1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUMacroFusion.h" 20 #include "AMDGPUTargetObjectFile.h" 21 #include "AMDGPUTargetTransformInfo.h" 22 #include "GCNIterativeScheduler.h" 23 #include "GCNSchedStrategy.h" 24 #include "R600MachineScheduler.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIMachineScheduler.h" 27 #include "TargetInfo/AMDGPUTargetInfo.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/Localizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/TargetPassConfig.h" 36 #include "llvm/IR/LegacyPassManager.h" 37 #include "llvm/IR/PassManager.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/TargetRegistry.h" 41 #include "llvm/Transforms/IPO.h" 42 #include "llvm/Transforms/IPO/AlwaysInliner.h" 43 #include "llvm/Transforms/IPO/GlobalDCE.h" 44 #include "llvm/Transforms/IPO/Internalize.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 #include "llvm/Transforms/Vectorize.h" 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableR600StructurizeCFG( 56 "r600-ir-structurize", 57 cl::desc("Use StructurizeCFG IR pass"), 58 cl::init(true)); 59 60 static cl::opt<bool> EnableSROA( 61 "amdgpu-sroa", 62 cl::desc("Run SROA after promote alloca pass"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 static cl::opt<bool> 67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 68 cl::desc("Run early if-conversion"), 69 cl::init(false)); 70 71 static cl::opt<bool> 72 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 73 cl::desc("Run pre-RA exec mask optimizations"), 74 cl::init(true)); 75 76 static cl::opt<bool> EnableR600IfConvert( 77 "r600-if-convert", 78 cl::desc("Use if conversion pass"), 79 cl::ReallyHidden, 80 cl::init(true)); 81 82 // Option to disable vectorizer for tests. 83 static cl::opt<bool> EnableLoadStoreVectorizer( 84 "amdgpu-load-store-vectorizer", 85 cl::desc("Enable load store vectorizer"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to control global loads scalarization 90 static cl::opt<bool> ScalarizeGlobal( 91 "amdgpu-scalarize-global-loads", 92 cl::desc("Enable global load scalarization"), 93 cl::init(true), 94 cl::Hidden); 95 96 // Option to run internalize pass. 97 static cl::opt<bool> InternalizeSymbols( 98 "amdgpu-internalize-symbols", 99 cl::desc("Enable elimination of non-kernel functions and unused globals"), 100 cl::init(false), 101 cl::Hidden); 102 103 // Option to inline all early. 104 static cl::opt<bool> EarlyInlineAll( 105 "amdgpu-early-inline-all", 106 cl::desc("Inline all functions early"), 107 cl::init(false), 108 cl::Hidden); 109 110 static cl::opt<bool> EnableSDWAPeephole( 111 "amdgpu-sdwa-peephole", 112 cl::desc("Enable SDWA peepholer"), 113 cl::init(true)); 114 115 static cl::opt<bool> EnableDPPCombine( 116 "amdgpu-dpp-combine", 117 cl::desc("Enable DPP combiner"), 118 cl::init(true)); 119 120 // Enable address space based alias analysis 121 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 122 cl::desc("Enable AMDGPU Alias Analysis"), 123 cl::init(true)); 124 125 // Option to run late CFG structurizer 126 static cl::opt<bool, true> LateCFGStructurize( 127 "amdgpu-late-structurize", 128 cl::desc("Enable late CFG structurization"), 129 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 130 cl::Hidden); 131 132 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 133 "amdgpu-function-calls", 134 cl::desc("Enable AMDGPU function call support"), 135 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 136 cl::init(true), 137 cl::Hidden); 138 139 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 140 "amdgpu-fixed-function-abi", 141 cl::desc("Enable all implicit function arguments"), 142 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 143 cl::init(false), 144 cl::Hidden); 145 146 // Enable lib calls simplifications 147 static cl::opt<bool> EnableLibCallSimplify( 148 "amdgpu-simplify-libcall", 149 cl::desc("Enable amdgpu library simplifications"), 150 cl::init(true), 151 cl::Hidden); 152 153 static cl::opt<bool> EnableLowerKernelArguments( 154 "amdgpu-ir-lower-kernel-arguments", 155 cl::desc("Lower kernel argument loads in IR pass"), 156 cl::init(true), 157 cl::Hidden); 158 159 static cl::opt<bool> EnableRegReassign( 160 "amdgpu-reassign-regs", 161 cl::desc("Enable register reassign optimizations on gfx10+"), 162 cl::init(true), 163 cl::Hidden); 164 165 // Enable atomic optimization 166 static cl::opt<bool> EnableAtomicOptimizations( 167 "amdgpu-atomic-optimizations", 168 cl::desc("Enable atomic optimizations"), 169 cl::init(false), 170 cl::Hidden); 171 172 // Enable Mode register optimization 173 static cl::opt<bool> EnableSIModeRegisterPass( 174 "amdgpu-mode-register", 175 cl::desc("Enable mode register pass"), 176 cl::init(true), 177 cl::Hidden); 178 179 // Option is used in lit tests to prevent deadcoding of patterns inspected. 180 static cl::opt<bool> 181 EnableDCEInRA("amdgpu-dce-in-ra", 182 cl::init(true), cl::Hidden, 183 cl::desc("Enable machine DCE inside regalloc")); 184 185 static cl::opt<bool> EnableScalarIRPasses( 186 "amdgpu-scalar-ir-passes", 187 cl::desc("Enable scalar IR passes"), 188 cl::init(true), 189 cl::Hidden); 190 191 static cl::opt<bool> EnableStructurizerWorkarounds( 192 "amdgpu-enable-structurizer-workarounds", 193 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 194 cl::Hidden); 195 196 static cl::opt<bool> 197 DisableLowerModuleLDS("amdgpu-disable-lower-module-lds", cl::Hidden, 198 cl::desc("Disable lower module lds pass"), 199 cl::init(false)); 200 201 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 202 // Register the target 203 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 204 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 205 206 PassRegistry *PR = PassRegistry::getPassRegistry(); 207 initializeR600ClauseMergePassPass(*PR); 208 initializeR600ControlFlowFinalizerPass(*PR); 209 initializeR600PacketizerPass(*PR); 210 initializeR600ExpandSpecialInstrsPassPass(*PR); 211 initializeR600VectorRegMergerPass(*PR); 212 