1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUMacroFusion.h" 20 #include "AMDGPUTargetObjectFile.h" 21 #include "AMDGPUTargetTransformInfo.h" 22 #include "GCNIterativeScheduler.h" 23 #include "GCNSchedStrategy.h" 24 #include "R600MachineScheduler.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIMachineScheduler.h" 27 #include "TargetInfo/AMDGPUTargetInfo.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/Localizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/TargetPassConfig.h" 36 #include "llvm/IR/LegacyPassManager.h" 37 #include "llvm/IR/PassManager.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/TargetRegistry.h" 41 #include "llvm/Transforms/IPO.h" 42 #include "llvm/Transforms/IPO/AlwaysInliner.h" 43 #include "llvm/Transforms/IPO/GlobalDCE.h" 44 #include "llvm/Transforms/IPO/Internalize.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 #include "llvm/Transforms/Vectorize.h" 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableR600StructurizeCFG( 56 "r600-ir-structurize", 57 cl::desc("Use StructurizeCFG IR pass"), 58 cl::init(true)); 59 60 static cl::opt<bool> EnableSROA( 61 "amdgpu-sroa", 62 cl::desc("Run SROA after promote alloca pass"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 static cl::opt<bool> 67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 68 cl::desc("Run early if-conversion"), 69 cl::init(false)); 70 71 static cl::opt<bool> 72 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 73 cl::desc("Run pre-RA exec mask optimizations"), 74 cl::init(true)); 75 76 static cl::opt<bool> EnableR600IfConvert( 77 "r600-if-convert", 78 cl::desc("Use if conversion pass"), 79 cl::ReallyHidden, 80 cl::init(true)); 81 82 // Option to disable vectorizer for tests. 83 static cl::opt<bool> EnableLoadStoreVectorizer( 84 "amdgpu-load-store-vectorizer", 85 cl::desc("Enable load store vectorizer"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to control global loads scalarization 90 static cl::opt<bool> ScalarizeGlobal( 91 "amdgpu-scalarize-global-loads", 92 cl::desc("Enable global load scalarization"), 93 cl::init(true), 94 cl::Hidden); 95 96 // Option to run internalize pass. 97 static cl::opt<bool> InternalizeSymbols( 98 "amdgpu-internalize-symbols", 99 cl::desc("Enable elimination of non-kernel functions and unused globals"), 100 cl::init(false), 101 cl::Hidden); 102 103 // Option to inline all early. 104 static cl::opt<bool> EarlyInlineAll( 105 "amdgpu-early-inline-all", 106 cl::desc("Inline all functions early"), 107 cl::init(false), 108 cl::Hidden); 109 110 static cl::opt<bool> EnableSDWAPeephole( 111 "amdgpu-sdwa-peephole", 112 cl::desc("Enable SDWA peepholer"), 113 cl::init(true)); 114 115 static cl::opt<bool> EnableDPPCombine( 116 "amdgpu-dpp-combine", 117 cl::desc("Enable DPP combiner"), 118 cl::init(true)); 119 120 // Enable address space based alias analysis 121 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 122 cl::desc("Enable AMDGPU Alias Analysis"), 123 cl::init(true)); 124 125 // Option to run late CFG structurizer 126 static cl::opt<bool, true> LateCFGStructurize( 127 "amdgpu-late-structurize", 128 cl::desc("Enable late CFG structurization"), 129 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 130 cl::Hidden); 131 132 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 133 "amdgpu-function-calls", 134 cl::desc("Enable AMDGPU function call support"), 135 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 136 cl::init(true), 137 cl::Hidden); 138 139 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 140 "amdgpu-fixed-function-abi", 141 cl::desc("Enable all implicit function arguments"), 142 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 143 cl::init(false), 144 cl::Hidden); 145 146 // Enable lib calls simplifications 147 static cl::opt<bool> EnableLibCallSimplify( 148 "amdgpu-simplify-libcall", 149 cl::desc("Enable amdgpu library simplifications"), 150 cl::init(true), 151 cl::Hidden); 152 153 static cl::opt<bool> EnableLowerKernelArguments( 154 "amdgpu-ir-lower-kernel-arguments", 155 cl::desc("Lower kernel argument loads in IR pass"), 156 cl::init(true), 157 cl::Hidden); 158 159 static cl::opt<bool> EnableRegReassign( 160 "amdgpu-reassign-regs", 161 cl::desc("Enable register reassign optimizations on gfx10+"), 162 cl::init(true), 163 cl::Hidden); 164 165 // Enable atomic optimization 166 static cl::opt<bool> EnableAtomicOptimizations( 167 "amdgpu-atomic-optimizations", 168 cl::desc("Enable atomic optimizations"), 169 cl::init(false), 170 cl::Hidden); 171 172 // Enable Mode register optimization 173 static cl::opt<bool> EnableSIModeRegisterPass( 174 "amdgpu-mode-register", 175 cl::desc("Enable mode register pass"), 176 cl::init(true), 177 cl::Hidden); 178 179 // Option is used in lit tests to prevent deadcoding of patterns inspected. 180 static cl::opt<bool> 181 EnableDCEInRA("amdgpu-dce-in-ra", 182 cl::init(true), cl::Hidden, 183 cl::desc("Enable machine DCE inside regalloc")); 184 185 static cl::opt<bool> EnableScalarIRPasses( 186 "amdgpu-scalar-ir-passes", 187 cl::desc("Enable scalar IR passes"), 188 cl::init(true), 189 cl::Hidden); 190 191 static cl::opt<bool> EnableStructurizerWorkarounds( 192 "amdgpu-enable-structurizer-workarounds", 193 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 194 cl::Hidden); 195 196 static cl::opt<bool, true> EnableLowerModuleLDS( 197 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), 198 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), 199 cl::Hidden); 200 201 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 202 // Register the target 203 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 204 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 205 206 PassRegistry *PR = PassRegistry::getPassRegistry(); 207 initializeR600ClauseMergePassPass(*PR); 208 initializeR600ControlFlowFinalizerPass(*PR); 209 initializeR600PacketizerPass(*PR); 210 initializeR600ExpandSpecialInstrsPassPass(*PR); 