy::PassManagerBase &PM) { 416 if (AMDGPUAA) { 417 PM.add(createAMDGPUAAWrapperPass()); 418 PM.add(createAMDGPUExternalAAWrapperPass()); 419 } 420 PM.add(createAMDGPUUnifyMetadataPass()); 421 PM.add(createAMDGPUPrintfRuntimeBinding()); 422 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 423 if (Internalize) { 424 PM.add(createInternalizePass(mustPreserveGV)); 425 PM.add(createGlobalDCEPass()); 426 } 427 if (EarlyInline) 428 PM.add(createAMDGPUAlwaysInlinePass(false)); 429 }); 430 431 const auto &Opt = Options; 432 Builder.addExtension( 433 PassManagerBuilder::EP_EarlyAsPossible, 434 [AMDGPUAA, LibCallSimplify, &Opt, this](const PassManagerBuilder &, 435 legacy::PassManagerBase &PM) { 436 if (AMDGPUAA) { 437 PM.add(createAMDGPUAAWrapperPass()); 438 PM.add(createAMDGPUExternalAAWrapperPass()); 439 } 440 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 441 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 442 if (LibCallSimplify) 443 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt, this)); 444 }); 445 446 Builder.addExtension( 447 PassManagerBuilder::EP_CGSCCOptimizerLate, 448 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 449 // Add infer address spaces pass to the opt pipeline after inlining 450 // but before SROA to increase SROA opportunities. 451 PM.add(createInferAddressSpacesPass()); 452 453 // This should run after inlining to have any chance of doing anything, 454 // and before other cleanup optimizations. 455 PM.add(createAMDGPULowerKernelAttributesPass()); 456 }); 457 } 458 459 //===----------------------------------------------------------------------===// 460 // R600 Target Machine (R600 -> Cayman) 461 //===----------------------------------------------------------------------===// 462 463 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 464 StringRef CPU, StringRef FS, 465 TargetOptions Options, 466 Optional<Reloc::Model> RM, 467 Optional<CodeModel::Model> CM, 468 CodeGenOpt::Level OL, bool JIT) 469 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 470 setRequiresStructuredCFG(true); 471 472 // Override the default since calls aren't supported for r600. 473 if (EnableFunctionCalls && 474 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 475 EnableFunctionCalls = false; 476 } 477 478 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 479 const Function &F) const { 480 StringRef GPU = getGPUName(F); 481 StringRef FS = getFeatureString(F); 482 483 SmallString<128> SubtargetKey(GPU); 484 SubtargetKey.append(FS); 485 486 auto &I = SubtargetMap[SubtargetKey]; 487 if (!I) { 488 // This needs to be done before we create a new subtarget since any 489 // creation will depend on the TM and the code generation flags on the 490 // function that reside in TargetOptions. 491 resetTargetOptions(F); 492 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 493 } 494 495 return I.get(); 496 } 497 498 TargetTransformInfo 499 R600TargetMachine::getTargetTransformInfo(const Function &F) { 500 return TargetTransformInfo(R600TTIImpl(this, F)); 501 } 502 503 //===----------------------------------------------------------------------===// 504 // GCN Target Machine (SI+) 505 //===----------------------------------------------------------------------===// 506 507 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 508 StringRef CPU, StringRef FS, 509 TargetOptions Options, 510 Optional<Reloc::Model> RM, 511 Optional<CodeModel::Model> CM, 512 CodeGenOpt::Level OL, bool JIT) 513 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 514 515 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 516 StringRef GPU = getGPUName(F); 517 StringRef FS = getFeatureString(F); 518 519 SmallString<128> SubtargetKey(GPU); 520 SubtargetKey.append(FS); 521 522 auto &I = SubtargetMap[SubtargetKey]; 523 if (!I) { 524 // This needs to be done before we create a new subtarget since any 525 // creation will depend on the TM and the code generation flags on the 526 // function that reside in TargetOptions. 