1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUExportClustering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 28 #include "R600MachineScheduler.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "SIMachineScheduler.h" 31 #include "TargetInfo/AMDGPUTargetInfo.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 34 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 35 #include "llvm/CodeGen/GlobalISel/Localizer.h" 36 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 37 #include "llvm/CodeGen/MIRParser/MIParser.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/LegacyPassManager.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Target/TargetLoweringObjectFile.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Scalar/GVN.h" 54 #include "llvm/Transforms/Utils.h" 55 #include "llvm/Transforms/Vectorize.h" 56 #include <memory> 57 58 using namespace llvm; 59 60 static cl::opt<bool> EnableR600StructurizeCFG( 61 "r600-ir-structurize", 62 cl::desc("Use StructurizeCFG IR pass"), 63 cl::init(true)); 64 65 static cl::opt<bool> EnableSROA( 66 "amdgpu-sroa", 67 cl::desc("Run SROA after promote alloca pass"), 68 cl::ReallyHidden, 69 cl::init(true)); 70 71 static cl::opt<bool> 72 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 73 cl::desc("Run early if-conversion"), 74 cl::init(false)); 75 76 static cl::opt<bool> 77 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 78 cl::desc("Run pre-RA exec mask optimizations"), 79 cl::init(true)); 80 81 static cl::opt<bool> EnableR600IfConvert( 82 "r600-if-convert", 83 cl::desc("Use if conversion pass"), 84 cl::ReallyHidden, 85 cl::init(true)); 86 87 // Option to disable vectorizer for tests. 88 static cl::opt<bool> EnableLoadStoreVectorizer( 89 "amdgpu-load-store-vectorizer", 90 cl::desc("Enable load store vectorizer"), 91 cl::init(true), 92 cl::Hidden); 93 94 // Option to control global loads scalarization 95 static cl::opt<bool> ScalarizeGlobal( 96 "amdgpu-scalarize-global-loads", 97 cl::desc("Enable global load scalarization"), 98 cl::init(true), 99 cl::Hidden); 100 101 // Option to run internalize pass. 102 static cl::opt<bool> InternalizeSymbols( 103 "amdgpu-internalize-symbols", 104 cl::desc("Enable elimination of non-kernel functions and unused globals"), 105 cl::init(false), 106 cl::Hidden); 107 108 // Option to inline all early. 109 static cl::opt<bool> EarlyInlineAll( 110 "amdgpu-early-inline-all", 111 cl::desc("Inline all functions early"), 112 cl::init(false), 113 cl::Hidden); 114 115 static cl::opt<bool> EnableSDWAPeephole( 116 "amdgpu-sdwa-peephole", 117 cl::desc("Enable SDWA peepholer"), 118 cl::init(true)); 119 120 static cl::opt<bool> EnableDPPCombine( 121 "amdgpu-dpp-combine", 122 cl::desc("Enable DPP combiner"), 123 cl::init(true)); 124 125 // Enable address space based alias analysis 126 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 127 cl::desc("Enable AMDGPU Alias Analysis"), 128 cl::init(true)); 129 130 // Option to run late CFG structurizer 131 static cl::opt<bool, true> LateCFGStructurize( 132 "amdgpu-late-structurize", 133 cl::desc("Enable late CFG structurization"), 134 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 135 cl::Hidden); 136 137 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 138 "amdgpu-function-calls", 139 cl::desc("Enable AMDGPU function call support"), 140 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 141 cl::init(true), 142 cl::Hidden); 143 144 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 145 "amdgpu-fixed-function-abi", 146 cl::desc("Enable all implicit function arguments"), 147 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 148 cl::init(false), 149 cl::Hidden); 150 151 // Enable lib calls simplifications 152 static cl::opt<bool> EnableLibCallSimplify( 153 "amdgpu-simplify-libcall", 154 cl::desc("Enable amdgpu library simplifications"), 155 cl::init(true), 156 cl::Hidden); 157 158 static cl::opt<bool> EnableLowerKernelArguments( 159 "amdgpu-ir-lower-kernel-arguments", 160 cl::desc("Lower kernel argument loads in IR pass"), 161 cl::init(true), 162 cl::Hidden); 163 164 static cl::opt<bool> EnableRegReassign( 165 "amdgpu-reassign-regs", 166 cl::desc("Enable register reassign optimizations on gfx10+"), 167 cl::init(true), 168 cl::Hidden); 169 170 // Enable atomic optimization 171 static cl::opt<bool> EnableAtomicOptimizations( 172 "amdgpu-atomic-optimizations", 173 cl::desc("Enable atomic optimizations"), 174 cl::init(false), 175 cl::Hidden); 176 177 // Enable Mode register optimization 178 static cl::opt<bool> EnableSIModeRegisterPass( 179 "amdgpu-mode-register", 180 cl::desc("Enable mode register pass"), 181 cl::init(true), 182 cl::Hidden); 183 184 // Option is used in lit tests to prevent deadcoding of patterns inspected. 