211 initializeR600VectorRegMergerPass(*PR); 212 initializeGlobalISel(*PR); 213 initializeAMDGPUDAGToDAGISelPass(*PR); 214 initializeGCNDPPCombinePass(*PR); 215 initializeSILowerI1CopiesPass(*PR); 216 initializeSILowerSGPRSpillsPass(*PR); 217 initializeSIFixSGPRCopiesPass(*PR); 218 initializeSIFixVGPRCopiesPass(*PR); 219 initializeSIFoldOperandsPass(*PR); 220 initializeSIPeepholeSDWAPass(*PR); 221 initializeSIShrinkInstructionsPass(*PR); 222 initializeSIOptimizeExecMaskingPreRAPass(*PR); 223 initializeSILoadStoreOptimizerPass(*PR); 224 initializeAMDGPUFixFunctionBitcastsPass(*PR); 225 initializeAMDGPUAlwaysInlinePass(*PR); 226 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 227 initializeAMDGPUAnnotateUniformValuesPass(*PR); 228 initializeAMDGPUArgumentUsageInfoPass(*PR); 229 initializeAMDGPUAtomicOptimizerPass(*PR); 230 initializeAMDGPULowerKernelArgumentsPass(*PR); 231 initializeAMDGPULowerKernelAttributesPass(*PR); 232 initializeAMDGPULowerIntrinsicsPass(*PR); 233 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 234 initializeAMDGPUPostLegalizerCombinerPass(*PR); 235 initializeAMDGPUPreLegalizerCombinerPass(*PR); 236 initializeAMDGPURegBankCombinerPass(*PR); 237 initializeAMDGPUPromoteAllocaPass(*PR); 238 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 239 initializeAMDGPUCodeGenPreparePass(*PR); 240 initializeAMDGPULateCodeGenPreparePass(*PR); 241 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 242 initializeAMDGPUPropagateAttributesLatePass(*PR); 243 initializeAMDGPULowerModuleLDSPass(*PR); 244 initializeAMDGPURewriteOutArgumentsPass(*PR); 245 initializeAMDGPUUnifyMetadataPass(*PR); 246 initializeSIAnnotateControlFlowPass(*PR); 247 initializeSIInsertHardClausesPass(*PR); 248 initializeSIInsertWaitcntsPass(*PR); 249 initializeSIModeRegisterPass(*PR); 250 initializeSIWholeQuadModePass(*PR); 251 initializeSILowerControlFlowPass(*PR); 252 initializeSIPreEmitPeepholePass(*PR); 253 initializeSILateBranchLoweringPass(*PR); 254 initializeSIMemoryLegalizerPass(*PR); 255 initializeSIOptimizeExecMaskingPass(*PR); 256 initializeSIPreAllocateWWMRegsPass(*PR); 257 initializeSIFormMemoryClausesPass(*PR); 258 initializeSIPostRABundlerPass(*PR); 259 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 260 initializeAMDGPUAAWrapperPassPass(*PR); 261 initializeAMDGPUExternalAAWrapperPass(*PR); 262 initializeAMDGPUUseNativeCallsPass(*PR); 263 initializeAMDGPUSimplifyLibCallsPass(*PR); 264 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 265 initializeGCNNSAReassignPass(*PR); 266 } 267 268 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 269 return std::make_unique<AMDGPUTargetObjectFile>(); 270 } 271 272 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 273 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 274 } 275 276 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 277 return new SIScheduleDAGMI(C); 278 } 279 280 static ScheduleDAGInstrs * 281 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 282 ScheduleDAGMILive *DAG = 283 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 284 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 285 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 286 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 287 return DAG; 288 } 289 290 static ScheduleDAGInstrs * 291 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 292 auto DAG = new GCNIterativeScheduler(C, 293 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 294 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 295 return DAG; 296 } 297 298 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 299 return new GCNIterativeScheduler(C, 300 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 301 } 302 303 static ScheduleDAGInstrs * 304 createIterativeILPMachineScheduler(MachineSchedContext *C) { 305 auto DAG = new GCNIterativeScheduler(C, 306 GCNIterativeScheduler::SCHEDULE_ILP); 307 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 308 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 309 return DAG; 310 } 311 312 static MachineSchedRegistry 313 R600SchedRegistry("r600", "Run R600's custom scheduler", 314 createR600MachineScheduler); 315 316 static MachineSchedRegistry 317 SISchedRegistry("si", "Run SI's custom scheduler", 318 createSIMachineScheduler); 319 320 static MachineSchedRegistry 321 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 322 "Run GCN scheduler to maximize occupancy", 323 createGCNMaxOccupancyMachineScheduler); 324 325 static MachineSchedRegistry 326 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 327 "Run GCN scheduler to maximize occupancy (experimental)", 328 createIterativeGCNMaxOccupancyMachineScheduler); 329 330 static MachineSchedRegistry 331 GCNMinRegSchedRegistry("gcn-minreg", 332 "Run GCN iterative scheduler for minimal register usage (experimental)", 333 createMinRegScheduler); 334 335 static MachineSchedRegistry 336 GCNILPSchedRegistry("gcn-ilp", 337 "Run GCN iterative scheduler for ILP scheduling (experimental)", 338 createIterativeILPMachineScheduler); 339 340 static StringRef computeDataLayout(const Triple &TT) { 341 if (TT.getArch() == Triple::r600) { 342 // 32-bit pointers. 343 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 344 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 345 } 346 347 // 32-bit private, local, and region pointers. 64-bit global, constant and 348 // flat, non-integral buffer fat pointers. 