527 resetTargetOptions(F); 528 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 529 } 530 531 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 532 533 return I.get(); 534 } 535 536 TargetTransformInfo 537 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 538 return TargetTransformInfo(GCNTTIImpl(this, F)); 539 } 540 541 //===----------------------------------------------------------------------===// 542 // AMDGPU Pass Setup 543 //===----------------------------------------------------------------------===// 544 545 namespace { 546 547 class AMDGPUPassConfig : public TargetPassConfig { 548 public: 549 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 550 : TargetPassConfig(TM, PM) { 551 // Exceptions and StackMaps are not supported, so these passes will never do 552 // anything. 553 disablePass(&StackMapLivenessID); 554 disablePass(&FuncletLayoutID); 555 } 556 557 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 558 return getTM<AMDGPUTargetMachine>(); 559 } 560 561 ScheduleDAGInstrs * 562 createMachineScheduler(MachineSchedContext *C) const override { 563 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 564 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 565 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 566 return DAG; 567 } 568 569 void addEarlyCSEOrGVNPass(); 570 void addStraightLineScalarOptimizationPasses(); 571 void addIRPasses() override; 572 void addCodeGenPrepare() override; 573 bool addPreISel() override; 574 bool addInstSelector() override; 575 bool addGCPasses() override; 576 577 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 578 }; 579 580 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 581 return getStandardCSEConfigForOpt(TM->getOptLevel()); 582 } 583 584 class R600PassConfig final : public AMDGPUPassConfig { 585 public: 586 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 587 : AMDGPUPassConfig(TM, PM) {} 588 589 ScheduleDAGInstrs *createMachineScheduler( 590 MachineSchedContext *C) const override { 591 return createR600MachineScheduler(C); 592 } 593 594 bool addPreISel() override; 595 bool addInstSelector() override; 596 void addPreRegAlloc() override; 597 void addPreSched2() override; 598 void addPreEmitPass() override; 599 }; 600 601 class GCNPassConfig final : public AMDGPUPassConfig { 602 public: 603 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 604 : AMDGPUPassConfig(TM, PM) { 605 // It is necessary to know the register usage of the entire call graph. We 606 // allow calls without EnableAMDGPUFunctionCalls if they are marked 607 // noinline, so this is always required. 608 setRequiresCodeGenSCCOrder(true); 609 } 610 611 GCNTargetMachine &getGCNTargetMachine() const { 612 return getTM<GCNTargetMachine>(); 613 } 614 615 ScheduleDAGInstrs * 616 createMachineScheduler(MachineSchedContext *C) const override; 617 618 bool addPreISel() override; 619 void addMachineSSAOptimization() override; 620 bool addILPOpts() override; 621 bool addInstSelector() override; 622 bool addIRTranslator() override; 623 void addPreLegalizeMachineIR() override; 624 bool addLegalizeMachineIR() override; 625 bool addRegBankSelect() override; 626 bool addGlobalInstructionSelect() override; 627 void addFastRegAlloc() override; 628 void addOptimizedRegAlloc() override; 629 void addPreRegAlloc() override; 630 bool addPreRewrite() override; 631 void addPostRegAlloc() override; 632 void addPreSched2() override; 633 void addPreEmitPass() override; 634 }; 635 636 } // end anonymous namespace 637 638 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 639 if (getOptLevel() == CodeGenOpt::Aggressive) 640 addPass(createGVNPass()); 641 else 642 addPass(createEarlyCSEPass()); 643 } 644 645 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 646 addPass(createLICMPass()); 647 addPass(createSeparateConstOffsetFromGEPPass()); 648 addPass(createSpeculativeExecutionPass()); 649 // ReassociateGEPs exposes more opportunites for SLSR. See 650 // the example in reassociate-geps-and-slsr.ll. 651 addPass(createStraightLineStrengthReducePass()); 652 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 653 // EarlyCSE can reuse. 654 addEarlyCSEOrGVNPass(); 655 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 656 addPass(createNaryReassociatePass()); 657 // NaryReassociate on GEPs creates redundant common expressions, so run 658 // EarlyCSE after it. 659 addPass(createEarlyCSEPass()); 660 } 661 662 void AMDGPUPassConfig::addIRPasses() { 663 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 664 665 // There is no reason to run these. 666 disablePass(&StackMapLivenessID); 667 disablePass(&FuncletLayoutID); 668 disablePass(&PatchableFunctionID); 669 670 addPass(createAMDGPUPrintfRuntimeBinding()); 671 672 // This must occur before inlining, as the inliner will not look through 673 // bitcast calls. 