1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUMacroFusion.h" 20 #include "AMDGPUTargetObjectFile.h" 21 #include "AMDGPUTargetTransformInfo.h" 22 #include "GCNIterativeScheduler.h" 23 #include "GCNSchedStrategy.h" 24 #include "R600MachineScheduler.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIMachineScheduler.h" 27 #include "TargetInfo/AMDGPUTargetInfo.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/Localizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegAllocRegistry.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/LegacyPassManager.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Passes/PassBuilder.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/IPO/AlwaysInliner.h" 45 #include "llvm/Transforms/IPO/GlobalDCE.h" 46 #include "llvm/Transforms/IPO/Internalize.h" 47 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 48 #include "llvm/Transforms/Scalar.h" 49 #include "llvm/Transforms/Scalar/GVN.h" 50 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 51 #include "llvm/Transforms/Utils.h" 52 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 53 #include "llvm/Transforms/Vectorize.h" 54 55 using namespace llvm; 56 57 namespace { 58 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> { 59 public: 60 SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 61 : RegisterRegAllocBase(N, D, C) {} 62 }; 63 64 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> { 65 public: 66 VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 67 : RegisterRegAllocBase(N, D, C) {} 68 }; 69 70 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI, 71 const TargetRegisterClass &RC) { 72 return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 73 } 74 75 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI, 76 const TargetRegisterClass &RC) { 77 return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 78 } 79 80 81 /// -{sgpr|vgpr}-regalloc=... command line option. 82 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; } 83 84 /// A dummy default pass factory indicates whether the register allocator is 85 /// overridden on the command line. 86 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag; 87 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag; 88 89 static SGPRRegisterRegAlloc 90 defaultSGPRRegAlloc("default", 91 "pick SGPR register allocator based on -O option", 92 useDefaultRegisterAllocator); 93 94 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false, 95 RegisterPassParser<SGPRRegisterRegAlloc>> 96 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 97 cl::desc("Register allocator to use for SGPRs")); 98 99 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false, 100 RegisterPassParser<VGPRRegisterRegAlloc>> 101 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 102 cl::desc("Register allocator to use for VGPRs")); 103 104 105 static void initializeDefaultSGPRRegisterAllocatorOnce() { 106 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 107 108 if (!Ctor) { 109 Ctor = SGPRRegAlloc; 110 SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc); 111 } 112 } 113 114 static void initializeDefaultVGPRRegisterAllocatorOnce() { 115 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 116 117 if (!Ctor) { 118 Ctor = VGPRRegAlloc; 119 VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc); 120 } 121 } 122 123 static FunctionPass *createBasicSGPRRegisterAllocator() { 124 return createBasicRegisterAllocator(onlyAllocateSGPRs); 125 } 126 127 static FunctionPass *createGreedySGPRRegisterAllocator() { 128 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 129 } 130 131 static FunctionPass *createFastSGPRRegisterAllocator() { 132 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 133 } 134 135 static FunctionPass *createBasicVGPRRegisterAllocator() { 136 return createBasicRegisterAllocator(onlyAllocateVGPRs); 137 } 138 139 static FunctionPass *createGreedyVGPRRegisterAllocator() { 140 return createGreedyRegisterAllocator(onlyAllocateVGPRs); 141 } 142 143 static FunctionPass *createFastVGPRRegisterAllocator() { 144 return createFastRegisterAllocator(onlyAllocateVGPRs, true); 145 } 146 147 static SGPRRegisterRegAlloc basicRegAllocSGPR( 148 "basic", "basic register