349 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 350 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 351 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 352 "-ni:7"; 353 } 354 355 LLVM_READNONE 356 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 357 if (!GPU.empty()) 358 return GPU; 359 360 // Need to default to a target with flat support for HSA. 361 if (TT.getArch() == Triple::amdgcn) 362 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 363 364 return "r600"; 365 } 366 367 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 368 // The AMDGPU toolchain only supports generating shared objects, so we 369 // must always use PIC. 370 return Reloc::PIC_; 371 } 372 373 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 374 StringRef CPU, StringRef FS, 375 TargetOptions Options, 376 Optional<Reloc::Model> RM, 377 Optional<CodeModel::Model> CM, 378 CodeGenOpt::Level OptLevel) 379 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 380 FS, Options, getEffectiveRelocModel(RM), 381 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 382 TLOF(createTLOF(getTargetTriple())) { 383 initAsmInfo(); 384 if (TT.getArch() == Triple::amdgcn) { 385 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 386 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 387 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 388 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 389 } 390 } 391 392 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 393 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 394 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 395 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; 396 397 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 398 399 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 400 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 401 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 402 } 403 404 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 405 Attribute FSAttr = F.getFnAttribute("target-features"); 406 407 return FSAttr.isValid() ? FSAttr.getValueAsString() 408 : getTargetFeatureString(); 409 } 410 411 /// Predicate for Internalize pass. 412 static bool mustPreserveGV(const GlobalValue &GV) { 413 if (const Function *F = dyn_cast<Function>(&GV)) 414 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 415 416 return !GV.use_empty(); 417 } 418 419 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 420 Builder.DivergentTarget = true; 421 422 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 423 bool Internalize = InternalizeSymbols; 424 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 425 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 426 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 427 428 if (EnableFunctionCalls) { 429 delete Builder.Inliner; 430 Builder.Inliner = createFunctionInliningPass(); 431 } 432 433 Builder.addExtension( 434 PassManagerBuilder::EP_ModuleOptimizerEarly, 435 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 436 legacy::PassManagerBase &PM) { 437 if (AMDGPUAA) { 438 PM.add(createAMDGPUAAWrapperPass()); 439 PM.add(createAMDGPUExternalAAWrapperPass()); 440 } 441 PM.add(createAMDGPUUnifyMetadataPass()); 442 PM.add(createAMDGPUPrintfRuntimeBinding()); 443 if (Internalize) 444 PM.add(createInternalizePass(mustPreserveGV)); 445 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 446 if (Internalize) 447 PM.add(createGlobalDCEPass()); 448 if (EarlyInline) 449 PM.add(createAMDGPUAlwaysInlinePass(false)); 450 }); 451 452 Builder.addExtension( 453 PassManagerBuilder::EP_EarlyAsPossible, 454 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 455 legacy::PassManagerBase &PM) { 456 if (AMDGPUAA) { 457 PM.add(createAMDGPUAAWrapperPass()); 458 PM.add(createAMDGPUExternalAAWrapperPass()); 459 } 460 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 461 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 462 if (LibCallSimplify) 463 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 464 }); 465 466 Builder.addExtension( 467 PassManagerBuilder::EP_CGSCCOptimizerLate, 468 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 469 // Add infer address spaces pass to the opt pipeline after inlining 470 // but before SROA to increase SROA opportunities. 471 PM.add(createInferAddressSpacesPass()); 472 473 // This should run after inlining to have any chance of doing anything, 474 // and before other cleanup optimizations. 475 PM.add(createAMDGPULowerKernelAttributesPass()); 476 477 // Promote alloca to vector before SROA and loop unroll. If we manage 478 // to eliminate allocas before unroll we may choose to unroll less. 479 if (EnableOpt) 480 PM.add(createAMDGPUPromoteAllocaToVector()); 481 }); 482 } 483 484 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 485 AAM.registerFunctionAnalysis<AMDGPUAA>(); 486 } 487 488 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB, 489 bool DebugPassManager) { 490 PB.registerPipelineParsingCallback( 491 [this](StringRef PassName, ModulePassManager &PM, 492 ArrayRef<PassBuilder::PipelineElement>) { 493 if (PassName == "amdgpu-propagate-attributes-late") { 494 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 495 return true; 496 } 497 if (PassName == "amdgpu-unify-metadata") { 498 PM.addPass(AMDGPUUnifyMetadataPass()); 499 return true; 500 } 501 if (PassName == "amdgpu-printf-runtime-binding") { 502 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 503 return true; 504 } 505 if (PassName == "amdgpu-always-inline") { 506 PM.addPass(AMDGPUAlwaysInlinePass()); 507 return true; 508 } 509 if (PassName == "amdgpu-lower-module-lds") { 510 PM.addPass(AMDGPULowerModuleLDSPass()); 511 return true; 512 } 513 return false; 514 }); 515 PB.registerPipelineParsingCallback( 516 [this](StringRef PassName, FunctionPassManager &PM, 517 ArrayRef<PassBuilder::PipelineElement>) { 518 if (PassName == "amdgpu-simplifylib") { 519 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 520 return true; 521 } 522 if (PassName == "amdgpu-usenative") { 523 PM.addPass(AMDGPUUseNativeCallsPass()); 524 return true; 525 } 526 if (PassName == "amdgpu-promote-alloca") { 527 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 528 return true; 529 } 530 if (PassName == "amdgpu-promote-alloca-to-vector") { 531 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 532 return true; 533 } 534 if (PassName == "amdgpu-lower-kernel-attributes") { 