1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUInstructionSelector.h" 20 #include "AMDGPULegalizerInfo.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPUTargetObjectFile.h" 23 #include "AMDGPUTargetTransformInfo.h" 24 #include "GCNIterativeScheduler.h" 25 #include "GCNSchedStrategy.h" 26 #include "R600MachineScheduler.h" 27 #include "SIMachineFunctionInfo.h" 28 #include "SIMachineScheduler.h" 29 #include "TargetInfo/AMDGPUTargetInfo.h" 30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/LegacyPassManager.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Compiler.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Target/TargetLoweringObjectFile.h" 45 #include "llvm/Transforms/IPO.h" 46 #include "llvm/Transforms/IPO/AlwaysInliner.h" 47 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 48 #include "llvm/Transforms/Scalar.h" 49 #include "llvm/Transforms/Scalar/GVN.h" 50 #include "llvm/Transforms/Utils.h" 51 #include "llvm/Transforms/Vectorize.h" 52 #include <memory> 53 54 using namespace llvm; 55 56 static cl::opt<bool> EnableR600StructurizeCFG( 57 "r600-ir-structurize", 58 cl::desc("Use StructurizeCFG IR pass"), 59 cl::init(true)); 60 61 static cl::opt<bool> EnableSROA( 62 "amdgpu-sroa", 63 cl::desc("Run SROA after promote alloca pass"), 64 cl::ReallyHidden, 65 cl::init(true)); 66 67 static cl::opt<bool> 68 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 69 cl::desc("Run early if-conversion"), 70 cl::init(false)); 71 72 static cl::opt<bool> 73 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 74 cl::desc("Run pre-RA exec mask optimizations"), 75 cl::init(true)); 76 77 static cl::opt<bool> EnableR600IfConvert( 78 "r600-if-convert", 79 cl::desc("Use if conversion pass"), 80 cl::ReallyHidden, 81 cl::init(true)); 82 83 // Option to disable vectorizer for tests. 84 static cl::opt<bool> EnableLoadStoreVectorizer( 85 "amdgpu-load-store-vectorizer", 86 cl::desc("Enable load store vectorizer"), 87 cl::init(true), 88 cl::Hidden); 89 90 // Option to control global loads scalarization 91 static cl::opt<bool> ScalarizeGlobal( 92 "amdgpu-scalarize-global-loads", 93 cl::desc("Enable global load scalarization"), 94 cl::init(true), 95 cl::Hidden); 96 97 // Option to run internalize pass. 98 static cl::opt<bool> InternalizeSymbols( 99 "amdgpu-internalize-symbols", 100 cl::desc("Enable elimination of non-kernel functions and unused globals"), 101 cl::init(false), 102 cl::Hidden); 103 104 // Option to inline all early. 105 static cl::opt<bool> EarlyInlineAll( 106 "amdgpu-early-inline-all", 107 cl::desc("Inline all functions early"), 108 cl::init(false), 109 cl::Hidden); 110 111 static cl::opt<bool> EnableSDWAPeephole( 112 "amdgpu-sdwa-peephole", 113 cl::desc("Enable SDWA peepholer"), 114 cl::init(true)); 115 116 static cl::opt<bool> EnableDPPCombine( 117 "amdgpu-dpp-combine", 118 cl::desc("Enable DPP combiner"), 119 cl::init(true)); 120 121 // Enable address space based alias analysis 122 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 123 cl::desc("Enable AMDGPU Alias Analysis"), 124 cl::init(true)); 125 126 // Option to run late CFG structurizer 127 static cl::opt<bool, true> LateCFGStructurize( 128 "amdgpu-late-structurize", 129 cl::desc("Enable late CFG structurization"), 130 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 131 cl::Hidden); 132 133 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 134 "amdgpu-function-calls", 135 cl::desc("Enable AMDGPU function call support"), 136 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 137 cl::init(true), 138 cl::Hidden); 139 140 // Enable lib calls simplifications 141 static cl::opt<bool> EnableLibCallSimplify( 142 "amdgpu-simplify-libcall", 143 cl::desc("Enable amdgpu library simplifications"), 144 cl::init(true), 145 cl::Hidden); 146 147 static cl::opt<bool> EnableLowerKernelArguments( 148 "amdgpu-ir-lower-kernel-arguments", 149 cl::desc("Lower kernel argument loads in IR pass"), 150 cl::init(true), 151 cl::Hidden); 152 153 static cl::opt<bool> EnableRegReassign( 154 "amdgpu-reassign-regs", 155 cl::desc("Enable register reassign optimizations on gfx10+"), 156 cl::init(true), 157 cl::Hidden); 158 159 // Enable atomic optimization 160 static cl::opt<bool> EnableAtomicOptimizations( 161 "amdgpu-atomic-optimizations", 162 cl::desc("Enable atomic optimizations"), 163 cl::init(false), 164 cl::Hidden); 165 166 // Enable Mode register optimization 167 static cl::opt<bool> EnableSIModeRegisterPass( 168 "amdgpu-mode-register", 169 cl::desc("Enable mode register pass"), 170 cl::init(true), 171 cl::Hidden); 172 173 // Option is used in lit tests to prevent deadcoding of patterns inspected. 