allocator", createBasicSGPRRegisterAllocator); 149 static SGPRRegisterRegAlloc greedyRegAllocSGPR( 150 "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator); 151 152 static SGPRRegisterRegAlloc fastRegAllocSGPR( 153 "fast", "fast register allocator", createFastSGPRRegisterAllocator); 154 155 156 static VGPRRegisterRegAlloc basicRegAllocVGPR( 157 "basic", "basic register allocator", createBasicVGPRRegisterAllocator); 158 static VGPRRegisterRegAlloc greedyRegAllocVGPR( 159 "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator); 160 161 static VGPRRegisterRegAlloc fastRegAllocVGPR( 162 "fast", "fast register allocator", createFastVGPRRegisterAllocator); 163 } 164 165 166 static cl::opt<bool> EnableR600StructurizeCFG( 167 "r600-ir-structurize", 168 cl::desc("Use StructurizeCFG IR pass"), 169 cl::init(true)); 170 171 static cl::opt<bool> EnableSROA( 172 "amdgpu-sroa", 173 cl::desc("Run SROA after promote alloca pass"), 174 cl::ReallyHidden, 175 cl::init(true)); 176 177 static cl::opt<bool> 178 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 179 cl::desc("Run early if-conversion"), 180 cl::init(false)); 181 182 static cl::opt<bool> 183 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 184 cl::desc("Run pre-RA exec mask optimizations"), 185 cl::init(true)); 186 187 static cl::opt<bool> EnableR600IfConvert( 188 "r600-if-convert", 189 cl::desc("Use if conversion pass"), 190 cl::ReallyHidden, 191 cl::init(true)); 192 193 // Option to disable vectorizer for tests. 194 static cl::opt<bool> EnableLoadStoreVectorizer( 195 "amdgpu-load-store-vectorizer", 196 cl::desc("Enable load store vectorizer"), 197 cl::init(true), 198 cl::Hidden); 199 200 // Option to control global loads scalarization 201 static cl::opt<bool> ScalarizeGlobal( 202 "amdgpu-scalarize-global-loads", 203 cl::desc("Enable global load scalarization"), 204 cl::init(true), 205 cl::Hidden); 206 207 // Option to run internalize pass. 208 static cl::opt<bool> InternalizeSymbols( 209 "amdgpu-internalize-symbols", 210 cl::desc("Enable elimination of non-kernel functions and unused globals"), 211 cl::init(false), 212 cl::Hidden); 213 214 // Option to inline all early. 215 static cl::opt<bool> EarlyInlineAll( 216 "amdgpu-early-inline-all", 217 cl::desc("Inline all functions early"), 218 cl::init(false), 219 cl::Hidden); 220 221 static cl::opt<bool> EnableSDWAPeephole( 222 "amdgpu-sdwa-peephole", 223 cl::desc("Enable SDWA peepholer"), 224 cl::init(true)); 225 226 static cl::opt<bool> EnableDPPCombine( 227 "amdgpu-dpp-combine", 228 cl::desc("Enable DPP combiner"), 229 cl::init(true)); 230 231 // Enable address space based alias analysis 232 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 233 cl::desc("Enable AMDGPU Alias Analysis"), 234 cl::init(true)); 235 236 // Option to run late CFG structurizer 237 static cl::opt<bool, true> LateCFGStructurize( 238 "amdgpu-late-structurize", 239 cl::desc("Enable late CFG structurization"), 240 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 241 cl::Hidden); 242 243 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 244 "amdgpu-function-calls", 245 cl::desc("Enable AMDGPU function call support"), 246 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 247 cl::init(true), 248 cl::Hidden); 249 250 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 251 "amdgpu-fixed-function-abi", 252 cl::desc("Enable all implicit function arguments"), 253 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 254 cl::init(false), 255 cl::Hidden); 256 257 // Enable lib calls simplifications 258 static cl::opt<bool> EnableLibCallSimplify( 259 "amdgpu-simplify-libcall", 260 cl::desc("Enable amdgpu library simplifications"), 261 cl::init(true), 262 cl::Hidden); 263 264 static cl::opt<bool> EnableLowerKernelArguments( 265 "amdgpu-ir-lower-kernel-arguments", 266 cl::desc("Lower kernel argument loads in IR pass"), 267 cl::init(true), 268 cl::Hidden); 269 270 static cl::opt<bool> EnableRegReassign( 271 "amdgpu-reassign-regs", 272 cl::desc("Enable register reassign optimizations on gfx10+"), 273 cl::init(true), 274 cl::Hidden); 275 276 static cl::opt<bool> OptVGPRLiveRange( 277 "amdgpu-opt-vgpr-liverange", 278 cl::desc("Enable VGPR liverange optimizations for if-else structure"), 279 cl::init(true), cl::Hidden); 280 281 // Enable atomic optimization 282 static cl::opt<bool> EnableAtomicOptimizations( 283 "amdgpu-atomic-optimizations", 284 cl::desc("Enable atomic optimizations"), 285 cl::init(false), 286 cl::Hidden); 287 288 // Enable Mode register optimization 289 static cl::opt<bool> EnableSIModeRegisterPass( 290 "amdgpu-mode-register", 291 cl::desc("Enable mode register pass"), 292 cl::init(true), 293 cl::Hidden); 294 295 // Option is used in lit tests to prevent deadcoding of patterns inspected. 