674 addPass(createAMDGPUFixFunctionBitcastsPass()); 675 676 // A call to propagate attributes pass in the backend in case opt was not run. 677 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 678 679 addPass(createAtomicExpandPass()); 680 681 682 addPass(createAMDGPULowerIntrinsicsPass()); 683 684 // Function calls are not supported, so make sure we inline everything. 685 addPass(createAMDGPUAlwaysInlinePass()); 686 addPass(createAlwaysInlinerLegacyPass()); 687 // We need to add the barrier noop pass, otherwise adding the function 688 // inlining pass will cause all of the PassConfigs passes to be run 689 // one function at a time, which means if we have a nodule with two 690 // functions, then we will generate code for the first function 691 // without ever running any passes on the second. 692 addPass(createBarrierNoopPass()); 693 694 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 695 if (TM.getTargetTriple().getArch() == Triple::r600) 696 addPass(createR600OpenCLImageTypeLoweringPass()); 697 698 // Replace OpenCL enqueued block function pointers with global variables. 699 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 700 701 if (TM.getOptLevel() > CodeGenOpt::None) { 702 addPass(createInferAddressSpacesPass()); 703 addPass(createAMDGPUPromoteAlloca()); 704 705 if (EnableSROA) 706 addPass(createSROAPass()); 707 708 if (EnableScalarIRPasses) 709 addStraightLineScalarOptimizationPasses(); 710 711 if (EnableAMDGPUAliasAnalysis) { 712 addPass(createAMDGPUAAWrapperPass()); 713 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 714 AAResults &AAR) { 715 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 716 AAR.addAAResult(WrapperPass->getResult()); 717 })); 718 } 719 } 720 721 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 722 // TODO: May want to move later or split into an early and late one. 723 addPass(createAMDGPUCodeGenPreparePass()); 724 } 725 726 TargetPassConfig::addIRPasses(); 727 728 // EarlyCSE is not always strong enough to clean up what LSR produces. For 729 // example, GVN can combine 730 // 731 // %0 = add %a, %b 732 // %1 = add %b, %a 733 // 734 // and 735 // 736 // %0 = shl nsw %a, 2 737 // %1 = shl %a, 2 738 // 739 // but EarlyCSE can do neither of them. 740 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 741 addEarlyCSEOrGVNPass(); 742 } 743 744 void AMDGPUPassConfig::addCodeGenPrepare() { 745 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 746 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 747 748 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 749 EnableLowerKernelArguments) 750 addPass(createAMDGPULowerKernelArgumentsPass()); 751 752 addPass(&AMDGPUPerfHintAnalysisID); 753 754 TargetPassConfig::addCodeGenPrepare(); 755 756 if (EnableLoadStoreVectorizer) 757 addPass(createLoadStoreVectorizerPass()); 758 } 759 760 bool AMDGPUPassConfig::addPreISel() { 761 addPass(createLowerSwitchPass()); 762 addPass(createFlattenCFGPass()); 763 return false; 764 } 765 766 bool AMDGPUPassConfig::addInstSelector() { 767 // Defer the verifier until FinalizeISel. 768 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 769 return false; 770 } 771 772 bool AMDGPUPassConfig::addGCPasses() { 773 // Do nothing. GC is not supported. 774 return false; 775 } 776 777 //===----------------------------------------------------------------------===// 778 // R600 Pass Setup 779 //===----------------------------------------------------------------------===// 780 781 bool R600PassConfig::addPreISel() { 782 AMDGPUPassConfig::addPreISel(); 783 784 if (EnableR600StructurizeCFG) 785 addPass(createStructurizeCFGPass()); 786 return false; 787 } 788 789 bool R600PassConfig::addInstSelector() { 790 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 791 return false; 792 } 793 794 void R600PassConfig::addPreRegAlloc() { 795 addPass(createR600VectorRegMerger()); 796 } 797 798 void R600PassConfig::addPreSched2() { 799 addPass(createR600EmitClauseMarkers(), false); 800 if (EnableR600IfConvert) 801 addPass(&IfConverterID, false); 802 addPass(createR600ClauseMergePass(), false); 803 } 804 805 void R600PassConfig::addPreEmitPass() { 806 addPass(createAMDGPUCFGStructurizerPass(), false); 807 