174 static cl::opt<bool> 175 EnableDCEInRA("amdgpu-dce-in-ra", 176 cl::init(true), cl::Hidden, 177 cl::desc("Enable machine DCE inside regalloc")); 178 179 static cl::opt<bool> EnableScalarIRPasses( 180 "amdgpu-scalar-ir-passes", 181 cl::desc("Enable scalar IR passes"), 182 cl::init(true), 183 cl::Hidden); 184 185 extern "C" void LLVMInitializeAMDGPUTarget() { 186 // Register the target 187 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 188 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 189 190 PassRegistry *PR = PassRegistry::getPassRegistry(); 191 initializeR600ClauseMergePassPass(*PR); 192 initializeR600ControlFlowFinalizerPass(*PR); 193 initializeR600PacketizerPass(*PR); 194 initializeR600ExpandSpecialInstrsPassPass(*PR); 195 initializeR600VectorRegMergerPass(*PR); 196 initializeGlobalISel(*PR); 197 initializeAMDGPUDAGToDAGISelPass(*PR); 198 initializeGCNDPPCombinePass(*PR); 199 initializeSILowerI1CopiesPass(*PR); 200 initializeSILowerSGPRSpillsPass(*PR); 201 initializeSIFixSGPRCopiesPass(*PR); 202 initializeSIFixVGPRCopiesPass(*PR); 203 initializeSIFixupVectorISelPass(*PR); 204 initializeSIFoldOperandsPass(*PR); 205 initializeSIPeepholeSDWAPass(*PR); 206 initializeSIShrinkInstructionsPass(*PR); 207 initializeSIOptimizeExecMaskingPreRAPass(*PR); 208 initializeSILoadStoreOptimizerPass(*PR); 209 initializeAMDGPUFixFunctionBitcastsPass(*PR); 210 initializeAMDGPUAlwaysInlinePass(*PR); 211 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 212 initializeAMDGPUAnnotateUniformValuesPass(*PR); 213 initializeAMDGPUArgumentUsageInfoPass(*PR); 214 initializeAMDGPUAtomicOptimizerPass(*PR); 215 initializeAMDGPULowerKernelArgumentsPass(*PR); 216 initializeAMDGPULowerKernelAttributesPass(*PR); 217 initializeAMDGPULowerIntrinsicsPass(*PR); 218 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 219 initializeAMDGPUPromoteAllocaPass(*PR); 220 initializeAMDGPUCodeGenPreparePass(*PR); 221 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 222 initializeAMDGPUPropagateAttributesLatePass(*PR); 223 initializeAMDGPURewriteOutArgumentsPass(*PR); 224 initializeAMDGPUUnifyMetadataPass(*PR); 225 initializeSIAnnotateControlFlowPass(*PR); 226 initializeSIInsertWaitcntsPass(*PR); 227 initializeSIModeRegisterPass(*PR); 228 initializeSIWholeQuadModePass(*PR); 229 initializeSILowerControlFlowPass(*PR); 230 initializeSIInsertSkipsPass(*PR); 231 initializeSIMemoryLegalizerPass(*PR); 232 initializeSIOptimizeExecMaskingPass(*PR); 233 initializeSIPreAllocateWWMRegsPass(*PR); 234 initializeSIFormMemoryClausesPass(*PR); 235 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 236 initializeAMDGPUAAWrapperPassPass(*PR); 237 initializeAMDGPUExternalAAWrapperPass(*PR); 238 initializeAMDGPUUseNativeCallsPass(*PR); 239 initializeAMDGPUSimplifyLibCallsPass(*PR); 240 initializeAMDGPUInlinerPass(*PR); 241 initializeGCNRegBankReassignPass(*PR); 242 initializeGCNNSAReassignPass(*PR); 243 } 244 245 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 246 return llvm::make_unique<AMDGPUTargetObjectFile>(); 247 } 248 249 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 250 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 251 } 252 253 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 254 return new SIScheduleDAGMI(C); 255 } 256 257 static ScheduleDAGInstrs * 258 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 259 ScheduleDAGMILive *DAG = 260 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 261 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 262 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 263 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 264 return DAG; 265 } 266 267 static ScheduleDAGInstrs * 268 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 269 auto DAG = new GCNIterativeScheduler(C, 270 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 271 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 272 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 273 return DAG; 274 } 275 276 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 277 return new GCNIterativeScheduler(C, 278 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 279 } 280 281 static ScheduleDAGInstrs * 282 createIterativeILPMachineScheduler(MachineSchedContext *C) { 283 auto DAG = new GCNIterativeScheduler(C, 284 GCNIterativeScheduler::SCHEDULE_ILP); 285 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 286 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 287 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 288 return DAG; 289 } 290 291 static MachineSchedRegistry 292 R600SchedRegistry("r600", "Run R600's custom scheduler", 293 createR600MachineScheduler); 294 295 static MachineSchedRegistry 296 SISchedRegistry("si", "Run SI's custom scheduler", 297 createSIMachineScheduler); 298 299 static MachineSchedRegistry 300 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 301 "Run GCN scheduler to