initializeGlobalISel(*PR); 213 initializeAMDGPUDAGToDAGISelPass(*PR); 214 initializeGCNDPPCombinePass(*PR); 215 initializeSILowerI1CopiesPass(*PR); 216 initializeSILowerSGPRSpillsPass(*PR); 217 initializeSIFixSGPRCopiesPass(*PR); 218 initializeSIFixVGPRCopiesPass(*PR); 219 initializeSIFoldOperandsPass(*PR); 220 initializeSIPeepholeSDWAPass(*PR); 221 initializeSIShrinkInstructionsPass(*PR); 222 initializeSIOptimizeExecMaskingPreRAPass(*PR); 223 initializeSILoadStoreOptimizerPass(*PR); 224 initializeAMDGPUFixFunctionBitcastsPass(*PR); 225 initializeAMDGPUAlwaysInlinePass(*PR); 226 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 227 initializeAMDGPUAnnotateUniformValuesPass(*PR); 228 initializeAMDGPUArgumentUsageInfoPass(*PR); 229 initializeAMDGPUAtomicOptimizerPass(*PR); 230 initializeAMDGPULowerKernelArgumentsPass(*PR); 231 initializeAMDGPULowerKernelAttributesPass(*PR); 232 initializeAMDGPULowerIntrinsicsPass(*PR); 233 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 234 initializeAMDGPUPostLegalizerCombinerPass(*PR); 235 initializeAMDGPUPreLegalizerCombinerPass(*PR); 236 initializeAMDGPURegBankCombinerPass(*PR); 237 initializeAMDGPUPromoteAllocaPass(*PR); 238 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 239 initializeAMDGPUCodeGenPreparePass(*PR); 240 initializeAMDGPULateCodeGenPreparePass(*PR); 241 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 242 initializeAMDGPUPropagateAttributesLatePass(*PR); 243 initializeAMDGPULowerModuleLDSPass(*PR); 244 initializeAMDGPURewriteOutArgumentsPass(*PR); 245 initializeAMDGPUUnifyMetadataPass(*PR); 246 initializeSIAnnotateControlFlowPass(*PR); 247 initializeSIInsertHardClausesPass(*PR); 248 initializeSIInsertWaitcntsPass(*PR); 249 initializeSIModeRegisterPass(*PR); 250 initializeSIWholeQuadModePass(*PR); 251 initializeSILowerControlFlowPass(*PR); 252 initializeSIRemoveShortExecBranchesPass(*PR); 253 initializeSIPreEmitPeepholePass(*PR); 254 initializeSIInsertSkipsPass(*PR); 255 initializeSIMemoryLegalizerPass(*PR); 256 initializeSIOptimizeExecMaskingPass(*PR); 257 initializeSIPreAllocateWWMRegsPass(*PR); 258 initializeSIFormMemoryClausesPass(*PR); 259 initializeSIPostRABundlerPass(*PR); 260 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 261 initializeAMDGPUAAWrapperPassPass(*PR); 262 initializeAMDGPUExternalAAWrapperPass(*PR); 263 initializeAMDGPUUseNativeCallsPass(*PR); 264 initializeAMDGPUSimplifyLibCallsPass(*PR); 265 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 266 initializeGCNRegBankReassignPass(*PR); 267 initializeGCNNSAReassignPass(*PR); 268 initializeSIAddIMGInitPass(*PR); 269 } 270 271 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 272 return std::make_unique<AMDGPUTargetObjectFile>(); 273 } 274 275 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 276 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 277 } 278 279 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 280 return new SIScheduleDAGMI(C); 281 } 282 283 static ScheduleDAGInstrs * 284 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 285 ScheduleDAGMILive *DAG = 286 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 287 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 288 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 289 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 290 return DAG; 291 } 292 293 static ScheduleDAGInstrs * 294 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 295 auto DAG = new GCNIterativeScheduler(C, 296 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 297 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 298 return DAG; 299 } 300 301 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 302 return new GCNIterativeScheduler(C, 303 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 304 } 305 306 static ScheduleDAGInstrs * 307 createIterativeILPMachineScheduler(MachineSchedContext *C) { 308 auto DAG = new GCNIterativeScheduler(C, 309 GCNIterativeScheduler::SCHEDULE_ILP); 310 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 311 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 312 return DAG; 313 } 314 315 static MachineSchedRegistry 316 R600SchedRegistry("r600", "Run R600's custom scheduler", 317 createR600MachineScheduler); 318 319 static MachineSchedRegistry 320 SISchedRegistry("si", "Run SI's custom scheduler", 321 createSIMachineScheduler); 322 323 static MachineSchedRegistry 324 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 325 "Run GCN scheduler to maximize occupancy", 326 createGCNMaxOccupancyMachineScheduler); 327 328 static MachineSchedRegistry 329 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 330 "Run GCN scheduler to maximize occupancy (experimental)", 331 createIterativeGCNMaxOccupancyMachineScheduler); 332 333 static MachineSchedRegistry 334 GCNMinRegSchedRegistry("gcn-minreg", 335 "Run GCN iterative scheduler for minimal register usage (experimental)", 336 createMinRegScheduler); 337 338 static MachineSchedRegistry 339 GCNILPSchedRegistry("gcn-ilp", 340 "Run GCN iterative scheduler for ILP scheduling (experimental)", 341 createIterativeILPMachineScheduler); 342 343 static StringRef computeDataLayout(const Triple &TT) { 344 if (TT.getArch() == Triple::r600) { 345 // 32-bit pointers. 346 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 347 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 348 } 349 350 // 32-bit private, local, and region pointers. 64-bit global, constant and 351 // flat, non-integral buffer fat pointers. 