addPass(createR600ExpandSpecialInstrsPass(), false); 808 addPass(&FinalizeMachineBundlesID, false); 809 addPass(createR600Packetizer(), false); 810 addPass(createR600ControlFlowFinalizer(), false); 811 } 812 813 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 814 return new R600PassConfig(*this, PM); 815 } 816 817 //===----------------------------------------------------------------------===// 818 // GCN Pass Setup 819 //===----------------------------------------------------------------------===// 820 821 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 822 MachineSchedContext *C) const { 823 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 824 if (ST.enableSIScheduler()) 825 return createSIMachineScheduler(C); 826 return createGCNMaxOccupancyMachineScheduler(C); 827 } 828 829 bool GCNPassConfig::addPreISel() { 830 AMDGPUPassConfig::addPreISel(); 831 832 if (EnableAtomicOptimizations) { 833 addPass(createAMDGPUAtomicOptimizerPass()); 834 } 835 836 // FIXME: We need to run a pass to propagate the attributes when calls are 837 // supported. 838 839 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 840 // regions formed by them. 841 addPass(&AMDGPUUnifyDivergentExitNodesID); 842 if (!LateCFGStructurize) { 843 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 844 } 845 addPass(createSinkingPass()); 846 addPass(createAMDGPUAnnotateUniformValues()); 847 if (!LateCFGStructurize) { 848 addPass(createSIAnnotateControlFlowPass()); 849 } 850 addPass(createLCSSAPass()); 851 852 return false; 853 } 854 855 void GCNPassConfig::addMachineSSAOptimization() { 856 TargetPassConfig::addMachineSSAOptimization(); 857 858 // We want to fold operands after PeepholeOptimizer has run (or as part of 859 // it), because it will eliminate extra copies making it easier to fold the 860 // real source operand. We want to eliminate dead instructions after, so that 861 // we see fewer uses of the copies. We then need to clean up the dead 862 // instructions leftover after the operands are folded as well. 863 // 864 // XXX - Can we get away without running DeadMachineInstructionElim again? 865 addPass(&SIFoldOperandsID); 866 if (EnableDPPCombine) 867 addPass(&GCNDPPCombineID); 868 addPass(&DeadMachineInstructionElimID); 869 addPass(&SILoadStoreOptimizerID); 870 if (EnableSDWAPeephole) { 871 addPass(&SIPeepholeSDWAID); 872 addPass(&EarlyMachineLICMID); 873 addPass(&MachineCSEID); 874 addPass(&SIFoldOperandsID); 875 addPass(&DeadMachineInstructionElimID); 876 } 877 addPass(createSIShrinkInstructionsPass()); 878 } 879 880 bool GCNPassConfig::addILPOpts() { 881 if (EnableEarlyIfConversion) 882 addPass(&EarlyIfConverterID); 883 884 TargetPassConfig::addILPOpts(); 885 return false; 886 } 887 888 bool GCNPassConfig::addInstSelector() { 889 AMDGPUPassConfig::addInstSelector(); 890 addPass(&SIFixSGPRCopiesID); 891 addPass(createSILowerI1CopiesPass()); 892 addPass(createSIFixupVectorISelPass()); 893 addPass(createSIAddIMGInitPass()); 894 return false; 895 } 896 897 bool GCNPassConfig::addIRTranslator() { 898 addPass(new IRTranslator()); 899 return false; 900 } 901 902 void GCNPassConfig::addPreLegalizeMachineIR() { 903 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 904 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 905 } 906 907 bool GCNPassConfig::addLegalizeMachineIR() { 908 addPass(new Legalizer()); 909 return false; 910 } 911 912 bool GCNPassConfig::addRegBankSelect() { 913 addPass(new RegBankSelect()); 914 return false; 915 } 916 917 bool GCNPassConfig::addGlobalInstructionSelect() { 918 addPass(new InstructionSelect()); 919 return false; 920 } 921 922 void GCNPassConfig::addPreRegAlloc() { 923 if (LateCFGStructurize) { 924 addPass(createAMDGPUMachineCFGStructurizerPass()); 925 } 926 addPass(createSIWholeQuadModePass()); 927 } 928 929 void GCNPassConfig::addFastRegAlloc() { 930 // FIXME: We have to disable the verifier here because of PHIElimination + 931 // TwoAddressInstructions disabling it. 932 933 // This must be run immediately after phi elimination and before 934 // TwoAddressInstructions, otherwise the processing of the tied operand of 935 // SI_ELSE will introduce a copy of the tied operand source after the else. 936 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 937 938 // This must be run just after RegisterCoalescing. 