296 static cl::opt<bool> 297 EnableDCEInRA("amdgpu-dce-in-ra", 298 cl::init(true), cl::Hidden, 299 cl::desc("Enable machine DCE inside regalloc")); 300 301 static cl::opt<bool> EnableScalarIRPasses( 302 "amdgpu-scalar-ir-passes", 303 cl::desc("Enable scalar IR passes"), 304 cl::init(true), 305 cl::Hidden); 306 307 static cl::opt<bool> EnableStructurizerWorkarounds( 308 "amdgpu-enable-structurizer-workarounds", 309 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 310 cl::Hidden); 311 312 static cl::opt<bool> EnableLDSReplaceWithPointer( 313 "amdgpu-enable-lds-replace-with-pointer", 314 cl::desc("Enable LDS replace with pointer pass"), cl::init(false), 315 cl::Hidden); 316 317 static cl::opt<bool, true> EnableLowerModuleLDS( 318 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), 319 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), 320 cl::Hidden); 321 322 static cl::opt<bool> EnablePreRAOptimizations( 323 "amdgpu-enable-pre-ra-optimizations", 324 cl::desc("Enable Pre-RA optimizations pass"), cl::init(true), 325 cl::Hidden); 326 327 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 328 // Register the target 329 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 330 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 331 332 PassRegistry *PR = PassRegistry::getPassRegistry(); 333 initializeR600ClauseMergePassPass(*PR); 334 initializeR600ControlFlowFinalizerPass(*PR); 335 initializeR600PacketizerPass(*PR); 336 initializeR600ExpandSpecialInstrsPassPass(*PR); 337 initializeR600VectorRegMergerPass(*PR); 338 initializeGlobalISel(*PR); 339 initializeAMDGPUDAGToDAGISelPass(*PR); 340 initializeGCNDPPCombinePass(*PR); 341 initializeSILowerI1CopiesPass(*PR); 342 initializeSILowerSGPRSpillsPass(*PR); 343 initializeSIFixSGPRCopiesPass(*PR); 344 initializeSIFixVGPRCopiesPass(*PR); 345 initializeSIFoldOperandsPass(*PR); 346 initializeSIPeepholeSDWAPass(*PR); 347 initializeSIShrinkInstructionsPass(*PR); 348 initializeSIOptimizeExecMaskingPreRAPass(*PR); 349 initializeSIOptimizeVGPRLiveRangePass(*PR); 350 initializeSILoadStoreOptimizerPass(*PR); 351 initializeAMDGPUFixFunctionBitcastsPass(*PR); 352 initializeAMDGPUCtorDtorLoweringPass(*PR); 353 initializeAMDGPUAlwaysInlinePass(*PR); 354 initializeAMDGPUAttributorPass(*PR); 355 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 356 initializeAMDGPUAnnotateUniformValuesPass(*PR); 357 initializeAMDGPUArgumentUsageInfoPass(*PR); 358 initializeAMDGPUAtomicOptimizerPass(*PR); 359 initializeAMDGPULowerKernelArgumentsPass(*PR); 360 initializeAMDGPULowerKernelAttributesPass(*PR); 361 initializeAMDGPULowerIntrinsicsPass(*PR); 362 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 363 initializeAMDGPUPostLegalizerCombinerPass(*PR); 364 initializeAMDGPUPreLegalizerCombinerPass(*PR); 365 initializeAMDGPURegBankCombinerPass(*PR); 366 initializeAMDGPUPromoteAllocaPass(*PR); 367 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 368 initializeAMDGPUCodeGenPreparePass(*PR); 369 initializeAMDGPULateCodeGenPreparePass(*PR); 370 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 371 initializeAMDGPUPropagateAttributesLatePass(*PR); 372 initializeAMDGPUReplaceLDSUseWithPointerPass(*PR); 373 initializeAMDGPULowerModuleLDSPass(*PR); 374 initializeAMDGPURewriteOutArgumentsPass(*PR); 375 initializeAMDGPUUnifyMetadataPass(*PR); 376 initializeSIAnnotateControlFlowPass(*PR); 377 initializeSIInsertHardClausesPass(*PR); 378 initializeSIInsertWaitcntsPass(*PR); 379 initializeSIModeRegisterPass(*PR); 380 initializeSIWholeQuadModePass(*PR); 381 initializeSILowerControlFlowPass(*PR); 382 initializeSIPreEmitPeepholePass(*PR); 383 