352 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 353 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 354 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 355 "-ni:7"; 356 } 357 358 LLVM_READNONE 359 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 360 if (!GPU.empty()) 361 return GPU; 362 363 // Need to default to a target with flat support for HSA. 364 if (TT.getArch() == Triple::amdgcn) 365 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 366 367 return "r600"; 368 } 369 370 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 371 // The AMDGPU toolchain only supports generating shared objects, so we 372 // must always use PIC. 373 return Reloc::PIC_; 374 } 375 376 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 377 StringRef CPU, StringRef FS, 378 TargetOptions Options, 379 Optional<Reloc::Model> RM, 380 Optional<CodeModel::Model> CM, 381 CodeGenOpt::Level OptLevel) 382 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 383 FS, Options, getEffectiveRelocModel(RM), 384 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 385 TLOF(createTLOF(getTargetTriple())) { 386 initAsmInfo(); 387 if (TT.getArch() == Triple::amdgcn) { 388 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 389 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 390 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 391 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 392 } 393 // Set -fixed-function-abi to true if not provided.. 394 if (TT.getOS() == Triple::AMDHSA && 395 EnableAMDGPUFixedFunctionABIOpt.getNumOccurrences() == 0) 396 EnableFixedFunctionABI = true; 397 } 398 399 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 400 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 401 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 402 403 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 404 405 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 406 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 407 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 408 } 409 410 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 411 Attribute FSAttr = F.getFnAttribute("target-features"); 412 413 return FSAttr.isValid() ? FSAttr.getValueAsString() 414 : getTargetFeatureString(); 415 } 416 417 /// Predicate for Internalize pass. 418 static bool mustPreserveGV(const GlobalValue &GV) { 419 if (const Function *F = dyn_cast<Function>(&GV)) 420 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 421 422 return !GV.use_empty(); 423 } 424 425 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 426 Builder.DivergentTarget = true; 427 428 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 429 bool Internalize = InternalizeSymbols; 430 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 431 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 432 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 433 434 if (EnableFunctionCalls) { 435 delete Builder.Inliner; 436 Builder.Inliner = createFunctionInliningPass(); 437 } 438 439 Builder.addExtension( 440 PassManagerBuilder::EP_ModuleOptimizerEarly, 441 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 442 legacy::PassManagerBase &PM) { 443 if (AMDGPUAA) { 444 PM.add(createAMDGPUAAWrapperPass()); 445 PM.add(createAMDGPUExternalAAWrapperPass()); 446 } 447 PM.add(createAMDGPUUnifyMetadataPass()); 448 PM.add(createAMDGPUPrintfRuntimeBinding()); 449 if (Internalize) 450 PM.add(createInternalizePass(mustPreserveGV)); 451 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 452 if (Internalize) 453 PM.add(createGlobalDCEPass()); 454 if (EarlyInline) 455 PM.add(createAMDGPUAlwaysInlinePass(false)); 456 }); 457 458 Builder.addExtension( 459 PassManagerBuilder::EP_EarlyAsPossible, 460 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 461 legacy::PassManagerBase &PM) { 462 if (AMDGPUAA) { 463 PM.add(createAMDGPUAAWrapperPass()); 464 PM.add(createAMDGPUExternalAAWrapperPass()); 465 } 466 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 467 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 468 if (LibCallSimplify) 469 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 470 }); 471 472 Builder.addExtension( 473 PassManagerBuilder::EP_CGSCCOptimizerLate, 474 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 475 // Add infer address spaces pass to the opt pipeline after inlining 476 // but before SROA to increase SROA opportunities. 477 PM.add(createInferAddressSpacesPass()); 478 479 // This should run after inlining to have any chance of doing anything, 480 // and before other cleanup optimizations. 481 PM.add(createAMDGPULowerKernelAttributesPass()); 482 483 // Promote alloca to vector before SROA and loop unroll. If we manage 484 // to eliminate allocas before unroll we may choose to unroll less. 485 if (EnableOpt) 486 PM.add(createAMDGPUPromoteAllocaToVector()); 487 }); 488 } 489 490 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 491 AAM.registerFunctionAnalysis<AMDGPUAA>(); 492 } 493 494 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB, 495 bool DebugPassManager) { 496 PB.registerPipelineParsingCallback( 497 [this](StringRef PassName, ModulePassManager &PM, 498 ArrayRef<PassBuilder::PipelineElement>) { 499 if (PassName == "amdgpu-propagate-attributes-late") { 500 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 501 return true; 502 } 503 if (PassName == "amdgpu-unify-metadata") { 504 PM.addPass(AMDGPUUnifyMetadataPass()); 505 return true; 506 } 507 if (PassName == "amdgpu-printf-runtime-binding") { 508 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 509 return true; 510 } 511 if (PassName == "amdgpu-always-inline") { 512 PM.addPass(AMDGPUAlwaysInlinePass()); 513 return true; 514 } 515 if (PassName == "amdgpu-lower-module-lds") { 516 PM.addPass(AMDGPULowerModuleLDSPass()); 517 return true; 518 } 519 return false; 520 }); 521 PB.registerPipelineParsingCallback( 522 [this](StringRef PassName, FunctionPassManager &PM, 523 ArrayRef<PassBuilder::PipelineElement>) { 524 if (PassName == "amdgpu-simplifylib") { 525 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 526 return true; 527 } 528 if (PassName == "amdgpu-usenative") { 529 PM.addPass(AMDGPUUseNativeCallsPass()); 530 return true; 531 } 532 if (PassName == "amdgpu-promote-alloca") { 533 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 534 return true; 535 } 536 if (PassName == "amdgpu-promote-alloca-to-vector") { 537 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 