939 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 940 941 TargetPassConfig::addFastRegAlloc(); 942 } 943 944 void GCNPassConfig::addOptimizedRegAlloc() { 945 if (OptExecMaskPreRA) { 946 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 947 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 948 } else { 949 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 950 } 951 952 // This must be run immediately after phi elimination and before 953 // TwoAddressInstructions, otherwise the processing of the tied operand of 954 // SI_ELSE will introduce a copy of the tied operand source after the else. 955 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 956 957 // This must be run just after RegisterCoalescing. 958 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 959 960 if (EnableDCEInRA) 961 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 962 963 TargetPassConfig::addOptimizedRegAlloc(); 964 } 965 966 bool GCNPassConfig::addPreRewrite() { 967 if (EnableRegReassign) { 968 addPass(&GCNNSAReassignID); 969 addPass(&GCNRegBankReassignID); 970 } 971 return true; 972 } 973 974 void GCNPassConfig::addPostRegAlloc() { 975 addPass(&SIFixVGPRCopiesID); 976 if (getOptLevel() > CodeGenOpt::None) 977 addPass(&SIOptimizeExecMaskingID); 978 TargetPassConfig::addPostRegAlloc(); 979 980 // Equivalent of PEI for SGPRs. 981 addPass(&SILowerSGPRSpillsID); 982 } 983 984 void GCNPassConfig::addPreSched2() { 985 addPass(&SIPostRABundlerID); 986 } 987 988 void GCNPassConfig::addPreEmitPass() { 989 addPass(createSIMemoryLegalizerPass()); 990 addPass(createSIInsertWaitcntsPass()); 991 addPass(createSIShrinkInstructionsPass()); 992 addPass(createSIModeRegisterPass()); 993 994 // The hazard recognizer that runs as part of the post-ra scheduler does not 995 // guarantee to be able handle all hazards correctly. This is because if there 996 // are multiple scheduling regions in a basic block, the regions are scheduled 997 // bottom up, so when we begin to schedule a region we don't know what 998 // instructions were emitted directly before it. 999 // 1000 // Here we add a stand-alone hazard recognizer pass which can handle all 1001 // cases. 1002 // 1003 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 1004 // be better for it to emit S_NOP <N> when possible. 1005 addPass(&PostRAHazardRecognizerID); 1006 1007 addPass(&SIRemoveShortExecBranchesID); 1008 addPass(&SIInsertSkipsPassID); 1009 addPass(&BranchRelaxationPassID); 1010 } 1011 1012 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1013 return new GCNPassConfig(*this, PM); 1014 } 1015 1016 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1017 return new yaml::SIMachineFunctionInfo(); 1018 } 1019 1020 yaml::MachineFunctionInfo * 1021 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1022 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1023 return new yaml::SIMachineFunctionInfo(*MFI, 1024 *MF.getSubtarget().getRegisterInfo()); 1025 } 1026 1027 bool GCNTargetMachine::parseMachineFunctionInfo( 1028 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1029 SMDiagnostic &Error, SMRange &SourceRange) const { 1030 const yaml::SIMachineFunctionInfo &YamlMFI = 1031 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1032 MachineFunction &MF = PFS.MF; 1033 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1034 1035 MFI->initializeBaseYamlFields(YamlMFI); 1036 1037 auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) { 1038 if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) { 1039 SourceRange = RegName.SourceRange; 1040 return true; 1041 } 1042 1043 return false; 1044 }; 1045 1046 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1047 // Create a diagnostic for a the register string literal. 1048 const MemoryBuffer &Buffer = 1049 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1050 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1051 RegName.Value.size(), SourceMgr::DK_Error, 1052 "incorrect register class for field", RegName.Value, 1053 None, None); 1054 SourceRange = RegName.SourceRange; 1055 return true; 1056 }; 1057 1058 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1059 parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) || 1060 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1061 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1062 return true; 1063 1064 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1065 