maximize occupancy", 302 createGCNMaxOccupancyMachineScheduler); 303 304 static MachineSchedRegistry 305 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 306 "Run GCN scheduler to maximize occupancy (experimental)", 307 createIterativeGCNMaxOccupancyMachineScheduler); 308 309 static MachineSchedRegistry 310 GCNMinRegSchedRegistry("gcn-minreg", 311 "Run GCN iterative scheduler for minimal register usage (experimental)", 312 createMinRegScheduler); 313 314 static MachineSchedRegistry 315 GCNILPSchedRegistry("gcn-ilp", 316 "Run GCN iterative scheduler for ILP scheduling (experimental)", 317 createIterativeILPMachineScheduler); 318 319 static StringRef computeDataLayout(const Triple &TT) { 320 if (TT.getArch() == Triple::r600) { 321 // 32-bit pointers. 322 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 323 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 324 } 325 326 // 32-bit private, local, and region pointers. 64-bit global, constant and 327 // flat, non-integral buffer fat pointers. 328 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 329 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 330 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 331 "-ni:7"; 332 } 333 334 LLVM_READNONE 335 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 336 if (!GPU.empty()) 337 return GPU; 338 339 // Need to default to a target with flat support for HSA. 340 if (TT.getArch() == Triple::amdgcn) 341 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 342 343 return "r600"; 344 } 345 346 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 347 // The AMDGPU toolchain only supports generating shared objects, so we 348 // must always use PIC. 349 return Reloc::PIC_; 350 } 351 352 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 353 StringRef CPU, StringRef FS, 354 TargetOptions Options, 355 Optional<Reloc::Model> RM, 356 Optional<CodeModel::Model> CM, 357 CodeGenOpt::Level OptLevel) 358 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 359 FS, Options, getEffectiveRelocModel(RM), 360 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 361 TLOF(createTLOF(getTargetTriple())) { 362 initAsmInfo(); 363 } 364 365 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 366 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 367 368 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 369 370 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 371 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 372 return GPUAttr.hasAttribute(Attribute::None) ? 373 getTargetCPU() : GPUAttr.getValueAsString(); 374 } 375 376 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 377 Attribute FSAttr = F.getFnAttribute("target-features"); 378 379 return FSAttr.hasAttribute(Attribute::None) ? 380 getTargetFeatureString() : 381 FSAttr.getValueAsString(); 382 } 383 384 /// Predicate for Internalize pass. 385 static bool mustPreserveGV(const GlobalValue &GV) { 386 if (const Function *F = dyn_cast<Function>(&GV)) 387 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 388 389 return !GV.use_empty(); 390 } 391 392 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 393 Builder.DivergentTarget = true; 394 395 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 396 bool Internalize = InternalizeSymbols; 397 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 398 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 399 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 400 401 if (EnableFunctionCalls) { 402 delete Builder.Inliner; 403 Builder.Inliner = createAMDGPUFunctionInliningPass(); 404 } 405 406 Builder.addExtension( 407 PassManagerBuilder::EP_ModuleOptimizerEarly, 408 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 409 legacy::PassManagerBase &PM) { 410 if (AMDGPUAA) { 411 PM.add(createAMDGPUAAWrapperPass()); 412 PM.add(createAMDGPUExternalAAWrapperPass()); 413 } 414 PM.add(createAMDGPUUnifyMetadataPass()); 415 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 416 if (Internalize) { 417 PM.add(createInternalizePass(mustPreserveGV)); 418 PM.add(createGlobalDCEPass()); 419 } 420 if (EarlyInline) 421 PM.add(createAMDGPUAlwaysInlinePass(false)); 422 }); 423 424 const auto &Opt = Options; 425 Builder.addExtension( 426 PassManagerBuilder::EP_EarlyAsPossible, 427 [AMDGPUAA, LibCallSimplify, &Opt, this](const PassManagerBuilder &, 428 legacy::PassManagerBase &PM) { 429 if (AMDGPUAA) { 430 PM.add(createAMDGPUAAWrapperPass()); 431 PM.add(createAMDGPUExternalAAWrapperPass()); 432 } 433 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 434 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 435 if (LibCallSimplify) 436 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt, this)); 437 }); 438 439 Builder.addExtension( 440 PassManagerBuilder::EP_CGSCCOptimizerLate, 441 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 442 // Add infer address spaces pass to the opt pipeline after inlining 443 // but before SROA to increase SROA opportunities. 