initializeSILateBranchLoweringPass(*PR); 384 initializeSIMemoryLegalizerPass(*PR); 385 initializeSIOptimizeExecMaskingPass(*PR); 386 initializeSIPreAllocateWWMRegsPass(*PR); 387 initializeSIFormMemoryClausesPass(*PR); 388 initializeSIPostRABundlerPass(*PR); 389 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 390 initializeAMDGPUAAWrapperPassPass(*PR); 391 initializeAMDGPUExternalAAWrapperPass(*PR); 392 initializeAMDGPUUseNativeCallsPass(*PR); 393 initializeAMDGPUSimplifyLibCallsPass(*PR); 394 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 395 initializeAMDGPUResourceUsageAnalysisPass(*PR); 396 initializeGCNNSAReassignPass(*PR); 397 initializeGCNPreRAOptimizationsPass(*PR); 398 } 399 400 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 401 return std::make_unique<AMDGPUTargetObjectFile>(); 402 } 403 404 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 405 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 406 } 407 408 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 409 return new SIScheduleDAGMI(C); 410 } 411 412 static ScheduleDAGInstrs * 413 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 414 ScheduleDAGMILive *DAG = 415 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 416 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 417 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 418 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 419 return DAG; 420 } 421 422 static ScheduleDAGInstrs * 423 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 424 auto DAG = new GCNIterativeScheduler(C, 425 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 426 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 427 return DAG; 428 } 429 430 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 431 return new GCNIterativeScheduler(C, 432 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 433 } 434 435 static ScheduleDAGInstrs * 436 createIterativeILPMachineScheduler(MachineSchedContext *C) { 437 auto DAG = new GCNIterativeScheduler(C, 438 GCNIterativeScheduler::SCHEDULE_ILP); 439 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 440 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 441 return DAG; 442 } 443 444 static MachineSchedRegistry 445 R600SchedRegistry("r600", "Run R600's custom scheduler", 446 createR600MachineScheduler); 447 448 static MachineSchedRegistry 449 SISchedRegistry("si", "Run SI's custom scheduler", 450 createSIMachineScheduler); 451 452 static MachineSchedRegistry 453 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 454 "Run GCN scheduler to maximize occupancy", 455 createGCNMaxOccupancyMachineScheduler); 456 457 static MachineSchedRegistry 458 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 459 "Run GCN scheduler to maximize occupancy (experimental)", 460 createIterativeGCNMaxOccupancyMachineScheduler); 461 462 static MachineSchedRegistry 463 GCNMinRegSchedRegistry("gcn-minreg", 464 "Run GCN iterative scheduler for minimal register usage (experimental)", 465 createMinRegScheduler); 466 467 static MachineSchedRegistry 468 GCNILPSchedRegistry("gcn-ilp", 469 "Run GCN iterative scheduler for ILP scheduling (experimental)", 470 createIterativeILPMachineScheduler); 471 472 static StringRef computeDataLayout(const Triple &TT) { 473 if (TT.getArch() == Triple::r600) { 474 // 32-bit pointers. 475 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 476 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 477 } 478 479 // 32-bit private, local, and region pointers. 64-bit global, constant and 480 // flat, non-integral buffer fat pointers. 481 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 482 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 483 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 484 "-ni:7"; 485 } 486 487 LLVM_READNONE 488 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 489 if (!GPU.empty()) 490 return GPU; 491 492 // Need to default to a target with flat support for HSA. 493 if (TT.getArch() == Triple::amdgcn) 494 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 495 496 return "r600"; 497 } 498 499 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 500 // The AMDGPU toolchain only supports generating shared objects, so we 