538 return true; 539 } 540 if (PassName == "amdgpu-lower-kernel-attributes") { 541 PM.addPass(AMDGPULowerKernelAttributesPass()); 542 return true; 543 } 544 if (PassName == "amdgpu-propagate-attributes-early") { 545 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 546 return true; 547 } 548 return false; 549 }); 550 551 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 552 FAM.registerPass([&] { return AMDGPUAA(); }); 553 }); 554 555 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 556 if (AAName == "amdgpu-aa") { 557 AAM.registerFunctionAnalysis<AMDGPUAA>(); 558 return true; 559 } 560 return false; 561 }); 562 563 PB.registerPipelineStartEPCallback([this, DebugPassManager]( 564 ModulePassManager &PM, 565 PassBuilder::OptimizationLevel Level) { 566 FunctionPassManager FPM(DebugPassManager); 567 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 568 FPM.addPass(AMDGPUUseNativeCallsPass()); 569 if (EnableLibCallSimplify && Level != PassBuilder::OptimizationLevel::O0) 570 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 571 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 572 }); 573 574 PB.registerPipelineEarlySimplificationEPCallback( 575 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) { 576 if (Level == PassBuilder::OptimizationLevel::O0) 577 return; 578 579 PM.addPass(AMDGPUUnifyMetadataPass()); 580 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 581 582 if (InternalizeSymbols) { 583 PM.addPass(InternalizePass(mustPreserveGV)); 584 } 585 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 586 if (InternalizeSymbols) { 587 PM.addPass(GlobalDCEPass()); 588 } 589 if (EarlyInlineAll && !EnableFunctionCalls) 590 PM.addPass(AMDGPUAlwaysInlinePass()); 591 }); 592 593 PB.registerCGSCCOptimizerLateEPCallback( 594 [this, DebugPassManager](CGSCCPassManager &PM, 595 PassBuilder::OptimizationLevel Level) { 596 if (Level == PassBuilder::OptimizationLevel::O0) 597 return; 598 599 FunctionPassManager FPM(DebugPassManager); 600 601 // Add infer address spaces pass to the opt pipeline after inlining 602 // but before SROA to increase SROA opportunities. 603 FPM.addPass(InferAddressSpacesPass()); 604 605 // This should run after inlining to have any chance of doing 606 // anything, and before other cleanup optimizations. 607 FPM.addPass(AMDGPULowerKernelAttributesPass()); 608 609 if (Level != PassBuilder::OptimizationLevel::O0) { 610 // Promote alloca to vector before SROA and loop unroll. If we 611 // manage to eliminate allocas before unroll we may choose to unroll 612 // less. 613 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 614 } 615 616 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 617 }); 618 } 619 620 //===----------------------------------------------------------------------===// 621 // R600 Target Machine (R600 -> Cayman) 622 //===----------------------------------------------------------------------===// 623 624 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 625 StringRef CPU, StringRef FS, 626 TargetOptions Options, 627 Optional<Reloc::Model> RM, 628 Optional<CodeModel::Model> CM, 629 CodeGenOpt::Level OL, bool JIT) 630 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 631 setRequiresStructuredCFG(true); 632 633 // Override the default since calls aren't supported for r600. 634 if (EnableFunctionCalls && 635 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 636 EnableFunctionCalls = false; 637 } 638 639 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 640 const Function &F) const { 641 StringRef GPU = getGPUName(F); 642 StringRef FS = getFeatureString(F); 643 644 SmallString<128> SubtargetKey(GPU); 645 SubtargetKey.append(FS); 646 647 auto &I = SubtargetMap[SubtargetKey]; 648 if (!I) { 649 // This needs to be done before we create a new subtarget since any 650 // creation will depend on the TM and the code generation flags on the 651 // function that reside in TargetOptions. 652 resetTargetOptions(F); 653 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 654 } 655 656 return I.get(); 657 } 658 659 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 660 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 661 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 662 AddrSpace == AMDGPUAS::REGION_ADDRESS) 663 ? -1 664 : 0; 665 } 666 667 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 668 unsigned DestAS) const { 669 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 670 AMDGPU::isFlatGlobalAddrSpace(DestAS); 671 } 672 673 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 674 const auto *LD = dyn_cast<LoadInst>(V); 675 if (!LD) 676 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 677 678 // It must be a generic pointer loaded. 679 assert(V->getType()->isPointerTy() && 680 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 681 682 const auto *Ptr = LD->getPointerOperand(); 683 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 684 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 685 // For a generic pointer loaded from the constant memory, it could be assumed 686 // as a global pointer since the constant memory is only populated on the 687 // host side. As implied by the offload programming model, only global 688 // pointers could be referenced on the host side. 689 return AMDGPUAS::GLOBAL_ADDRESS; 690 } 691 692 TargetTransformInfo 693 R600TargetMachine::getTargetTransformInfo(const Function &F) { 694 return TargetTransformInfo(R600TTIImpl(this, F)); 695 } 696 697 //===----------------------------------------------------------------------===// 698 // GCN Target Machine (SI+) 699 //===----------------------------------------------------------------------===// 700 701 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 702 StringRef CPU, StringRef FS, 703 TargetOptions Options, 704 Optional<Reloc::Model> RM, 705 Optional<CodeModel::Model> CM, 706 CodeGenOpt::Level OL, bool JIT) 707 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 708 709 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 710 StringRef GPU = getGPUName(F); 711 StringRef FS = getFeatureString(F); 712 713 SmallString<128> SubtargetKey(GPU); 714 SubtargetKey.append(FS); 715 716 auto &I = SubtargetMap[SubtargetKey]; 717 if (!I) { 718 // This needs to be done before we create a new subtarget since any 719 // creation will depend on the TM and the code generation flags on the 720 // function that reside in TargetOptions. 