185 static cl::opt<bool> 186 EnableDCEInRA("amdgpu-dce-in-ra", 187 cl::init(true), cl::Hidden, 188 cl::desc("Enable machine DCE inside regalloc")); 189 190 static cl::opt<bool> EnableScalarIRPasses( 191 "amdgpu-scalar-ir-passes", 192 cl::desc("Enable scalar IR passes"), 193 cl::init(true), 194 cl::Hidden); 195 196 static cl::opt<bool> EnableStructurizerWorkarounds( 197 "amdgpu-enable-structurizer-workarounds", 198 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 199 cl::Hidden); 200 201 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 202 // Register the target 203 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 204 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 205 206 PassRegistry *PR = PassRegistry::getPassRegistry(); 207 initializeR600ClauseMergePassPass(*PR); 208 initializeR600ControlFlowFinalizerPass(*PR); 209 initializeR600PacketizerPass(*PR); 210 initializeR600ExpandSpecialInstrsPassPass(*PR); 211 initializeR600VectorRegMergerPass(*PR); 212 initializeGlobalISel(*PR); 213 initializeAMDGPUDAGToDAGISelPass(*PR); 214 initializeGCNDPPCombinePass(*PR); 215 initializeSILowerI1CopiesPass(*PR); 216 initializeSILowerSGPRSpillsPass(*PR); 217 initializeSIFixSGPRCopiesPass(*PR); 218 initializeSIFixVGPRCopiesPass(*PR); 219 initializeSIFoldOperandsPass(*PR); 220 initializeSIPeepholeSDWAPass(*PR); 221 initializeSIShrinkInstructionsPass(*PR); 222 initializeSIOptimizeExecMaskingPreRAPass(*PR); 223 initializeSILoadStoreOptimizerPass(*PR); 224 initializeAMDGPUFixFunctionBitcastsPass(*PR); 225 initializeAMDGPUAlwaysInlinePass(*PR); 226 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 227 initializeAMDGPUAnnotateUniformValuesPass(*PR); 228 initializeAMDGPUArgumentUsageInfoPass(*PR); 229 initializeAMDGPUAtomicOptimizerPass(*PR); 230 initializeAMDGPULowerKernelArgumentsPass(*PR); 231 initializeAMDGPULowerKernelAttributesPass(*PR); 232 initializeAMDGPULowerIntrinsicsPass(*PR); 233 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 234 initializeAMDGPUPostLegalizerCombinerPass(*PR); 235 initializeAMDGPUPreLegalizerCombinerPass(*PR); 236 initializeAMDGPUPromoteAllocaPass(*PR); 237 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 238 initializeAMDGPUCodeGenPreparePass(*PR); 239 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 240 initializeAMDGPUPropagateAttributesLatePass(*PR); 241 initializeAMDGPURewriteOutArgumentsPass(*PR); 242 initializeAMDGPUUnifyMetadataPass(*PR); 243 initializeSIAnnotateControlFlowPass(*PR); 244 initializeSIInsertHardClausesPass(*PR); 245 initializeSIInsertWaitcntsPass(*PR); 246 initializeSIModeRegisterPass(*PR); 247 initializeSIWholeQuadModePass(*PR); 248 initializeSILowerControlFlowPass(*PR); 249 initializeSIRemoveShortExecBranchesPass(*PR); 250 initializeSIPreEmitPeepholePass(*PR); 251 initializeSIInsertSkipsPass(*PR); 252 initializeSIMemoryLegalizerPass(*PR); 253 initializeSIOptimizeExecMaskingPass(*PR); 254 initializeSIPreAllocateWWMRegsPass(*PR); 255 initializeSIFormMemoryClausesPass(*PR); 256 initializeSIPostRABundlerPass(*PR); 257 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 258 initializeAMDGPUAAWrapperPassPass(*PR); 259 initializeAMDGPUExternalAAWrapperPass(*PR); 260 initializeAMDGPUUseNativeCallsPass(*PR); 261 initializeAMDGPUSimplifyLibCallsPass(*PR); 262 initializeAMDGPUInlinerPass(*PR); 263 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 264 initializeGCNRegBankReassignPass(*PR); 265 initializeGCNNSAReassignPass(*PR); 266 initializeSIAddIMGInitPass(*PR); 267 } 268 269 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 270 return std::make_unique<AMDGPUTargetObjectFile>(); 271 } 272 273 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 274 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 275 } 276 277 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 278 return new SIScheduleDAGMI(C); 279 } 280 281 static ScheduleDAGInstrs * 282 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 283 ScheduleDAGMILive *DAG = 284 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 285 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 286 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 287 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 288 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 289 return DAG; 290 } 291 292 static ScheduleDAGInstrs * 293 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 294 auto DAG = new GCNIterativeScheduler(C, 295 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 296 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 297 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 298 return DAG; 299 } 300 301 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 302 return new GCNIterativeScheduler(C, 303 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 304 } 305 306 static ScheduleDAGInstrs * 307 createIterativeILPMachineScheduler(MachineSchedContext *C) { 308 auto DAG = new GCNIterativeScheduler(C, 309 GCNIterativeScheduler::SCHEDULE_ILP); 310 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 311 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 312 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 313 return DAG; 314 } 315 316 static MachineSchedRegistry 317 R600SchedRegistry("r600", "Run R600's custom scheduler", 318 createR600MachineScheduler); 319 320 static MachineSchedRegistry 321 SISchedRegistry("si", "Run SI's custom scheduler", 322 createSIMachineScheduler); 323 324 static MachineSchedRegistry 325 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 326 "Run GCN scheduler to maximize occupancy", 327 createGCNMaxOccupancyMachineScheduler); 328 329 static MachineSchedRegistry 330 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 331 "Run GCN scheduler to maximize occupancy (experimental)", 332 createIterativeGCNMaxOccupancyMachineScheduler); 333 334 static MachineSchedRegistry 335 GCNMinRegSchedRegistry("gcn-minreg", 336 "Run GCN iterative scheduler for minimal register usage (experimental)", 337 createMinRegScheduler); 338 339 static MachineSchedRegistry 340 GCNILPSchedRegistry("gcn-ilp", 341 "Run GCN iterative scheduler for ILP scheduling (experimental)", 342 createIterativeILPMachineScheduler); 343 344 static StringRef computeDataLayout(const Triple &TT) { 345 if (TT.getArch() == Triple::r600) { 346 // 32-bit pointers. 