501 // must always use PIC. 502 return Reloc::PIC_; 503 } 504 505 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 506 StringRef CPU, StringRef FS, 507 TargetOptions Options, 508 Optional<Reloc::Model> RM, 509 Optional<CodeModel::Model> CM, 510 CodeGenOpt::Level OptLevel) 511 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 512 FS, Options, getEffectiveRelocModel(RM), 513 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 514 TLOF(createTLOF(getTargetTriple())) { 515 initAsmInfo(); 516 if (TT.getArch() == Triple::amdgcn) { 517 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 518 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 519 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 520 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 521 } 522 } 523 524 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 525 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 526 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 527 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; 528 529 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 530 531 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 532 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 533 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 534 } 535 536 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 537 Attribute FSAttr = F.getFnAttribute("target-features"); 538 539 return FSAttr.isValid() ? FSAttr.getValueAsString() 540 : getTargetFeatureString(); 541 } 542 543 /// Predicate for Internalize pass. 544 static bool mustPreserveGV(const GlobalValue &GV) { 545 if (const Function *F = dyn_cast<Function>(&GV)) 546 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 547 548 GV.removeDeadConstantUsers(); 549 return !GV.use_empty(); 550 } 551 552 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 553 Builder.DivergentTarget = true; 554 555 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 556 bool Internalize = InternalizeSymbols; 557 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 558 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 559 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 560 561 if (EnableFunctionCalls) { 562 delete Builder.Inliner; 563 Builder.Inliner = createFunctionInliningPass(); 564 } 565 566 Builder.addExtension( 567 PassManagerBuilder::EP_ModuleOptimizerEarly, 568 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 569 legacy::PassManagerBase &PM) { 570 if (AMDGPUAA) { 571 PM.add(createAMDGPUAAWrapperPass()); 572 PM.add(createAMDGPUExternalAAWrapperPass()); 573 } 574 PM.add(createAMDGPUUnifyMetadataPass()); 575 PM.add(createAMDGPUPrintfRuntimeBinding()); 576 if (Internalize) 577 PM.add(createInternalizePass(mustPreserveGV)); 578 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 579 if (Internalize) 580 PM.add(createGlobalDCEPass()); 581 if (EarlyInline) 582 PM.add(createAMDGPUAlwaysInlinePass(false)); 583 }); 584 585 Builder.addExtension( 586 PassManagerBuilder::EP_EarlyAsPossible, 587 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 588 legacy::PassManagerBase &PM) { 589 if (AMDGPUAA) { 590 PM.add(createAMDGPUAAWrapperPass()); 591 PM.add(createAMDGPUExternalAAWrapperPass()); 592 } 593 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 594 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 595 if (LibCallSimplify) 596 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 597 }); 598 599 Builder.addExtension( 600 PassManagerBuilder::EP_CGSCCOptimizerLate, 601 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 602 // Add infer address spaces pass to the opt pipeline after inlining 603 // but before SROA to increase SROA opportunities. 604 PM.add(createInferAddressSpacesPass()); 605 606 // This should run after inlining to have any chance of doing anything, 607 // and before other cleanup optimizations. 