721 resetTargetOptions(F); 722 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 723 } 724 725 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 726 727 return I.get(); 728 } 729 730 TargetTransformInfo 731 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 732 return TargetTransformInfo(GCNTTIImpl(this, F)); 733 } 734 735 //===----------------------------------------------------------------------===// 736 // AMDGPU Pass Setup 737 //===----------------------------------------------------------------------===// 738 739 namespace { 740 741 class AMDGPUPassConfig : public TargetPassConfig { 742 public: 743 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 744 : TargetPassConfig(TM, PM) { 745 // Exceptions and StackMaps are not supported, so these passes will never do 746 // anything. 747 disablePass(&StackMapLivenessID); 748 disablePass(&FuncletLayoutID); 749 } 750 751 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 752 return getTM<AMDGPUTargetMachine>(); 753 } 754 755 ScheduleDAGInstrs * 756 createMachineScheduler(MachineSchedContext *C) const override { 757 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 758 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 759 return DAG; 760 } 761 762 void addEarlyCSEOrGVNPass(); 763 void addStraightLineScalarOptimizationPasses(); 764 void addIRPasses() override; 765 void addCodeGenPrepare() override; 766 bool addPreISel() override; 767 bool addInstSelector() override; 768 bool addGCPasses() override; 769 770 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 771 }; 772 773 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 774 return getStandardCSEConfigForOpt(TM->getOptLevel()); 775 } 776 777 class R600PassConfig final : public AMDGPUPassConfig { 778 public: 779 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 780 : AMDGPUPassConfig(TM, PM) {} 781 782 ScheduleDAGInstrs *createMachineScheduler( 783 MachineSchedContext *C) const override { 784 return createR600MachineScheduler(C); 785 } 786 787 bool addPreISel() override; 788 bool addInstSelector() override; 789 void addPreRegAlloc() override; 790 void addPreSched2() override; 791 void addPreEmitPass() override; 792 }; 793 794 class GCNPassConfig final : public AMDGPUPassConfig { 795 public: 796 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 797 : AMDGPUPassConfig(TM, PM) { 798 // It is necessary to know the register usage of the entire call graph. We 799 // allow calls without EnableAMDGPUFunctionCalls if they are marked 800 // noinline, so this is always required. 801 setRequiresCodeGenSCCOrder(true); 802 } 803 804 GCNTargetMachine &getGCNTargetMachine() const { 805 return getTM<GCNTargetMachine>(); 806 } 807 808 ScheduleDAGInstrs * 809 createMachineScheduler(MachineSchedContext *C) const override; 810 811 bool addPreISel() override; 812 void addMachineSSAOptimization() override; 813 bool addILPOpts() override; 814 bool addInstSelector() override; 815 bool addIRTranslator() override; 816 void addPreLegalizeMachineIR() override; 817 bool addLegalizeMachineIR() override; 818 void addPreRegBankSelect() override; 819 bool addRegBankSelect() override; 820 void addPreGlobalInstructionSelect() override; 821 bool addGlobalInstructionSelect() override; 822 void addFastRegAlloc() override; 823 void addOptimizedRegAlloc() override; 824 void addPreRegAlloc() override; 825 bool addPreRewrite() override; 826 void addPostRegAlloc() override; 827 void addPreSched2() override; 828 void addPreEmitPass() override; 829 }; 830 831 } // end anonymous namespace 832 833 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 834 if (getOptLevel() == CodeGenOpt::Aggressive) 835 addPass(createGVNPass()); 836 else 837 addPass(createEarlyCSEPass()); 838 } 839 840 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 841 addPass(createLICMPass()); 842 addPass(createSeparateConstOffsetFromGEPPass()); 843 addPass(createSpeculativeExecutionPass()); 844 // ReassociateGEPs exposes more opportunites for SLSR. See 845 // the example in reassociate-geps-and-slsr.ll. 846 addPass(createStraightLineStrengthReducePass()); 847 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 848 // EarlyCSE can reuse. 849 addEarlyCSEOrGVNPass(); 850 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 851 addPass(createNaryReassociatePass()); 852 // NaryReassociate on GEPs creates redundant common expressions, so run 853 // EarlyCSE after it. 854 addPass(createEarlyCSEPass()); 855 } 856 857 void AMDGPUPassConfig::addIRPasses() { 858 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 859 860 // There is no reason to run these. 861 disablePass(&StackMapLivenessID); 862 disablePass(&FuncletLayoutID); 863 disablePass(&PatchableFunctionID); 864 865 addPass(createAMDGPUPrintfRuntimeBinding()); 866 867 // This must occur before inlining, as the inliner will not look through 868 // bitcast calls. 869 addPass(createAMDGPUFixFunctionBitcastsPass()); 870 871 // A call to propagate attributes pass in the backend in case opt was not run. 872 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 873 874 addPass(createAtomicExpandPass()); 875 876 877 addPass(createAMDGPULowerIntrinsicsPass()); 878 879 // Function calls are not supported, so make sure we inline everything. 880 addPass(createAMDGPUAlwaysInlinePass()); 881 addPass(createAlwaysInlinerLegacyPass()); 882 // We need to add the barrier noop pass, otherwise adding the function 883 // inlining pass will cause all of the PassConfigs passes to be run 884 // one function at a time, which means if we have a nodule with two 885 // functions, then we will generate code for the first function 886 // without ever running any passes on the second. 