444 PM.add(createInferAddressSpacesPass()); 445 446 // This should run after inlining to have any chance of doing anything, 447 // and before other cleanup optimizations. 448 PM.add(createAMDGPULowerKernelAttributesPass()); 449 }); 450 } 451 452 //===----------------------------------------------------------------------===// 453 // R600 Target Machine (R600 -> Cayman) 454 //===----------------------------------------------------------------------===// 455 456 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 457 StringRef CPU, StringRef FS, 458 TargetOptions Options, 459 Optional<Reloc::Model> RM, 460 Optional<CodeModel::Model> CM, 461 CodeGenOpt::Level OL, bool JIT) 462 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 463 setRequiresStructuredCFG(true); 464 465 // Override the default since calls aren't supported for r600. 466 if (EnableFunctionCalls && 467 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 468 EnableFunctionCalls = false; 469 } 470 471 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 472 const Function &F) const { 473 StringRef GPU = getGPUName(F); 474 StringRef FS = getFeatureString(F); 475 476 SmallString<128> SubtargetKey(GPU); 477 SubtargetKey.append(FS); 478 479 auto &I = SubtargetMap[SubtargetKey]; 480 if (!I) { 481 // This needs to be done before we create a new subtarget since any 482 // creation will depend on the TM and the code generation flags on the 483 // function that reside in TargetOptions. 484 resetTargetOptions(F); 485 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 486 } 487 488 return I.get(); 489 } 490 491 TargetTransformInfo 492 R600TargetMachine::getTargetTransformInfo(const Function &F) { 493 return TargetTransformInfo(R600TTIImpl(this, F)); 494 } 495 496 //===----------------------------------------------------------------------===// 497 // GCN Target Machine (SI+) 498 //===----------------------------------------------------------------------===// 499 500 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 501 StringRef CPU, StringRef FS, 502 TargetOptions Options, 503 Optional<Reloc::Model> RM, 504 Optional<CodeModel::Model> CM, 505 CodeGenOpt::Level OL, bool JIT) 506 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 507 508 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 509 StringRef GPU = getGPUName(F); 510 StringRef FS = getFeatureString(F); 511 512 SmallString<128> SubtargetKey(GPU); 513 SubtargetKey.append(FS); 514 515 auto &I = SubtargetMap[SubtargetKey]; 516 if (!I) { 517 // This needs to be done before we create a new subtarget since any 518 // creation will depend on the TM and the code generation flags on the 519 // function that reside in TargetOptions. 520 resetTargetOptions(F); 521 I = llvm::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 522 } 523 524 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 525 526 return I.get(); 527 } 528 529 TargetTransformInfo 530 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 531 return TargetTransformInfo(GCNTTIImpl(this, F)); 532 } 533 534 //===----------------------------------------------------------------------===// 535 // AMDGPU Pass Setup 536 //===----------------------------------------------------------------------===// 537 538 namespace { 539 540 class AMDGPUPassConfig : public TargetPassConfig { 541 public: 542 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 543 : TargetPassConfig(TM, PM) { 544 // Exceptions and StackMaps are not supported, so these passes will never do 545 // anything. 546 disablePass(&StackMapLivenessID); 547 disablePass(&FuncletLayoutID); 548 } 549 550 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 551 return getTM<AMDGPUTargetMachine>(); 552 } 553 554 ScheduleDAGInstrs * 555 createMachineScheduler(MachineSchedContext *C) const override { 556 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 557 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 558 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 559 return DAG; 560 } 561 562 void addEarlyCSEOrGVNPass(); 563 void addStraightLineScalarOptimizationPasses(); 564 void addIRPasses() override; 565 void addCodeGenPrepare() override; 566 bool addPreISel() override; 567 bool addInstSelector() override; 568 bool addGCPasses() override; 569 570 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 571 }; 572 573 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 574 return getStandardCSEConfigForOpt(TM->getOptLevel()); 575 } 576 577 class R600PassConfig final : public AMDGPUPassConfig { 578 public: 579 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 580 : AMDGPUPassConfig(TM, PM) {} 581 582 ScheduleDAGInstrs *createMachineScheduler( 583 MachineSchedContext *C) const override { 584 return createR600MachineScheduler(C); 585 } 586 587 bool addPreISel() override; 588 bool addInstSelector() override; 589 void addPreRegAlloc() override; 590 void addPreSched2() override; 591 void addPreEmitPass() override; 592 }; 593 594 class GCNPassConfig final : public AMDGPUPassConfig { 595 public: 596 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 597 : AMDGPUPassConfig(TM, PM) { 598 // It is necessary to know the register usage of the entire call graph. We 599 // allow calls without EnableAMDGPUFunctionCalls if they are marked 600 // noinline, so this is always required. 