535 PM.addPass(AMDGPULowerKernelAttributesPass()); 536 return true; 537 } 538 if (PassName == "amdgpu-propagate-attributes-early") { 539 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 540 return true; 541 } 542 return false; 543 }); 544 545 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 546 FAM.registerPass([&] { return AMDGPUAA(); }); 547 }); 548 549 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 550 if (AAName == "amdgpu-aa") { 551 AAM.registerFunctionAnalysis<AMDGPUAA>(); 552 return true; 553 } 554 return false; 555 }); 556 557 PB.registerPipelineStartEPCallback([this, DebugPassManager]( 558 ModulePassManager &PM, 559 PassBuilder::OptimizationLevel Level) { 560 FunctionPassManager FPM(DebugPassManager); 561 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 562 FPM.addPass(AMDGPUUseNativeCallsPass()); 563 if (EnableLibCallSimplify && Level != PassBuilder::OptimizationLevel::O0) 564 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 565 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 566 }); 567 568 PB.registerPipelineEarlySimplificationEPCallback( 569 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) { 570 if (Level == PassBuilder::OptimizationLevel::O0) 571 return; 572 573 PM.addPass(AMDGPUUnifyMetadataPass()); 574 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 575 576 if (InternalizeSymbols) { 577 // Global variables may have dead uses which need to be removed. 578 // Otherwise these useless global variables will not get internalized. 579 PM.addPass(GlobalDCEPass()); 580 PM.addPass(InternalizePass(mustPreserveGV)); 581 } 582 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 583 if (InternalizeSymbols) { 584 PM.addPass(GlobalDCEPass()); 585 } 586 if (EarlyInlineAll && !EnableFunctionCalls) 587 PM.addPass(AMDGPUAlwaysInlinePass()); 588 }); 589 590 PB.registerCGSCCOptimizerLateEPCallback( 591 [this, DebugPassManager](CGSCCPassManager &PM, 592 PassBuilder::OptimizationLevel Level) { 593 if (Level == PassBuilder::OptimizationLevel::O0) 594 return; 595 596 FunctionPassManager FPM(DebugPassManager); 597 598 // Add infer address spaces pass to the opt pipeline after inlining 599 // but before SROA to increase SROA opportunities. 600 FPM.addPass(InferAddressSpacesPass()); 601 602 // This should run after inlining to have any chance of doing 603 // anything, and before other cleanup optimizations. 604 FPM.addPass(AMDGPULowerKernelAttributesPass()); 605 606 if (Level != PassBuilder::OptimizationLevel::O0) { 607 // Promote alloca to vector before SROA and loop unroll. If we 608 // manage to eliminate allocas before unroll we may choose to unroll 609 // less. 610 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 611 } 612 613 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 614 }); 615 } 616 617 //===----------------------------------------------------------------------===// 618 // R600 Target Machine (R600 -> Cayman) 619 //===----------------------------------------------------------------------===// 620 621 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 622 StringRef CPU, StringRef FS, 623 TargetOptions Options, 624 Optional<Reloc::Model> RM, 625 Optional<CodeModel::Model> CM, 626 CodeGenOpt::Level OL, bool JIT) 627 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 628 setRequiresStructuredCFG(true); 629 630 // Override the default since calls aren't supported for r600. 631 if (EnableFunctionCalls && 632 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 633 EnableFunctionCalls = false; 634 } 635 636 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 637 const Function &F) const { 638 StringRef GPU = getGPUName(F); 639 StringRef FS = getFeatureString(F); 640 641 SmallString<128> SubtargetKey(GPU); 642 SubtargetKey.append(FS); 643 644 auto &I = SubtargetMap[SubtargetKey]; 645 if (!I) { 646 // This needs to be done before we create a new subtarget since any 647 // creation will depend on the TM and the code generation flags on the 648 // function that reside in TargetOptions. 649 resetTargetOptions(F); 650 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 651 } 652 653 return I.get(); 654 } 655 656 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 657 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 658 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 659 AddrSpace == AMDGPUAS::REGION_ADDRESS) 660 ? -1 661 : 0; 662 } 663 664 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 665 unsigned DestAS) const { 666 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 667 AMDGPU::isFlatGlobalAddrSpace(DestAS); 668 } 669 670 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 671 const auto *LD = dyn_cast<LoadInst>(V); 672 if (!LD) 673 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 674 675 // It must be a generic pointer loaded. 676 assert(V->getType()->isPointerTy() && 677 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 678 679 const auto *Ptr = LD->getPointerOperand(); 680 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 681 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 682 // For a generic pointer loaded from the constant memory, it could be assumed 683 // as a global pointer since the constant memory is only populated on the 684 // host side. As implied by the offload programming model, only global 685 // pointers could be referenced on the host side. 686 return AMDGPUAS::GLOBAL_ADDRESS; 687 } 688 689 TargetTransformInfo 690 R600TargetMachine::getTargetTransformInfo(const Function &F) { 691 return TargetTransformInfo(R600TTIImpl(this, F)); 692 } 693 694 //===----------------------------------------------------------------------===// 695 // GCN Target Machine (SI+) 696 //===----------------------------------------------------------------------===// 697 698 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 699 StringRef CPU, StringRef FS, 700 TargetOptions Options, 701 Optional<Reloc::Model> RM, 702 Optional<CodeModel::Model> CM, 703 CodeGenOpt::Level OL, bool JIT) 704 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 705 706 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 707 StringRef GPU = getGPUName(F); 708 StringRef FS = getFeatureString(F); 709 710 SmallString<128> SubtargetKey(GPU); 711 SubtargetKey.append(FS); 712 713 auto &I = SubtargetMap[SubtargetKey]; 714 if (!I) { 715 // This needs to be done before we create a new subtarget since any 716 // creation will depend on the TM and the code generation flags on the 717 // function that reside in TargetOptions. 