887 addPass(createBarrierNoopPass()); 888 889 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 890 if (TM.getTargetTriple().getArch() == Triple::r600) 891 addPass(createR600OpenCLImageTypeLoweringPass()); 892 893 // Replace OpenCL enqueued block function pointers with global variables. 894 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 895 896 // Can increase LDS used by kernel so runs before PromoteAlloca 897 if (!DisableLowerModuleLDS) 898 addPass(createAMDGPULowerModuleLDSPass()); 899 900 if (TM.getOptLevel() > CodeGenOpt::None) { 901 addPass(createInferAddressSpacesPass()); 902 addPass(createAMDGPUPromoteAlloca()); 903 904 if (EnableSROA) 905 addPass(createSROAPass()); 906 907 if (EnableScalarIRPasses) 908 addStraightLineScalarOptimizationPasses(); 909 910 if (EnableAMDGPUAliasAnalysis) { 911 addPass(createAMDGPUAAWrapperPass()); 912 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 913 AAResults &AAR) { 914 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 915 AAR.addAAResult(WrapperPass->getResult()); 916 })); 917 } 918 } 919 920 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 921 // TODO: May want to move later or split into an early and late one. 922 addPass(createAMDGPUCodeGenPreparePass()); 923 } 924 925 TargetPassConfig::addIRPasses(); 926 927 // EarlyCSE is not always strong enough to clean up what LSR produces. For 928 // example, GVN can combine 929 // 930 // %0 = add %a, %b 931 // %1 = add %b, %a 932 // 933 // and 934 // 935 // %0 = shl nsw %a, 2 936 // %1 = shl %a, 2 937 // 938 // but EarlyCSE can do neither of them. 939 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 940 addEarlyCSEOrGVNPass(); 941 } 942 943 void AMDGPUPassConfig::addCodeGenPrepare() { 944 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 945 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 946 947 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 948 EnableLowerKernelArguments) 949 addPass(createAMDGPULowerKernelArgumentsPass()); 950 951 addPass(&AMDGPUPerfHintAnalysisID); 952 953 TargetPassConfig::addCodeGenPrepare(); 954 955 if (EnableLoadStoreVectorizer) 956 addPass(createLoadStoreVectorizerPass()); 957 958 // LowerSwitch pass may introduce unreachable blocks that can 959 // cause unexpected behavior for subsequent passes. Placing it 960 // here seems better that these blocks would get cleaned up by 961 // UnreachableBlockElim inserted next in the pass flow. 962 addPass(createLowerSwitchPass()); 963 } 964 965 bool AMDGPUPassConfig::addPreISel() { 966 addPass(createFlattenCFGPass()); 967 return false; 968 } 969 970 bool AMDGPUPassConfig::addInstSelector() { 971 // Defer the verifier until FinalizeISel. 972 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 973 return false; 974 } 975 976 bool AMDGPUPassConfig::addGCPasses() { 977 // Do nothing. GC is not supported. 978 return false; 979 } 980 981 //===----------------------------------------------------------------------===// 982 // R600 Pass Setup 983 //===----------------------------------------------------------------------===// 984 985 bool R600PassConfig::addPreISel() { 986 AMDGPUPassConfig::addPreISel(); 987 988 if (EnableR600StructurizeCFG) 989 addPass(createStructurizeCFGPass()); 990 return false; 991 } 992 993 bool R600PassConfig::addInstSelector() { 994 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 995 return false; 996 } 997 998 void R600PassConfig::addPreRegAlloc() { 999 addPass(createR600VectorRegMerger()); 1000 } 1001 1002 void R600PassConfig::addPreSched2() { 1003 addPass(createR600EmitClauseMarkers(), false); 1004 if (EnableR600IfConvert) 1005 addPass(&IfConverterID, false); 1006 addPass(createR600ClauseMergePass(), false); 1007 } 1008 1009 void R600PassConfig::addPreEmitPass() { 1010 addPass(createAMDGPUCFGStructurizerPass(), false); 1011 addPass(createR600ExpandSpecialInstrsPass(), false); 1012 addPass(&FinalizeMachineBundlesID, false); 1013 addPass(createR600Packetizer(), false); 1014 addPass(createR600ControlFlowFinalizer(), false); 1015 } 1016 1017 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 1018 return new R600PassConfig(*this, PM); 1019 } 1020 1021 //===----------------------------------------------------------------------===// 1022 // GCN Pass Setup 1023 //===----------------------------------------------------------------------===// 1024 1025 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1026 MachineSchedContext *C) const { 1027 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1028 if (ST.enableSIScheduler()) 1029 return createSIMachineScheduler(C); 1030 return createGCNMaxOccupancyMachineScheduler(C); 1031 } 1032 1033 bool GCNPassConfig::addPreISel() { 1034 AMDGPUPassConfig::addPreISel(); 1035 1036 addPass(createAMDGPULateCodeGenPreparePass()); 1037 if (EnableAtomicOptimizations) { 1038 addPass(createAMDGPUAtomicOptimizerPass()); 1039 } 1040 1041 // FIXME: We need to run a pass to propagate the attributes when calls are 1042 // supported. 1043 1044 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1045 // regions formed by them. 1046 addPass(&AMDGPUUnifyDivergentExitNodesID); 1047 if (!LateCFGStructurize) { 1048 if (EnableStructurizerWorkarounds) { 1049 addPass(createFixIrreduciblePass()); 1050 addPass(createUnifyLoopExitsPass()); 1051 } 1052 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1053 } 1054 addPass(createSinkingPass()); 1055 addPass(createAMDGPUAnnotateUniformValues()); 1056 if (!LateCFGStructurize) { 1057 addPass(createSIAnnotateControlFlowPass()); 1058 } 1059 addPass(createLCSSAPass()); 1060 1061 return false; 1062 } 1063 1064 void GCNPassConfig::addMachineSSAOptimization() { 1065 TargetPassConfig::addMachineSSAOptimization(); 1066 1067 // We want to fold operands after PeepholeOptimizer has run (or as part of 1068 // it), because it will eliminate extra copies making it easier to fold the 1069 // real source operand. We want to eliminate dead instructions after, so that 1070 // we see fewer uses of the copies. We then need to clean up the dead 1071 // instructions leftover after the operands are folded as well. 1072 // 1073 // XXX - Can we get away without running DeadMachineInstructionElim again? 