347 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 348 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 349 } 350 351 // 32-bit private, local, and region pointers. 64-bit global, constant and 352 // flat, non-integral buffer fat pointers. 353 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 354 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 355 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 356 "-ni:7"; 357 } 358 359 LLVM_READNONE 360 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 361 if (!GPU.empty()) 362 return GPU; 363 364 // Need to default to a target with flat support for HSA. 365 if (TT.getArch() == Triple::amdgcn) 366 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 367 368 return "r600"; 369 } 370 371 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 372 // The AMDGPU toolchain only supports generating shared objects, so we 373 // must always use PIC. 374 return Reloc::PIC_; 375 } 376 377 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 378 StringRef CPU, StringRef FS, 379 TargetOptions Options, 380 Optional<Reloc::Model> RM, 381 Optional<CodeModel::Model> CM, 382 CodeGenOpt::Level OptLevel) 383 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 384 FS, Options, getEffectiveRelocModel(RM), 385 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 386 TLOF(createTLOF(getTargetTriple())) { 387 initAsmInfo(); 388 if (TT.getArch() == Triple::amdgcn) { 389 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 390 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 391 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 392 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 393 } 394 } 395 396 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 397 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 398 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 399 400 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 401 402 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 403 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 404 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 405 } 406 407 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 408 Attribute FSAttr = F.getFnAttribute("target-features"); 409 410 return FSAttr.isValid() ? FSAttr.getValueAsString() 411 : getTargetFeatureString(); 412 } 413 414 /// Predicate for Internalize pass. 415 static bool mustPreserveGV(const GlobalValue &GV) { 416 if (const Function *F = dyn_cast<Function>(&GV)) 417 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 418 419 return !GV.use_empty(); 420 } 421 422 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 423 Builder.DivergentTarget = true; 424 425 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 426 bool Internalize = InternalizeSymbols; 427 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 428 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 429 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 430 431 if (EnableFunctionCalls) { 432 delete Builder.Inliner; 433 Builder.Inliner = createAMDGPUFunctionInliningPass(); 434 } 435 436 Builder.addExtension( 437 PassManagerBuilder::EP_ModuleOptimizerEarly, 438 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 439 legacy::PassManagerBase &PM) { 440 if (AMDGPUAA) { 441 PM.add(createAMDGPUAAWrapperPass()); 442 PM.add(createAMDGPUExternalAAWrapperPass()); 443 } 444 PM.add(createAMDGPUUnifyMetadataPass()); 445 PM.add(createAMDGPUPrintfRuntimeBinding()); 446 if (Internalize) 447 PM.add(createInternalizePass(mustPreserveGV)); 448 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 449 if (Internalize) 450 PM.add(createGlobalDCEPass()); 451 if (EarlyInline) 452 PM.add(createAMDGPUAlwaysInlinePass(false)); 453 }); 454 455 Builder.addExtension( 456 PassManagerBuilder::EP_EarlyAsPossible, 457 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 458 legacy::PassManagerBase &PM) { 459 if (AMDGPUAA) { 460 PM.add(createAMDGPUAAWrapperPass()); 461 PM.add(createAMDGPUExternalAAWrapperPass()); 462 } 463 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 464 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 465 if (LibCallSimplify) 466 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 467 }); 468 469 Builder.addExtension( 470 PassManagerBuilder::EP_CGSCCOptimizerLate, 471 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 472 // Add infer address spaces pass to the opt pipeline after inlining 473 // but before SROA to increase SROA opportunities. 