718 resetTargetOptions(F); 719 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 720 } 721 722 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 723 724 return I.get(); 725 } 726 727 TargetTransformInfo 728 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 729 return TargetTransformInfo(GCNTTIImpl(this, F)); 730 } 731 732 //===----------------------------------------------------------------------===// 733 // AMDGPU Pass Setup 734 //===----------------------------------------------------------------------===// 735 736 namespace { 737 738 class AMDGPUPassConfig : public TargetPassConfig { 739 public: 740 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 741 : TargetPassConfig(TM, PM) { 742 // Exceptions and StackMaps are not supported, so these passes will never do 743 // anything. 744 disablePass(&StackMapLivenessID); 745 disablePass(&FuncletLayoutID); 746 } 747 748 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 749 return getTM<AMDGPUTargetMachine>(); 750 } 751 752 ScheduleDAGInstrs * 753 createMachineScheduler(MachineSchedContext *C) const override { 754 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 755 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 756 return DAG; 757 } 758 759 void addEarlyCSEOrGVNPass(); 760 void addStraightLineScalarOptimizationPasses(); 761 void addIRPasses() override; 762 void addCodeGenPrepare() override; 763 bool addPreISel() override; 764 bool addInstSelector() override; 765 bool addGCPasses() override; 766 767 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 768 }; 769 770 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 771 return getStandardCSEConfigForOpt(TM->getOptLevel()); 772 } 773 774 class R600PassConfig final : public AMDGPUPassConfig { 775 public: 776 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 777 : AMDGPUPassConfig(TM, PM) {} 778 779 ScheduleDAGInstrs *createMachineScheduler( 780 MachineSchedContext *C) const override { 781 return createR600MachineScheduler(C); 782 } 783 784 bool addPreISel() override; 785 bool addInstSelector() override; 786 void addPreRegAlloc() override; 787 void addPreSched2() override; 788 void addPreEmitPass() override; 789 }; 790 791 class GCNPassConfig final : public AMDGPUPassConfig { 792 public: 793 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 794 : AMDGPUPassConfig(TM, PM) { 795 // It is necessary to know the register usage of the entire call graph. We 796 // allow calls without EnableAMDGPUFunctionCalls if they are marked 797 // noinline, so this is always required. 798 setRequiresCodeGenSCCOrder(true); 799 } 800 801 GCNTargetMachine &getGCNTargetMachine() const { 802 return getTM<GCNTargetMachine>(); 803 } 804 805 ScheduleDAGInstrs * 806 createMachineScheduler(MachineSchedContext *C) const override; 807 808 bool addPreISel() override; 809 void addMachineSSAOptimization() override; 810 bool addILPOpts() override; 811 bool addInstSelector() override; 812 bool addIRTranslator() override; 813 void addPreLegalizeMachineIR() override; 814 bool addLegalizeMachineIR() override; 815 void addPreRegBankSelect() override; 816 bool addRegBankSelect() override; 817 void addPreGlobalInstructionSelect() override; 818 bool addGlobalInstructionSelect() override; 819 void addFastRegAlloc() override; 820 void addOptimizedRegAlloc() override; 821 void addPreRegAlloc() override; 822 bool addPreRewrite() override; 823 void addPostRegAlloc() override; 824 void addPreSched2() override; 825 void addPreEmitPass() override; 826 }; 827 828 } // end anonymous namespace 829 830 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 831 if (getOptLevel() == CodeGenOpt::Aggressive) 832 addPass(createGVNPass()); 833 else 834 addPass(createEarlyCSEPass()); 835 } 836 837 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 838 addPass(createLICMPass()); 839 addPass(createSeparateConstOffsetFromGEPPass()); 840 addPass(createSpeculativeExecutionPass()); 841 // ReassociateGEPs exposes more opportunites for SLSR. See 842 // the example in reassociate-geps-and-slsr.ll. 843 addPass(createStraightLineStrengthReducePass()); 844 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 845 // EarlyCSE can reuse. 846 addEarlyCSEOrGVNPass(); 847 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 848 addPass(createNaryReassociatePass()); 849 // NaryReassociate on GEPs creates redundant common expressions, so run 850 // EarlyCSE after it. 851 addPass(createEarlyCSEPass()); 852 } 853 854 void AMDGPUPassConfig::addIRPasses() { 855 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 856 857 // There is no reason to run these. 858 disablePass(&StackMapLivenessID); 859 disablePass(&FuncletLayoutID); 860 disablePass(&PatchableFunctionID); 861 862 addPass(createAMDGPUPrintfRuntimeBinding()); 863 864 // This must occur before inlining, as the inliner will not look through 865 // bitcast calls. 866 addPass(createAMDGPUFixFunctionBitcastsPass()); 867 868 // A call to propagate attributes pass in the backend in case opt was not run. 869 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 870 871 addPass(createAtomicExpandPass()); 872 873 874 addPass(createAMDGPULowerIntrinsicsPass()); 875 876 // Function calls are not supported, so make sure we inline everything. 