601 setRequiresCodeGenSCCOrder(true); 602 } 603 604 GCNTargetMachine &getGCNTargetMachine() const { 605 return getTM<GCNTargetMachine>(); 606 } 607 608 ScheduleDAGInstrs * 609 createMachineScheduler(MachineSchedContext *C) const override; 610 611 bool addPreISel() override; 612 void addMachineSSAOptimization() override; 613 bool addILPOpts() override; 614 bool addInstSelector() override; 615 bool addIRTranslator() override; 616 bool addLegalizeMachineIR() override; 617 bool addRegBankSelect() override; 618 bool addGlobalInstructionSelect() override; 619 void addFastRegAlloc() override; 620 void addOptimizedRegAlloc() override; 621 void addPreRegAlloc() override; 622 bool addPreRewrite() override; 623 void addPostRegAlloc() override; 624 void addPreSched2() override; 625 void addPreEmitPass() override; 626 }; 627 628 } // end anonymous namespace 629 630 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 631 if (getOptLevel() == CodeGenOpt::Aggressive) 632 addPass(createGVNPass()); 633 else 634 addPass(createEarlyCSEPass()); 635 } 636 637 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 638 addPass(createLICMPass()); 639 addPass(createSeparateConstOffsetFromGEPPass()); 640 addPass(createSpeculativeExecutionPass()); 641 // ReassociateGEPs exposes more opportunites for SLSR. See 642 // the example in reassociate-geps-and-slsr.ll. 643 addPass(createStraightLineStrengthReducePass()); 644 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 645 // EarlyCSE can reuse. 646 addEarlyCSEOrGVNPass(); 647 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 648 addPass(createNaryReassociatePass()); 649 // NaryReassociate on GEPs creates redundant common expressions, so run 650 // EarlyCSE after it. 651 addPass(createEarlyCSEPass()); 652 } 653 654 void AMDGPUPassConfig::addIRPasses() { 655 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 656 657 // There is no reason to run these. 658 disablePass(&StackMapLivenessID); 659 disablePass(&FuncletLayoutID); 660 disablePass(&PatchableFunctionID); 661 662 // This must occur before inlining, as the inliner will not look through 663 // bitcast calls. 664 addPass(createAMDGPUFixFunctionBitcastsPass()); 665 666 // A call to propagate attributes pass in the backend in case opt was not run. 667 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 668 669 addPass(createAtomicExpandPass()); 670 671 672 addPass(createAMDGPULowerIntrinsicsPass()); 673 674 // Function calls are not supported, so make sure we inline everything. 675 addPass(createAMDGPUAlwaysInlinePass()); 676 addPass(createAlwaysInlinerLegacyPass()); 677 // We need to add the barrier noop pass, otherwise adding the function 678 // inlining pass will cause all of the PassConfigs passes to be run 679 // one function at a time, which means if we have a nodule with two 680 // functions, then we will generate code for the first function 681 // without ever running any passes on the second. 682 addPass(createBarrierNoopPass()); 683 684 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 685 // TODO: May want to move later or split into an early and late one. 686 687 addPass(createAMDGPUCodeGenPreparePass()); 688 } 689 690 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 691 if (TM.getTargetTriple().getArch() == Triple::r600) 692 addPass(createR600OpenCLImageTypeLoweringPass()); 693 694 // Replace OpenCL enqueued block function pointers with global variables. 