474 PM.add(createInferAddressSpacesPass()); 475 476 // This should run after inlining to have any chance of doing anything, 477 // and before other cleanup optimizations. 478 PM.add(createAMDGPULowerKernelAttributesPass()); 479 480 // Promote alloca to vector before SROA and loop unroll. If we manage 481 // to eliminate allocas before unroll we may choose to unroll less. 482 if (EnableOpt) 483 PM.add(createAMDGPUPromoteAllocaToVector()); 484 }); 485 486 Builder.addExtension( 487 PassManagerBuilder::EP_LoopOptimizerEnd, 488 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 489 // Add SROA after loop unrolling as more promotable patterns are 490 // exposed after small loops are fully unrolled. 491 PM.add(createSROAPass()); 492 }); 493 } 494 495 //===----------------------------------------------------------------------===// 496 // R600 Target Machine (R600 -> Cayman) 497 //===----------------------------------------------------------------------===// 498 499 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 500 StringRef CPU, StringRef FS, 501 TargetOptions Options, 502 Optional<Reloc::Model> RM, 503 Optional<CodeModel::Model> CM, 504 CodeGenOpt::Level OL, bool JIT) 505 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 506 setRequiresStructuredCFG(true); 507 508 // Override the default since calls aren't supported for r600. 509 if (EnableFunctionCalls && 510 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 511 EnableFunctionCalls = false; 512 } 513 514 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 515 const Function &F) const { 516 StringRef GPU = getGPUName(F); 517 StringRef FS = getFeatureString(F); 518 519 SmallString<128> SubtargetKey(GPU); 520 SubtargetKey.append(FS); 521 522 auto &I = SubtargetMap[SubtargetKey]; 523 if (!I) { 524 // This needs to be done before we create a new subtarget since any 525 // creation will depend on the TM and the code generation flags on the 526 // function that reside in TargetOptions. 527 resetTargetOptions(F); 528 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 529 } 530 531 return I.get(); 532 } 533 534 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 535 unsigned DestAS) const { 536 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 537 AMDGPU::isFlatGlobalAddrSpace(DestAS); 538 } 539 540 TargetTransformInfo 541 R600TargetMachine::getTargetTransformInfo(const Function &F) { 542 return TargetTransformInfo(R600TTIImpl(this, F)); 543 } 544 545 //===----------------------------------------------------------------------===// 546 // GCN Target Machine (SI+) 547 //===----------------------------------------------------------------------===// 548 549 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 550 StringRef CPU, StringRef FS, 551 TargetOptions Options, 552 Optional<Reloc::Model> RM, 553 Optional<CodeModel::Model> CM, 554 CodeGenOpt::Level OL, bool JIT) 555 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 556 557 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 558 StringRef GPU = getGPUName(F); 559 StringRef FS = getFeatureString(F); 560 561 SmallString<128> SubtargetKey(GPU); 562 SubtargetKey.append(FS); 563 564 auto &I = SubtargetMap[SubtargetKey]; 565 if (!I) { 566 // This needs to be done before we create a new subtarget since any 567 // creation will depend on the TM and the code generation flags on the 568 // function that reside in TargetOptions. 569 resetTargetOptions(F); 570 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 571 } 572 573 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 574 575 return I.get(); 576 } 577 578 TargetTransformInfo 579 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 580 return TargetTransformInfo(GCNTTIImpl(this, F)); 581 } 582 583 //===----------------------------------------------------------------------===// 584 // AMDGPU Pass Setup 585 //===----------------------------------------------------------------------===// 586 587 namespace { 588 589 class AMDGPUPassConfig : public TargetPassConfig { 590 public: 591 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 592 : TargetPassConfig(TM, PM) { 593 // Exceptions and StackMaps are not supported, so these passes will never do 594 // anything. 595 disablePass(&StackMapLivenessID); 596 disablePass(&FuncletLayoutID); 597 } 598 599 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 600 return getTM<AMDGPUTargetMachine>(); 601 } 602 603 ScheduleDAGInstrs * 604 createMachineScheduler(MachineSchedContext *C) const override { 605 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 606 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 607 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 608 return DAG; 609 } 610 611 void addEarlyCSEOrGVNPass(); 612 void addStraightLineScalarOptimizationPasses(); 613 void addIRPasses() override; 614 void addCodeGenPrepare() override; 615 bool addPreISel() override; 616 bool addInstSelector() override; 617 bool addGCPasses() override; 618 619 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 620 }; 621 622 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 623 return getStandardCSEConfigForOpt(TM->getOptLevel()); 624 } 625 626 class R600PassConfig final : public