877 addPass(createAMDGPUAlwaysInlinePass()); 878 addPass(createAlwaysInlinerLegacyPass()); 879 // We need to add the barrier noop pass, otherwise adding the function 880 // inlining pass will cause all of the PassConfigs passes to be run 881 // one function at a time, which means if we have a nodule with two 882 // functions, then we will generate code for the first function 883 // without ever running any passes on the second. 884 addPass(createBarrierNoopPass()); 885 886 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 887 if (TM.getTargetTriple().getArch() == Triple::r600) 888 addPass(createR600OpenCLImageTypeLoweringPass()); 889 890 // Replace OpenCL enqueued block function pointers with global variables. 891 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 892 893 // Can increase LDS used by kernel so runs before PromoteAlloca 894 if (EnableLowerModuleLDS) 895 addPass(createAMDGPULowerModuleLDSPass()); 896 897 if (TM.getOptLevel() > CodeGenOpt::None) { 898 addPass(createInferAddressSpacesPass()); 899 addPass(createAMDGPUPromoteAlloca()); 900 901 if (EnableSROA) 902 addPass(createSROAPass()); 903 904 if (EnableScalarIRPasses) 905 addStraightLineScalarOptimizationPasses(); 906 907 if (EnableAMDGPUAliasAnalysis) { 908 addPass(createAMDGPUAAWrapperPass()); 909 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 910 AAResults &AAR) { 911 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 912 AAR.addAAResult(WrapperPass->getResult()); 913 })); 914 } 915 } 916 917 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 918 // TODO: May want to move later or split into an early and late one. 919 addPass(createAMDGPUCodeGenPreparePass()); 920 } 921 922 TargetPassConfig::addIRPasses(); 923 924 // EarlyCSE is not always strong enough to clean up what LSR produces. For 925 // example, GVN can combine 926 // 927 // %0 = add %a, %b 928 // %1 = add %b, %a 929 // 930 // and 931 // 932 // %0 = shl nsw %a, 2 933 // %1 = shl %a, 2 934 // 935 // but EarlyCSE can do neither of them. 936 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 937 addEarlyCSEOrGVNPass(); 938 } 939 940 void AMDGPUPassConfig::addCodeGenPrepare() { 941 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 942 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 943 944 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 945 EnableLowerKernelArguments) 946 addPass(createAMDGPULowerKernelArgumentsPass()); 947 948 addPass(&AMDGPUPerfHintAnalysisID); 949 950 TargetPassConfig::addCodeGenPrepare(); 951 952 if (EnableLoadStoreVectorizer) 953 addPass(createLoadStoreVectorizerPass()); 954 955 // LowerSwitch pass may introduce unreachable blocks that can 956 // cause unexpected behavior for subsequent passes. Placing it 957 // here seems better that these blocks would get cleaned up by 958 // UnreachableBlockElim inserted next in the pass flow. 959 addPass(createLowerSwitchPass()); 960 } 961 962 bool AMDGPUPassConfig::addPreISel() { 963 addPass(createFlattenCFGPass()); 964 return false; 965 } 966 967 bool AMDGPUPassConfig::addInstSelector() { 968 // Defer the verifier until FinalizeISel. 969 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 970 return false; 971 } 972 973 bool AMDGPUPassConfig::addGCPasses() { 974 // Do nothing. GC is not supported. 975 return false; 976 } 977 978 //===----------------------------------------------------------------------===// 979 // R600 Pass Setup 980 //===----------------------------------------------------------------------===// 981 982 bool R600PassConfig::addPreISel() { 983 AMDGPUPassConfig::addPreISel(); 984 985 if (EnableR600StructurizeCFG) 986 addPass(createStructurizeCFGPass()); 987 return false; 988 } 989 990 bool R600PassConfig::addInstSelector() { 991 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 992 return false; 993 } 994 995 void R600PassConfig::addPreRegAlloc() { 996 addPass(createR600VectorRegMerger()); 997 } 998 999 void R600PassConfig::addPreSched2() { 1000 addPass(createR600EmitClauseMarkers(), false); 1001 if (EnableR600IfConvert) 1002 addPass(&IfConverterID, false); 1003 addPass(createR600ClauseMergePass(), false); 1004 } 1005 1006 void R600PassConfig::addPreEmitPass() { 1007 addPass(createAMDGPUCFGStructurizerPass(), false); 1008 addPass(createR600ExpandSpecialInstrsPass(), false); 1009 addPass(&FinalizeMachineBundlesID, false); 1010 addPass(createR600Packetizer(), false); 1011 addPass(createR600ControlFlowFinalizer(), false); 1012 } 1013 1014 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 1015 return new R600PassConfig(*this, PM); 1016 } 1017 1018 //===----------------------------------------------------------------------===// 1019 // GCN Pass Setup 1020 //===----------------------------------------------------------------------===// 1021 1022 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1023 MachineSchedContext *C) const { 1024 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1025 if (ST.enableSIScheduler()) 1026 return createSIMachineScheduler(C); 1027 return createGCNMaxOccupancyMachineScheduler(C); 1028 } 1029 1030 bool GCNPassConfig::addPreISel() { 1031 AMDGPUPassConfig::addPreISel(); 1032 1033 addPass(createAMDGPULateCodeGenPreparePass()); 1034 if (EnableAtomicOptimizations) { 1035 addPass(createAMDGPUAtomicOptimizerPass()); 1036 } 1037 1038 // FIXME: We need to run a pass to propagate the attributes when calls are 1039 // supported. 1040 1041 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1042 // regions formed by them. 1043 addPass(&AMDGPUUnifyDivergentExitNodesID); 1044 if (!LateCFGStructurize) { 1045 if (EnableStructurizerWorkarounds) { 1046 addPass(createFixIrreduciblePass()); 1047 addPass(createUnifyLoopExitsPass()); 1048 } 1049 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1050 } 1051 addPass(createSinkingPass()); 1052 addPass(createAMDGPUAnnotateUniformValues()); 1053 if (!LateCFGStructurize) { 1054 addPass(createSIAnnotateControlFlowPass()); 1055 } 1056 addPass(createLCSSAPass()); 1057 1058 return false; 1059 } 1060 1061 void GCNPassConfig::addMachineSSAOptimization() { 1062 TargetPassConfig::addMachineSSAOptimization(); 1063 1064 // We want to fold operands after PeepholeOptimizer has run (or as part of 1065 // it), because it will eliminate extra copies making it easier to fold the 1066 // real source operand. We want to eliminate dead instructions after, so that 1067 // we see fewer uses of the copies. We then need to clean up the dead 1068 // instructions leftover after the operands are folded as well. 1069 // 1070 // XXX - Can we get away without running DeadMachineInstructionElim again? 