1074 addPass(&SIFoldOperandsID); 1075 if (EnableDPPCombine) 1076 addPass(&GCNDPPCombineID); 1077 addPass(&DeadMachineInstructionElimID); 1078 addPass(&SILoadStoreOptimizerID); 1079 if (EnableSDWAPeephole) { 1080 addPass(&SIPeepholeSDWAID); 1081 addPass(&EarlyMachineLICMID); 1082 addPass(&MachineCSEID); 1083 addPass(&SIFoldOperandsID); 1084 addPass(&DeadMachineInstructionElimID); 1085 } 1086 addPass(createSIShrinkInstructionsPass()); 1087 } 1088 1089 bool GCNPassConfig::addILPOpts() { 1090 if (EnableEarlyIfConversion) 1091 addPass(&EarlyIfConverterID); 1092 1093 TargetPassConfig::addILPOpts(); 1094 return false; 1095 } 1096 1097 bool GCNPassConfig::addInstSelector() { 1098 AMDGPUPassConfig::addInstSelector(); 1099 addPass(&SIFixSGPRCopiesID); 1100 addPass(createSILowerI1CopiesPass()); 1101 addPass(createSIAddIMGInitPass()); 1102 return false; 1103 } 1104 1105 bool GCNPassConfig::addIRTranslator() { 1106 addPass(new IRTranslator(getOptLevel())); 1107 return false; 1108 } 1109 1110 void GCNPassConfig::addPreLegalizeMachineIR() { 1111 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1112 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1113 addPass(new Localizer()); 1114 } 1115 1116 bool GCNPassConfig::addLegalizeMachineIR() { 1117 addPass(new Legalizer()); 1118 return false; 1119 } 1120 1121 void GCNPassConfig::addPreRegBankSelect() { 1122 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1123 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1124 } 1125 1126 bool GCNPassConfig::addRegBankSelect() { 1127 addPass(new RegBankSelect()); 1128 return false; 1129 } 1130 1131 void GCNPassConfig::addPreGlobalInstructionSelect() { 1132 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1133 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1134 } 1135 1136 bool GCNPassConfig::addGlobalInstructionSelect() { 1137 addPass(new InstructionSelect(getOptLevel())); 1138 // TODO: Fix instruction selection to do the right thing for image 1139 // instructions with tfe or lwe in the first place, instead of running a 1140 // separate pass to fix them up? 1141 addPass(createSIAddIMGInitPass()); 1142 return false; 1143 } 1144 1145 void GCNPassConfig::addPreRegAlloc() { 1146 if (LateCFGStructurize) { 1147 addPass(createAMDGPUMachineCFGStructurizerPass()); 1148 } 1149 } 1150 1151 void GCNPassConfig::addFastRegAlloc() { 1152 // FIXME: We have to disable the verifier here because of PHIElimination + 1153 // TwoAddressInstructions disabling it. 1154 1155 // This must be run immediately after phi elimination and before 1156 // TwoAddressInstructions, otherwise the processing of the tied operand of 1157 // SI_ELSE will introduce a copy of the tied operand source after the else. 1158 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1159 1160 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1161 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1162 1163 TargetPassConfig::addFastRegAlloc(); 1164 } 1165 1166 void GCNPassConfig::addOptimizedRegAlloc() { 1167 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1168 // instructions that cause scheduling barriers. 1169 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1170 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1171 1172 if (OptExecMaskPreRA) 1173 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1174 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1175 1176 // This must be run immediately after phi elimination and before 1177 // TwoAddressInstructions, otherwise the processing of the tied operand of 1178 // SI_ELSE will introduce a copy of the tied operand source after the else. 1179 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1180 1181 if (EnableDCEInRA) 1182 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1183 1184 TargetPassConfig::addOptimizedRegAlloc(); 1185 } 1186 1187 bool GCNPassConfig::addPreRewrite() { 1188 if (EnableRegReassign) { 1189 addPass(&GCNNSAReassignID); 1190 addPass(&GCNRegBankReassignID); 1191 } 1192 return true; 1193 } 1194 1195 void GCNPassConfig::addPostRegAlloc() { 1196 addPass(&SIFixVGPRCopiesID); 1197 if (getOptLevel() > CodeGenOpt::None) 1198 addPass(&SIOptimizeExecMaskingID); 1199 TargetPassConfig::addPostRegAlloc(); 1200 1201 // Equivalent of PEI for SGPRs. 1202 addPass(&SILowerSGPRSpillsID); 1203 } 1204 1205 void GCNPassConfig::addPreSched2() { 1206 addPass(&SIPostRABundlerID); 1207 } 1208 1209 void GCNPassConfig::addPreEmitPass() { 1210 addPass(createSIMemoryLegalizerPass()); 1211 addPass(createSIInsertWaitcntsPass()); 1212 addPass(createSIShrinkInstructionsPass()); 1213 addPass(createSIModeRegisterPass()); 1214 1215 if (getOptLevel() > CodeGenOpt::None) 1216 addPass(&SIInsertHardClausesID); 1217 1218 addPass(&SIRemoveShortExecBranchesID); 1219 addPass(&SIInsertSkipsPassID); 1220 addPass(&SIPreEmitPeepholeID); 1221 // The hazard recognizer that runs as part of the post-ra scheduler does not 1222 // guarantee to be able handle all hazards correctly. This is because if there 1223 // are multiple scheduling regions in a basic block, the regions are scheduled 1224 // bottom up, so when we begin to schedule a region we don't know what 1225 // instructions were emitted directly before it. 1226 // 1227 // Here we add a stand-alone hazard recognizer pass which can handle all 1228 // cases. 