AMDGPUPassConfig { 627 public: 628 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 629 : AMDGPUPassConfig(TM, PM) {} 630 631 ScheduleDAGInstrs *createMachineScheduler( 632 MachineSchedContext *C) const override { 633 return createR600MachineScheduler(C); 634 } 635 636 bool addPreISel() override; 637 bool addInstSelector() override; 638 void addPreRegAlloc() override; 639 void addPreSched2() override; 640 void addPreEmitPass() override; 641 }; 642 643 class GCNPassConfig final : public AMDGPUPassConfig { 644 public: 645 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 646 : AMDGPUPassConfig(TM, PM) { 647 // It is necessary to know the register usage of the entire call graph. We 648 // allow calls without EnableAMDGPUFunctionCalls if they are marked 649 // noinline, so this is always required. 650 setRequiresCodeGenSCCOrder(true); 651 } 652 653 GCNTargetMachine &getGCNTargetMachine() const { 654 return getTM<GCNTargetMachine>(); 655 } 656 657 ScheduleDAGInstrs * 658 createMachineScheduler(MachineSchedContext *C) const override; 659 660 bool addPreISel() override; 661 void addMachineSSAOptimization() override; 662 bool addILPOpts() override; 663 bool addInstSelector() override; 664 bool addIRTranslator() override; 665 void addPreLegalizeMachineIR() override; 666 bool addLegalizeMachineIR() override; 667 void addPreRegBankSelect() override; 668 bool addRegBankSelect() override; 669 bool addGlobalInstructionSelect() override; 670 void addFastRegAlloc() override; 671 void addOptimizedRegAlloc() override; 672 void addPreRegAlloc() override; 673 bool addPreRewrite() override; 674 void addPostRegAlloc() override; 675 void addPreSched2() override; 676 void addPreEmitPass() override; 677 }; 678 679 } // end anonymous namespace 680 681 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 682 if (getOptLevel() == CodeGenOpt::Aggressive) 683 addPass(createGVNPass()); 684 else 685 addPass(createEarlyCSEPass()); 686 } 687 688 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 689 addPass(createLICMPass()); 690 addPass(createSeparateConstOffsetFromGEPPass()); 691 addPass(createSpeculativeExecutionPass()); 692 // ReassociateGEPs exposes more opportunites for SLSR. See 693 // the example in reassociate-geps-and-slsr.ll. 694 addPass(createStraightLineStrengthReducePass()); 695 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 696 // EarlyCSE can reuse. 697 addEarlyCSEOrGVNPass(); 698 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 699 addPass(createNaryReassociatePass()); 700 // NaryReassociate on GEPs creates redundant common expressions, so run 701 // EarlyCSE after it. 702 addPass(createEarlyCSEPass()); 703 } 704 705 void AMDGPUPassConfig::addIRPasses() { 706 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 707 708 // There is no reason to run these. 709 disablePass(&StackMapLivenessID); 710 disablePass(&FuncletLayoutID); 711 disablePass(&PatchableFunctionID); 712 713 addPass(createAMDGPUPrintfRuntimeBinding()); 714 715 // This must occur before inlining, as the inliner will not look through 716 // bitcast calls. 717 addPass(createAMDGPUFixFunctionBitcastsPass()); 718 719 // A call to propagate attributes pass in the backend in case opt was not run. 720 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 721 722 addPass(createAtomicExpandPass()); 723 724 725 addPass(createAMDGPULowerIntrinsicsPass()); 726 727 // Function calls are not supported, so make sure we inline everything. 728 addPass(createAMDGPUAlwaysInlinePass()); 729 addPass(createAlwaysInlinerLegacyPass()); 730 // We need to add the barrier noop pass, otherwise adding the function 731 // inlining pass will cause all of the PassConfigs passes to be run 732 // one function at a time, which means if we have a nodule with two 733 // functions, then we will generate code for the first function 734 // without ever running any passes on the second. 735 addPass(createBarrierNoopPass()); 736 737 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 738 if (TM.getTargetTriple().getArch() == Triple::r600) 739 addPass(createR600OpenCLImageTypeLoweringPass()); 740 741 // Replace OpenCL enqueued block function pointers with global variables. 742 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 743 744 if (TM.getOptLevel() > CodeGenOpt::None) { 745 addPass(createInferAddressSpacesPass()); 746 addPass(createAMDGPUPromoteAlloca()); 747 748 if (EnableSROA) 749 addPass(createSROAPass()); 750 751 if (EnableScalarIRPasses) 752 addStraightLineScalarOptimizationPasses(); 753 754 if (EnableAMDGPUAliasAnalysis) { 755 addPass(createAMDGPUAAWrapperPass()); 756 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 757 AAResults &AAR) { 758 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 759 AAR.addAAResult(WrapperPass->getResult()); 760 })); 761 } 762 } 763 764 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 765 // TODO: May want to move later or split into an early and late one. 766 addPass(createAMDGPUCodeGenPreparePass()); 767 } 768 769 TargetPassConfig::addIRPasses(); 770 771 // EarlyCSE is not always strong enough to clean up what LSR produces. For 772 // example, GVN can combine 773 // 774 // %0 = add %a, %b 775 // %1 = add %b, %a 776 // 777 // and 778 // 779 // %0 = shl nsw %a, 2 780 // %1 = shl %a, 2 781 // 782 // but EarlyCSE can do neither of them. 783 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 784 addEarlyCSEOrGVNPass(); 785 } 786 787 void AMDGPUPassConfig::addCodeGenPrepare() { 788 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 789 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 790 791 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 792 EnableLowerKernelArguments) 793 addPass(createAMDGPULowerKernelArgumentsPass()); 794 795 addPass(&AMDGPUPerfHintAnalysisID); 796 797 TargetPassConfig::addCodeGenPrepare(); 798 799 if (EnableLoadStoreVectorizer) 800 addPass(createLoadStoreVectorizerPass()); 801 802 // LowerSwitch pass may introduce unreachable blocks that can 803 // cause unexpected behavior for subsequent passes. Placing it 804 // here seems better that these blocks would get cleaned up by 805 // UnreachableBlockElim inserted next in the pass flow. 806 addPass(createLowerSwitchPass()); 807 } 808 809 bool AMDGPUPassConfig::addPreISel() { 810 addPass(createFlattenCFGPass()); 811 return false; 812 } 813 814 bool AMDGPUPassConfig::addInstSelector() { 815 // Defer the verifier until FinalizeISel. 816 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 817 return false; 818 } 819 820 bool AMDGPUPassConfig::addGCPasses() { 821 // Do nothing. GC is not supported. 822 return false; 823 } 824 825 //===----------------------------------------------------------------------===// 826 // R600 Pass Setup 827 //===----------------------------------------------------------------------===// 828 829 bool R600PassConfig::addPreISel() { 830 AMDGPUPassConfig::addPreISel(); 831 832 if (EnableR600StructurizeCFG) 833 addPass(createStructurizeCFGPass()); 834 return false; 835 } 836 837 bool R600PassConfig::addInstSelector() { 838 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 839 return false; 840 } 841 842 void R600PassConfig::addPreRegAlloc() { 843 addPass(createR600VectorRegMerger()); 844 } 845 846 void R600PassConfig::addPreSched2() { 847 addPass(createR600EmitClauseMarkers(), false); 848 if (EnableR600IfConvert) 849 addPass(&IfConverterID, false); 850 addPass(createR600ClauseMergePass(), false); 851 } 852 853 void R600PassConfig::addPreEmitPass() { 854 addPass(createAMDGPUCFGStructurizerPass(), false); 855 addPass(createR600ExpandSpecialInstrsPass(), false); 856 addPass(&FinalizeMachineBundlesID, false); 857 addPass(createR600Packetizer(), false); 858 addPass(createR600ControlFlowFinalizer(), false); 859 } 860 861 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 862 return new R600PassConfig(*this, PM); 863 } 864 865 //===----------------------------------------------------------------------===// 866 // GCN Pass Setup 867 //===----------------------------------------------------------------------===// 868 869 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 870 MachineSchedContext *C) const { 871 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 872 if (ST.enableSIScheduler()) 873 return createSIMachineScheduler(C); 874 return createGCNMaxOccupancyMachineScheduler(C); 875 } 876 877 bool GCNPassConfig::addPreISel() { 878 AMDGPUPassConfig::addPreISel(); 879 880 if (EnableAtomicOptimizations) { 881 addPass(createAMDGPUAtomicOptimizerPass()); 882 } 883 884 // FIXME: We need to run a pass to propagate the attributes when calls are 885 // supported. 886 887 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 888 // regions formed by them. 889 addPass(&AMDGPUUnifyDivergentExitNodesID); 890 if (!LateCFGStructurize) { 891 if (EnableStructurizerWorkarounds) { 892 addPass(createFixIrreduciblePass()); 893 addPass(createUnifyLoopExitsPass()); 894 } 895 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 896 } 897 addPass(createSinkingPass()); 898 addPass(createAMDGPUAnnotateUniformValues()); 899 if (!LateCFGStructurize) { 900 addPass(createSIAnnotateControlFlowPass()); 901 } 902 addPass(createLCSSAPass()); 903 904 return false; 905 } 906 907 void GCNPassConfig::addMachineSSAOptimization() { 908 TargetPassConfig::addMachineSSAOptimization(); 909 910 // We want to fold operands after PeepholeOptimizer has run (or as part of 911 // it), because it will eliminate extra copies making it easier to fold the 912 // real source operand. We want to eliminate dead instructions after, so that 913 // we see fewer uses of the copies. We then need to clean up the dead 914 // instructions leftover after the operands are folded as well. 915 // 916 // XXX - Can we get away without running DeadMachineInstructionElim again? 