1071 addPass(&SIFoldOperandsID); 1072 if (EnableDPPCombine) 1073 addPass(&GCNDPPCombineID); 1074 addPass(&SILoadStoreOptimizerID); 1075 if (EnableSDWAPeephole) { 1076 addPass(&SIPeepholeSDWAID); 1077 addPass(&EarlyMachineLICMID); 1078 addPass(&MachineCSEID); 1079 addPass(&SIFoldOperandsID); 1080 } 1081 addPass(&DeadMachineInstructionElimID); 1082 addPass(createSIShrinkInstructionsPass()); 1083 } 1084 1085 bool GCNPassConfig::addILPOpts() { 1086 if (EnableEarlyIfConversion) 1087 addPass(&EarlyIfConverterID); 1088 1089 TargetPassConfig::addILPOpts(); 1090 return false; 1091 } 1092 1093 bool GCNPassConfig::addInstSelector() { 1094 AMDGPUPassConfig::addInstSelector(); 1095 addPass(&SIFixSGPRCopiesID); 1096 addPass(createSILowerI1CopiesPass()); 1097 return false; 1098 } 1099 1100 bool GCNPassConfig::addIRTranslator() { 1101 addPass(new IRTranslator(getOptLevel())); 1102 return false; 1103 } 1104 1105 void GCNPassConfig::addPreLegalizeMachineIR() { 1106 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1107 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1108 addPass(new Localizer()); 1109 } 1110 1111 bool GCNPassConfig::addLegalizeMachineIR() { 1112 addPass(new Legalizer()); 1113 return false; 1114 } 1115 1116 void GCNPassConfig::addPreRegBankSelect() { 1117 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1118 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1119 } 1120 1121 bool GCNPassConfig::addRegBankSelect() { 1122 addPass(new RegBankSelect()); 1123 return false; 1124 } 1125 1126 void GCNPassConfig::addPreGlobalInstructionSelect() { 1127 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1128 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1129 } 1130 1131 bool GCNPassConfig::addGlobalInstructionSelect() { 1132 addPass(new InstructionSelect(getOptLevel())); 1133 return false; 1134 } 1135 1136 void GCNPassConfig::addPreRegAlloc() { 1137 if (LateCFGStructurize) { 1138 addPass(createAMDGPUMachineCFGStructurizerPass()); 1139 } 1140 } 1141 1142 void GCNPassConfig::addFastRegAlloc() { 1143 // FIXME: We have to disable the verifier here because of PHIElimination + 1144 // TwoAddressInstructions disabling it. 1145 1146 // This must be run immediately after phi elimination and before 1147 // TwoAddressInstructions, otherwise the processing of the tied operand of 1148 // SI_ELSE will introduce a copy of the tied operand source after the else. 1149 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1150 1151 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1152 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1153 1154 TargetPassConfig::addFastRegAlloc(); 1155 } 1156 1157 void GCNPassConfig::addOptimizedRegAlloc() { 1158 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1159 // instructions that cause scheduling barriers. 1160 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1161 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1162 1163 if (OptExecMaskPreRA) 1164 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1165 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1166 1167 // This must be run immediately after phi elimination and before 1168 // TwoAddressInstructions, otherwise the processing of the tied operand of 1169 // SI_ELSE will introduce a copy of the tied operand source after the else. 1170 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1171 1172 if (EnableDCEInRA) 1173 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1174 1175 TargetPassConfig::addOptimizedRegAlloc(); 1176 } 1177 1178 bool GCNPassConfig::addPreRewrite() { 1179 if (EnableRegReassign) 1180 addPass(&GCNNSAReassignID); 1181 return true; 1182 } 1183 1184 void GCNPassConfig::addPostRegAlloc() { 1185 addPass(&SIFixVGPRCopiesID); 1186 if (getOptLevel() > CodeGenOpt::None) 1187 addPass(&SIOptimizeExecMaskingID); 1188 TargetPassConfig::addPostRegAlloc(); 1189 1190 // Equivalent of PEI for SGPRs. 1191 addPass(&SILowerSGPRSpillsID); 1192 } 1193 1194 void GCNPassConfig::addPreSched2() { 1195 addPass(&SIPostRABundlerID); 1196 } 1197 1198 void GCNPassConfig::addPreEmitPass() { 1199 addPass(createSIMemoryLegalizerPass()); 1200 addPass(createSIInsertWaitcntsPass()); 1201 addPass(createSIShrinkInstructionsPass()); 1202 addPass(createSIModeRegisterPass()); 1203 1204 if (getOptLevel() > CodeGenOpt::None) 1205 addPass(&SIInsertHardClausesID); 1206 1207 addPass(&SILateBranchLoweringPassID); 1208 if (getOptLevel() > CodeGenOpt::None) 1209 addPass(&SIPreEmitPeepholeID); 1210 // The hazard recognizer that runs as part of the post-ra scheduler does not 1211 // guarantee to be able handle all hazards correctly. This is because if there 1212 // are multiple scheduling regions in a basic block, the regions are scheduled 1213 // bottom up, so when we begin to schedule a region we don't know what 1214 // instructions were emitted directly before it. 1215 // 1216 // Here we add a stand-alone hazard recognizer pass which can handle all 1217 // cases. 