695 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 696 697 if (TM.getOptLevel() > CodeGenOpt::None) { 698 addPass(createInferAddressSpacesPass()); 699 addPass(createAMDGPUPromoteAlloca()); 700 701 if (EnableSROA) 702 addPass(createSROAPass()); 703 704 if (EnableScalarIRPasses) 705 addStraightLineScalarOptimizationPasses(); 706 707 if (EnableAMDGPUAliasAnalysis) { 708 addPass(createAMDGPUAAWrapperPass()); 709 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 710 AAResults &AAR) { 711 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 712 AAR.addAAResult(WrapperPass->getResult()); 713 })); 714 } 715 } 716 717 TargetPassConfig::addIRPasses(); 718 719 // EarlyCSE is not always strong enough to clean up what LSR produces. For 720 // example, GVN can combine 721 // 722 // %0 = add %a, %b 723 // %1 = add %b, %a 724 // 725 // and 726 // 727 // %0 = shl nsw %a, 2 728 // %1 = shl %a, 2 729 // 730 // but EarlyCSE can do neither of them. 731 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 732 addEarlyCSEOrGVNPass(); 733 } 734 735 void AMDGPUPassConfig::addCodeGenPrepare() { 736 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 737 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 738 739 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 740 EnableLowerKernelArguments) 741 addPass(createAMDGPULowerKernelArgumentsPass()); 742 743 TargetPassConfig::addCodeGenPrepare(); 744 745 if (EnableLoadStoreVectorizer) 746 addPass(createLoadStoreVectorizerPass()); 747 } 748 749 bool AMDGPUPassConfig::addPreISel() { 750 addPass(createLowerSwitchPass()); 751 addPass(createFlattenCFGPass()); 752 return false; 753 } 754 755 bool AMDGPUPassConfig::addInstSelector() { 756 // Defer the verifier until FinalizeISel. 757 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 758 return false; 759 } 760 761 bool AMDGPUPassConfig::addGCPasses() { 762 // Do nothing. GC is not supported. 763 return false; 764 } 765 766 //===----------------------------------------------------------------------===// 767 // R600 Pass Setup 768 //===----------------------------------------------------------------------===// 769 770 bool R600PassConfig::addPreISel() { 771 AMDGPUPassConfig::addPreISel(); 772 773 if (EnableR600StructurizeCFG) 774 addPass(createStructurizeCFGPass()); 775 return false; 776 } 777 778 bool R600PassConfig::addInstSelector() { 779 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 780 return false; 781 } 782 783 void R600PassConfig::addPreRegAlloc() { 784 addPass(createR600VectorRegMerger()); 785 } 786 787 void R600PassConfig::addPreSched2() { 788 addPass(createR600EmitClauseMarkers(), false); 789 if (EnableR600IfConvert) 790 addPass(&IfConverterID, false); 791 addPass(createR600ClauseMergePass(), false); 792 } 793 794 void R600PassConfig::addPreEmitPass() { 795 addPass(createAMDGPUCFGStructurizerPass(), false); 796 addPass(createR600ExpandSpecialInstrsPass(), false); 797 addPass(&FinalizeMachineBundlesID, false); 798 addPass(createR600Packetizer(), false); 799 addPass(createR600ControlFlowFinalizer(), false); 800 } 801 802 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 803 return new R600PassConfig(*this, PM); 804 } 805 806 //===----------------------------------------------------------------------===// 807 // GCN Pass Setup 808 //===----------------------------------------------------------------------===// 809 810 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 811 MachineSchedContext *C) const { 812 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 813 if (ST.enableSIScheduler()) 814 return createSIMachineScheduler(C); 815 return createGCNMaxOccupancyMachineScheduler(C); 816 } 817 818 bool GCNPassConfig::addPreISel() { 819 AMDGPUPassConfig::addPreISel(); 820 821 if (EnableAtomicOptimizations) { 822 addPass(createAMDGPUAtomicOptimizerPass()); 823 } 824 825 // FIXME: We need to run a pass to propagate the attributes when calls are 826 // supported. 827 828 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 829 // regions formed by them. 830 addPass(&AMDGPUUnifyDivergentExitNodesID); 831 if (!LateCFGStructurize) { 832 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 833 } 834 addPass(createSinkingPass()); 835 addPass(createAMDGPUAnnotateUniformValues()); 836 if (!LateCFGStructurize) { 837 addPass(createSIAnnotateControlFlowPass()); 838 } 839 addPass(createLCSSAPass()); 840 841 return false; 842 } 843 844 void GCNPassConfig::addMachineSSAOptimization() { 845 TargetPassConfig::addMachineSSAOptimization(); 846 847 // We want to fold operands after PeepholeOptimizer has run (or as part of 848 // it), because it will eliminate extra copies making it easier to fold the 849 // real source operand. We want to eliminate dead instructions after, so that 850 // we see fewer uses of the copies. We then need to clean up the dead 851 // instructions leftover after the operands are folded as well. 852 // 853 // XXX - Can we get away without running DeadMachineInstructionElim again? 