917 addPass(&SIFoldOperandsID); 918 if (EnableDPPCombine) 919 addPass(&GCNDPPCombineID); 920 addPass(&DeadMachineInstructionElimID); 921 addPass(&SILoadStoreOptimizerID); 922 if (EnableSDWAPeephole) { 923 addPass(&SIPeepholeSDWAID); 924 addPass(&EarlyMachineLICMID); 925 addPass(&MachineCSEID); 926 addPass(&SIFoldOperandsID); 927 addPass(&DeadMachineInstructionElimID); 928 } 929 addPass(createSIShrinkInstructionsPass()); 930 } 931 932 bool GCNPassConfig::addILPOpts() { 933 if (EnableEarlyIfConversion) 934 addPass(&EarlyIfConverterID); 935 936 TargetPassConfig::addILPOpts(); 937 return false; 938 } 939 940 bool GCNPassConfig::addInstSelector() { 941 AMDGPUPassConfig::addInstSelector(); 942 addPass(&SIFixSGPRCopiesID); 943 addPass(createSILowerI1CopiesPass()); 944 addPass(createSIAddIMGInitPass()); 945 return false; 946 } 947 948 bool GCNPassConfig::addIRTranslator() { 949 addPass(new IRTranslator()); 950 return false; 951 } 952 953 void GCNPassConfig::addPreLegalizeMachineIR() { 954 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 955 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 956 addPass(new Localizer()); 957 } 958 959 bool GCNPassConfig::addLegalizeMachineIR() { 960 addPass(new Legalizer()); 961 return false; 962 } 963 964 void GCNPassConfig::addPreRegBankSelect() { 965 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 966 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 967 } 968 969 bool GCNPassConfig::addRegBankSelect() { 970 addPass(new RegBankSelect()); 971 return false; 972 } 973 974 bool GCNPassConfig::addGlobalInstructionSelect() { 975 addPass(new InstructionSelect()); 976 return false; 977 } 978 979 void GCNPassConfig::addPreRegAlloc() { 980 if (LateCFGStructurize) { 981 addPass(createAMDGPUMachineCFGStructurizerPass()); 982 } 983 addPass(createSIWholeQuadModePass()); 984 } 985 986 void GCNPassConfig::addFastRegAlloc() { 987 // FIXME: We have to disable the verifier here because of PHIElimination + 988 // TwoAddressInstructions disabling it. 989 990 // This must be run immediately after phi elimination and before 991 // TwoAddressInstructions, otherwise the processing of the tied operand of 992 // SI_ELSE will introduce a copy of the tied operand source after the else. 993 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 994 995 // This must be run just after RegisterCoalescing. 996 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 997 998 TargetPassConfig::addFastRegAlloc(); 999 } 1000 1001 void GCNPassConfig::addOptimizedRegAlloc() { 1002 if (OptExecMaskPreRA) 1003 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1004 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1005 1006 // This must be run immediately after phi elimination and before 1007 // TwoAddressInstructions, otherwise the processing of the tied operand of 1008 // SI_ELSE will introduce a copy of the tied operand source after the else. 1009 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1010 1011 // This must be run just after RegisterCoalescing. 1012 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 1013 1014 if (EnableDCEInRA) 1015 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1016 1017 TargetPassConfig::addOptimizedRegAlloc(); 1018 } 1019 1020 bool GCNPassConfig::addPreRewrite() { 1021 if (EnableRegReassign) { 1022 addPass(&GCNNSAReassignID); 1023 addPass(&GCNRegBankReassignID); 1024 } 1025 return true; 1026 } 1027 1028 void GCNPassConfig::addPostRegAlloc() { 1029 addPass(&SIFixVGPRCopiesID); 1030 if (getOptLevel() > CodeGenOpt::None) 1031 addPass(&SIOptimizeExecMaskingID); 1032 TargetPassConfig::addPostRegAlloc(); 1033 1034 // Equivalent of PEI for SGPRs. 1035 addPass(&SILowerSGPRSpillsID); 1036 } 1037 1038 void GCNPassConfig::addPreSched2() { 1039 addPass(&SIPostRABundlerID); 1040 } 1041 1042 void GCNPassConfig::addPreEmitPass() { 1043 addPass(createSIMemoryLegalizerPass()); 1044 addPass(createSIInsertWaitcntsPass()); 1045 addPass(createSIShrinkInstructionsPass()); 1046 addPass(createSIModeRegisterPass()); 1047 1048 // The hazard recognizer that runs as part of the post-ra scheduler does not 1049 // guarantee to be able handle all hazards correctly. This is because if there 1050 // are multiple scheduling regions in a basic block, the regions are scheduled 1051 // bottom up, so when we begin to schedule a region we don't know what 1052 // instructions were emitted directly before it. 1053 // 1054 // Here we add a stand-alone hazard recognizer pass which can handle all 1055 // cases. 1056 // 1057 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 1058 // be better for it to emit S_NOP <N> when possible. 1059 addPass(&PostRAHazardRecognizerID); 1060 if (getOptLevel() > CodeGenOpt::None) 1061 addPass(&SIInsertHardClausesID); 1062 1063 addPass(&SIRemoveShortExecBranchesID); 1064 addPass(&SIInsertSkipsPassID); 1065 addPass(&SIPreEmitPeepholeID); 1066 addPass(&BranchRelaxationPassID); 1067 } 1068 1069 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1070 return new GCNPassConfig(*this, PM); 1071 } 1072 1073 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1074 return new yaml::SIMachineFunctionInfo(); 1075 } 1076 1077 yaml::MachineFunctionInfo * 1078 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1079 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1080 return new yaml::SIMachineFunctionInfo(*MFI, 1081 *MF.getSubtarget().getRegisterInfo()); 1082 } 1083 1084 bool GCNTargetMachine::parseMachineFunctionInfo( 1085 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1086 SMDiagnostic &Error, SMRange &SourceRange) const { 1087 const yaml::SIMachineFunctionInfo &YamlMFI = 1088 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1089 MachineFunction &MF = PFS.MF; 1090 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1091 1092 MFI->initializeBaseYamlFields(YamlMFI); 1093 1094 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1095 Register TempReg; 1096 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1097 SourceRange = RegName.SourceRange; 1098 return true; 1099 } 1100 RegVal = TempReg; 1101 1102 return false; 1103 }; 1104 1105 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1106 // Create a diagnostic for a the register string literal. 