1229 addPass(&PostRAHazardRecognizerID); 1230 addPass(&BranchRelaxationPassID); 1231 } 1232 1233 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1234 return new GCNPassConfig(*this, PM); 1235 } 1236 1237 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1238 return new yaml::SIMachineFunctionInfo(); 1239 } 1240 1241 yaml::MachineFunctionInfo * 1242 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1243 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1244 return new yaml::SIMachineFunctionInfo(*MFI, 1245 *MF.getSubtarget().getRegisterInfo()); 1246 } 1247 1248 bool GCNTargetMachine::parseMachineFunctionInfo( 1249 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1250 SMDiagnostic &Error, SMRange &SourceRange) const { 1251 const yaml::SIMachineFunctionInfo &YamlMFI = 1252 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1253 MachineFunction &MF = PFS.MF; 1254 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1255 1256 MFI->initializeBaseYamlFields(YamlMFI); 1257 1258 if (MFI->Occupancy == 0) { 1259 // Fixup the subtarget dependent default value. 1260 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1261 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1262 } 1263 1264 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1265 Register TempReg; 1266 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1267 SourceRange = RegName.SourceRange; 1268 return true; 1269 } 1270 RegVal = TempReg; 1271 1272 return false; 1273 }; 1274 1275 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1276 // Create a diagnostic for a the register string literal. 1277 const MemoryBuffer &Buffer = 1278 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1279 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1280 RegName.Value.size(), SourceMgr::DK_Error, 1281 "incorrect register class for field", RegName.Value, 1282 None, None); 1283 SourceRange = RegName.SourceRange; 1284 return true; 1285 }; 1286 1287 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1288 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1289 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1290 return true; 1291 1292 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1293 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1294 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1295 } 1296 1297 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1298 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1299 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1300 } 1301 1302 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1303 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1304 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1305 } 1306 1307 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1308 const TargetRegisterClass &RC, 1309 ArgDescriptor &Arg, unsigned UserSGPRs, 1310 unsigned SystemSGPRs) { 1311 // Skip parsing if it's not present. 1312 if (!A) 1313 return false; 1314 1315 if (A->IsRegister) { 1316 Register Reg; 1317 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1318 SourceRange = A->RegisterName.SourceRange; 1319 return true; 1320 } 1321 if (!RC.contains(Reg)) 1322 return diagnoseRegisterClass(A->RegisterName); 1323 Arg = ArgDescriptor::createRegister(Reg); 1324 } else 1325 Arg = ArgDescriptor::createStack(A->StackOffset); 1326 // Check and apply the optional mask. 1327 if (A->Mask) 1328 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1329 1330 MFI->NumUserSGPRs += UserSGPRs; 1331 MFI->NumSystemSGPRs += SystemSGPRs; 1332 return false; 1333 }; 1334 1335 if (YamlMFI.ArgInfo && 1336 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1337 AMDGPU::SGPR_128RegClass, 1338 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1339 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1340 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1341 2, 0) || 1342 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1343 MFI->ArgInfo.QueuePtr, 2, 0) || 1344 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1345 AMDGPU::SReg_64RegClass, 1346 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1347 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1348 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1349 2, 0) || 1350 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1351 AMDGPU::SReg_64RegClass, 1352 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1353 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1354 AMDGPU::SGPR_32RegClass, 1355 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1356 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1357 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1358 0, 1) || 1359 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1360 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1361 0, 1) || 1362 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1363 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1364 0, 1) || 1365 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1366 AMDGPU::SGPR_32RegClass, 1367 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1368 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1369 AMDGPU::SGPR_32RegClass, 1370 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1371 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1372 AMDGPU::SReg_64RegClass, 1373 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1374 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1375 AMDGPU::SReg_64RegClass, 1376 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1377 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1378 AMDGPU::VGPR_32RegClass, 1379 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1380 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1381 AMDGPU::VGPR_32RegClass, 1382 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1383 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1384 AMDGPU::VGPR_32RegClass, 1385 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1386 return true; 1387 1388 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1389 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1390 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1391 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1392 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1393 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1394 1395 return false; 1396 } 1397