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1066 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1067 } 1068 1069 if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG && 1070 !AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) { 1071 return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg); 1072 } 1073 1074 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1075 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1076 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1077 } 1078 1079 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1080 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1081 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1082 } 1083 1084 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1085 const TargetRegisterClass &RC, 1086 ArgDescriptor &Arg, unsigned UserSGPRs, 1087 unsigned SystemSGPRs) { 1088 // Skip parsing if it's not present. 1089 if (!A) 1090 return false; 1091 1092 if (A->IsRegister) { 1093 unsigned Reg; 1094 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1095 SourceRange = A->RegisterName.SourceRange; 1096 return true; 1097 } 1098 if (!RC.contains(Reg)) 1099 return diagnoseRegisterClass(A->RegisterName); 1100 Arg = ArgDescriptor::createRegister(Reg); 1101 } else 1102 Arg = ArgDescriptor::createStack(A->StackOffset); 1103 // Check and apply the optional mask. 1104 if (A->Mask) 1105 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1106 1107 MFI->NumUserSGPRs += UserSGPRs; 1108 MFI->NumSystemSGPRs += SystemSGPRs; 1109 return false; 1110 }; 1111 1112 if (YamlMFI.ArgInfo && 1113 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1114 AMDGPU::SGPR_128RegClass, 1115 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1116 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1117 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1118 2, 0) || 1119 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1120 MFI->ArgInfo.QueuePtr, 2, 0) || 1121 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1122 AMDGPU::SReg_64RegClass, 1123 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1124 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1125 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1126 2, 0) || 1127 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1128 AMDGPU::SReg_64RegClass, 1129 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1130 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1131 AMDGPU::SGPR_32RegClass, 1132 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1133 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1134 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1135 0, 1) || 1136 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1137 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1138 0, 1) || 1139 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1140 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1141 0, 1) || 1142 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1143 AMDGPU::SGPR_32RegClass, 1144 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1145 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1146 AMDGPU::SGPR_32RegClass, 1147 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1148 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1149 AMDGPU::SReg_64RegClass, 1150 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1151 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1152 AMDGPU::SReg_64RegClass, 1153 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1154 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1155 AMDGPU::VGPR_32RegClass, 1156 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1157 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1158 AMDGPU::VGPR_32RegClass, 1159 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1160 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1161 AMDGPU::VGPR_32RegClass, 1162 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1163 return true; 1164 1165 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1166 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1167 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1168 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1169 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1170 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1171 1172 return false; 1173 } 1174