854 addPass(&SIFoldOperandsID); 855 if (EnableDPPCombine) 856 addPass(&GCNDPPCombineID); 857 addPass(&DeadMachineInstructionElimID); 858 addPass(&SILoadStoreOptimizerID); 859 if (EnableSDWAPeephole) { 860 addPass(&SIPeepholeSDWAID); 861 addPass(&EarlyMachineLICMID); 862 addPass(&MachineCSEID); 863 addPass(&SIFoldOperandsID); 864 addPass(&DeadMachineInstructionElimID); 865 } 866 addPass(createSIShrinkInstructionsPass()); 867 } 868 869 bool GCNPassConfig::addILPOpts() { 870 if (EnableEarlyIfConversion) 871 addPass(&EarlyIfConverterID); 872 873 TargetPassConfig::addILPOpts(); 874 return false; 875 } 876 877 bool GCNPassConfig::addInstSelector() { 878 AMDGPUPassConfig::addInstSelector(); 879 addPass(&SIFixSGPRCopiesID); 880 addPass(createSILowerI1CopiesPass()); 881 addPass(createSIFixupVectorISelPass()); 882 addPass(createSIAddIMGInitPass()); 883 return false; 884 } 885 886 bool GCNPassConfig::addIRTranslator() { 887 addPass(new IRTranslator()); 888 return false; 889 } 890 891 bool GCNPassConfig::addLegalizeMachineIR() { 892 addPass(new Legalizer()); 893 return false; 894 } 895 896 bool GCNPassConfig::addRegBankSelect() { 897 addPass(new RegBankSelect()); 898 return false; 899 } 900 901 bool GCNPassConfig::addGlobalInstructionSelect() { 902 addPass(new InstructionSelect()); 903 return false; 904 } 905 906 void GCNPassConfig::addPreRegAlloc() { 907 if (LateCFGStructurize) { 908 addPass(createAMDGPUMachineCFGStructurizerPass()); 909 } 910 addPass(createSIWholeQuadModePass()); 911 } 912 913 void GCNPassConfig::addFastRegAlloc() { 914 // FIXME: We have to disable the verifier here because of PHIElimination + 915 // TwoAddressInstructions disabling it. 916 917 // This must be run immediately after phi elimination and before 918 // TwoAddressInstructions, otherwise the processing of the tied operand of 919 // SI_ELSE will introduce a copy of the tied operand source after the else. 920 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 921 922 // This must be run just after RegisterCoalescing. 923 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 924 925 TargetPassConfig::addFastRegAlloc(); 926 } 927 928 void GCNPassConfig::addOptimizedRegAlloc() { 929 if (OptExecMaskPreRA) { 930 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 931 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 932 } else { 933 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 934 } 935 936 // This must be run immediately after phi elimination and before 937 // TwoAddressInstructions, otherwise the processing of the tied operand of 938 // SI_ELSE will introduce a copy of the tied operand source after the else. 939 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 940 941 // This must be run just after RegisterCoalescing. 942 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 943 944 if (EnableDCEInRA) 945 insertPass(&RenameIndependentSubregsID, &DeadMachineInstructionElimID); 946 947 TargetPassConfig::addOptimizedRegAlloc(); 948 } 949 950 bool GCNPassConfig::addPreRewrite() { 951 if (EnableRegReassign) { 952 addPass(&GCNNSAReassignID); 953 addPass(&GCNRegBankReassignID); 954 } 955 return true; 956 } 957 958 void GCNPassConfig::addPostRegAlloc() { 959 addPass(&SIFixVGPRCopiesID); 960 if (getOptLevel() > CodeGenOpt::None) 961 addPass(&SIOptimizeExecMaskingID); 962 TargetPassConfig::addPostRegAlloc(); 963 964 // Equivalent of PEI for SGPRs. 965 addPass(&SILowerSGPRSpillsID); 966 } 967 968 void GCNPassConfig::addPreSched2() { 969 } 970 971 void GCNPassConfig::addPreEmitPass() { 972 addPass(createSIMemoryLegalizerPass()); 973 addPass(createSIInsertWaitcntsPass()); 974 addPass(createSIShrinkInstructionsPass()); 975 addPass(createSIModeRegisterPass()); 976 977 // The hazard recognizer that runs as part of the post-ra scheduler does not 978 // guarantee to be able handle all hazards correctly. This is because if there 979 // are multiple scheduling regions in a basic block, the regions are scheduled 980 // bottom up, so when we begin to schedule a region we don't know what 981 // instructions were emitted directly before it. 982 // 983 // Here we add a stand-alone hazard recognizer pass which can handle all 984 // cases. 985 // 986 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 987 // be better for it to emit S_NOP <N> when possible. 988 addPass(&PostRAHazardRecognizerID); 989 990 addPass(&SIInsertSkipsPassID); 991 addPass(&BranchRelaxationPassID); 992 } 993 994 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 995 return new GCNPassConfig(*this, PM); 996 } 997 998 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 999 return new yaml::SIMachineFunctionInfo(); 1000 } 1001 1002 yaml::MachineFunctionInfo * 1003 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1004 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1005 return new yaml::SIMachineFunctionInfo(*MFI, 1006 *MF.getSubtarget().getRegisterInfo()); 1007 } 1008 1009 bool GCNTargetMachine::parseMachineFunctionInfo( 1010 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1011 SMDiagnostic &Error, SMRange &SourceRange) const { 1012 const yaml::SIMachineFunctionInfo &YamlMFI = 1013 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1014 MachineFunction &MF = PFS.MF; 1015 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1016 1017 MFI->initializeBaseYamlFields(YamlMFI); 1018 1019 auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) { 1020 if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) { 1021 SourceRange = RegName.SourceRange; 1022 return true; 1023 } 1024 1025 return false; 1026 }; 1027 1028 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1029 // Create a diagnostic for a the register string literal. 