1107 const MemoryBuffer &Buffer = 1108 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1109 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1110 RegName.Value.size(), SourceMgr::DK_Error, 1111 "incorrect register class for field", RegName.Value, 1112 None, None); 1113 SourceRange = RegName.SourceRange; 1114 return true; 1115 }; 1116 1117 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1118 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1119 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1120 return true; 1121 1122 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1123 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1124 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1125 } 1126 1127 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1128 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1129 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1130 } 1131 1132 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1133 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1134 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1135 } 1136 1137 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1138 const TargetRegisterClass &RC, 1139 ArgDescriptor &Arg, unsigned UserSGPRs, 1140 unsigned SystemSGPRs) { 1141 // Skip parsing if it's not present. 1142 if (!A) 1143 return false; 1144 1145 if (A->IsRegister) { 1146 Register Reg; 1147 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1148 SourceRange = A->RegisterName.SourceRange; 1149 return true; 1150 } 1151 if (!RC.contains(Reg)) 1152 return diagnoseRegisterClass(A->RegisterName); 1153 Arg = ArgDescriptor::createRegister(Reg); 1154 } else 1155 Arg = ArgDescriptor::createStack(A->StackOffset); 1156 // Check and apply the optional mask. 1157 if (A->Mask) 1158 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1159 1160 MFI->NumUserSGPRs += UserSGPRs; 1161 MFI->NumSystemSGPRs += SystemSGPRs; 1162 return false; 1163 }; 1164 1165 if (YamlMFI.ArgInfo && 1166 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1167 AMDGPU::SGPR_128RegClass, 1168 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1169 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1170 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1171 2, 0) || 1172 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1173 MFI->ArgInfo.QueuePtr, 2, 0) || 1174 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1175 AMDGPU::SReg_64RegClass, 1176 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1177 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1178 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1179 2, 0) || 1180 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1181 AMDGPU::SReg_64RegClass, 1182 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1183 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1184 AMDGPU::SGPR_32RegClass, 1185 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1186 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1187 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1188 0, 1) || 1189 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1190 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1191 0, 1) || 1192 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1193 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1194 0, 1) || 1195 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1196 AMDGPU::SGPR_32RegClass, 1197 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1198 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1199 AMDGPU::SGPR_32RegClass, 1200 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1201 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1202 AMDGPU::SReg_64RegClass, 1203 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1204 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1205 AMDGPU::SReg_64RegClass, 1206 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1207 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1208 AMDGPU::VGPR_32RegClass, 1209 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1210 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1211 AMDGPU::VGPR_32RegClass, 1212 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1213 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1214 AMDGPU::VGPR_32RegClass, 1215 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1216 return true; 1217 1218 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1219 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1220 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1221 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1222 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1223 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1224 1225 return false; 1226 } 1227