1218 addPass(&PostRAHazardRecognizerID); 1219 addPass(&BranchRelaxationPassID); 1220 } 1221 1222 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1223 return new GCNPassConfig(*this, PM); 1224 } 1225 1226 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1227 return new yaml::SIMachineFunctionInfo(); 1228 } 1229 1230 yaml::MachineFunctionInfo * 1231 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1232 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1233 return new yaml::SIMachineFunctionInfo(*MFI, 1234 *MF.getSubtarget().getRegisterInfo()); 1235 } 1236 1237 bool GCNTargetMachine::parseMachineFunctionInfo( 1238 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1239 SMDiagnostic &Error, SMRange &SourceRange) const { 1240 const yaml::SIMachineFunctionInfo &YamlMFI = 1241 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1242 MachineFunction &MF = PFS.MF; 1243 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1244 1245 MFI->initializeBaseYamlFields(YamlMFI); 1246 1247 if (MFI->Occupancy == 0) { 1248 // Fixup the subtarget dependent default value. 1249 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1250 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1251 } 1252 1253 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1254 Register TempReg; 1255 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1256 SourceRange = RegName.SourceRange; 1257 return true; 1258 } 1259 RegVal = TempReg; 1260 1261 return false; 1262 }; 1263 1264 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1265 // Create a diagnostic for a the register string literal. 1266 const MemoryBuffer &Buffer = 1267 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1268 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1269 RegName.Value.size(), SourceMgr::DK_Error, 1270 "incorrect register class for field", RegName.Value, 1271 None, None); 1272 SourceRange = RegName.SourceRange; 1273 return true; 1274 }; 1275 1276 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1277 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1278 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1279 return true; 1280 1281 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1282 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1283 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1284 } 1285 1286 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1287 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1288 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1289 } 1290 1291 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1292 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1293 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1294 } 1295 1296 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1297 const TargetRegisterClass &RC, 1298 ArgDescriptor &Arg, unsigned UserSGPRs, 1299 unsigned SystemSGPRs) { 1300 // Skip parsing if it's not present. 1301 if (!A) 1302 return false; 1303 1304 if (A->IsRegister) { 1305 Register Reg; 1306 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1307 SourceRange = A->RegisterName.SourceRange; 1308 return true; 1309 } 1310 if (!RC.contains(Reg)) 1311 return diagnoseRegisterClass(A->RegisterName); 1312 Arg = ArgDescriptor::createRegister(Reg); 1313 } else 1314 Arg = ArgDescriptor::createStack(A->StackOffset); 1315 // Check and apply the optional mask. 1316 if (A->Mask) 1317 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1318 1319 MFI->NumUserSGPRs += UserSGPRs; 1320 MFI->NumSystemSGPRs += SystemSGPRs; 1321 return false; 1322 }; 1323 1324 if (YamlMFI.ArgInfo && 1325 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1326 AMDGPU::SGPR_128RegClass, 1327 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1328 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1329 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1330 2, 0) || 1331 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1332 MFI->ArgInfo.QueuePtr, 2, 0) || 1333 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1334 AMDGPU::SReg_64RegClass, 1335 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1336 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1337 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1338 2, 0) || 1339 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1340 AMDGPU::SReg_64RegClass, 1341 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1342 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1343 AMDGPU::SGPR_32RegClass, 1344 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1345 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1346 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1347 0, 1) || 1348 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1349 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1350 0, 1) || 1351 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1352 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1353 0, 1) || 1354 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1355 AMDGPU::SGPR_32RegClass, 1356 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1357 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1358 AMDGPU::SGPR_32RegClass, 1359 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1360 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1361 AMDGPU::SReg_64RegClass, 1362 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1363 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1364 AMDGPU::SReg_64RegClass, 1365 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1366 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1367 AMDGPU::VGPR_32RegClass, 1368 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1369 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1370 AMDGPU::VGPR_32RegClass, 1371 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1372 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1373 AMDGPU::VGPR_32RegClass, 1374 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1375 return true; 1376 1377 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1378 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1379 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1380 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1381 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1382 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1383 1384 return false; 1385 } 1386