1030 const MemoryBuffer &Buffer = 1031 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1032 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1033 RegName.Value.size(), SourceMgr::DK_Error, 1034 "incorrect register class for field", RegName.Value, 1035 None, None); 1036 SourceRange = RegName.SourceRange; 1037 return true; 1038 }; 1039 1040 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1041 parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) || 1042 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1043 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1044 return true; 1045 1046 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1047 !AMDGPU::SReg_128RegClass.contains(MFI->ScratchRSrcReg)) { 1048 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1049 } 1050 1051 if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG && 1052 !AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) { 1053 return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg); 1054 } 1055 1056 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1057 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1058 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1059 } 1060 1061 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1062 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1063 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1064 } 1065 1066 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1067 const TargetRegisterClass &RC, 1068 ArgDescriptor &Arg) { 1069 // Skip parsing if it's not present. 1070 if (!A) 1071 return false; 1072 1073 if (A->IsRegister) { 1074 unsigned Reg; 1075 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, 1076 Error)) { 1077 SourceRange = A->RegisterName.SourceRange; 1078 return true; 1079 } 1080 if (!RC.contains(Reg)) 1081 return diagnoseRegisterClass(A->RegisterName); 1082 Arg = ArgDescriptor::createRegister(Reg); 1083 } else 1084 Arg = ArgDescriptor::createStack(A->StackOffset); 1085 // Check and apply the optional mask. 1086 if (A->Mask) 1087 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1088 1089 return false; 1090 }; 1091 1092 if (YamlMFI.ArgInfo && 1093 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1094 AMDGPU::SReg_128RegClass, 1095 MFI->ArgInfo.PrivateSegmentBuffer) || 1096 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1097 AMDGPU::SReg_64RegClass, 1098 MFI->ArgInfo.DispatchPtr) || 1099 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1100 MFI->ArgInfo.QueuePtr) || 1101 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1102 AMDGPU::SReg_64RegClass, 1103 MFI->ArgInfo.KernargSegmentPtr) || 1104 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1105 AMDGPU::SReg_64RegClass, 1106 MFI->ArgInfo.DispatchID) || 1107 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1108 AMDGPU::SReg_64RegClass, 1109 MFI->ArgInfo.FlatScratchInit) || 1110 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1111 AMDGPU::SGPR_32RegClass, 1112 MFI->ArgInfo.PrivateSegmentSize) || 1113 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1114 AMDGPU::SGPR_32RegClass, 1115 MFI->ArgInfo.WorkGroupIDX) || 1116 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1117 AMDGPU::SGPR_32RegClass, 1118 MFI->ArgInfo.WorkGroupIDY) || 1119 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1120 AMDGPU::SGPR_32RegClass, 1121 MFI->ArgInfo.WorkGroupIDZ) || 1122 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1123 AMDGPU::SGPR_32RegClass, 1124 MFI->ArgInfo.WorkGroupInfo) || 1125 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1126 AMDGPU::SGPR_32RegClass, 1127 MFI->ArgInfo.PrivateSegmentWaveByteOffset) || 1128 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1129 AMDGPU::SReg_64RegClass, 1130 MFI->ArgInfo.ImplicitArgPtr) || 1131 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1132 AMDGPU::SReg_64RegClass, 1133 MFI->ArgInfo.ImplicitBufferPtr) || 1134 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1135 AMDGPU::VGPR_32RegClass, 1136 MFI->ArgInfo.WorkItemIDX) || 1137 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1138 AMDGPU::VGPR_32RegClass, 1139 MFI->ArgInfo.WorkItemIDY) || 1140 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1141 AMDGPU::VGPR_32RegClass, 1142 MFI->ArgInfo.WorkItemIDZ))) 1143 return true; 1144 1145 return false; 1146 } 1147