608 PM.add(createAMDGPULowerKernelAttributesPass()); 609 610 // Promote alloca to vector before SROA and loop unroll. If we manage 611 // to eliminate allocas before unroll we may choose to unroll less. 612 if (EnableOpt) 613 PM.add(createAMDGPUPromoteAllocaToVector()); 614 }); 615 } 616 617 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 618 AAM.registerFunctionAnalysis<AMDGPUAA>(); 619 } 620 621 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) { 622 PB.registerPipelineParsingCallback( 623 [this](StringRef PassName, ModulePassManager &PM, 624 ArrayRef<PassBuilder::PipelineElement>) { 625 if (PassName == "amdgpu-propagate-attributes-late") { 626 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 627 return true; 628 } 629 if (PassName == "amdgpu-unify-metadata") { 630 PM.addPass(AMDGPUUnifyMetadataPass()); 631 return true; 632 } 633 if (PassName == "amdgpu-printf-runtime-binding") { 634 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 635 return true; 636 } 637 if (PassName == "amdgpu-always-inline") { 638 PM.addPass(AMDGPUAlwaysInlinePass()); 639 return true; 640 } 641 if (PassName == "amdgpu-replace-lds-use-with-pointer") { 642 PM.addPass(AMDGPUReplaceLDSUseWithPointerPass()); 643 return true; 644 } 645 if (PassName == "amdgpu-lower-module-lds") { 646 PM.addPass(AMDGPULowerModuleLDSPass()); 647 return true; 648 } 649 return false; 650 }); 651 PB.registerPipelineParsingCallback( 652 [this](StringRef PassName, FunctionPassManager &PM, 653 ArrayRef<PassBuilder::PipelineElement>) { 654 if (PassName == "amdgpu-simplifylib") { 655 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 656 return true; 657 } 658 if (PassName == "amdgpu-usenative") { 659 PM.addPass(AMDGPUUseNativeCallsPass()); 660 return true; 661 } 662 if (PassName == "amdgpu-promote-alloca") { 663 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 664 return true; 665 } 666 if (PassName == "amdgpu-promote-alloca-to-vector") { 667 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 668 return true; 669 } 670 if (PassName == "amdgpu-lower-kernel-attributes") { 671 PM.addPass(AMDGPULowerKernelAttributesPass()); 672 return true; 673 } 674 if (PassName == "amdgpu-propagate-attributes-early") { 675 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 676 return true; 677 } 678 return false; 679 }); 680 681 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 682 FAM.registerPass([&] { return AMDGPUAA(); }); 683 }); 684 685 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 686 if (AAName == "amdgpu-aa") { 687 AAM.registerFunctionAnalysis<AMDGPUAA>(); 688 return true; 689 } 690 return false; 691 }); 692 693 PB.registerPipelineStartEPCallback( 694 [this](ModulePassManager &PM, OptimizationLevel Level) { 695 FunctionPassManager FPM; 696 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 697 FPM.addPass(AMDGPUUseNativeCallsPass()); 698 if (EnableLibCallSimplify && Level != OptimizationLevel::O0) 699 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 700 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 701 }); 702 703 PB.registerPipelineEarlySimplificationEPCallback( 704 [this](ModulePassManager &PM, OptimizationLevel Level) { 705 if (Level == OptimizationLevel::O0) 706 return; 707 708 PM.addPass(AMDGPUUnifyMetadataPass()); 709 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 710 711 if (InternalizeSymbols) { 712 PM.addPass(InternalizePass(mustPreserveGV)); 713 } 714 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 715 if (InternalizeSymbols) { 716 PM.addPass(GlobalDCEPass()); 717 } 718 if (EarlyInlineAll && !EnableFunctionCalls) 719 PM.addPass(AMDGPUAlwaysInlinePass()); 720 }); 721 722 PB.registerCGSCCOptimizerLateEPCallback( 723 [this](CGSCCPassManager &PM, OptimizationLevel Level) { 724 if (Level == OptimizationLevel::O0) 725 return; 726 727 FunctionPassManager FPM; 728 729 // Add infer address spaces pass to the opt pipeline after inlining 730 // but before SROA to increase SROA opportunities. 731 FPM.addPass(InferAddressSpacesPass()); 732 733 // This should run after inlining to have any chance of doing 734 // anything, and before other cleanup optimizations. 735 FPM.addPass(AMDGPULowerKernelAttributesPass()); 736 737 if (Level != OptimizationLevel::O0) { 738 // Promote alloca to vector before SROA and loop unroll. If we 739 // manage to eliminate allocas before unroll we may choose to unroll 740 // less. 741 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 742 } 743 744 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 745 }); 746 } 747 748 //===----------------------------------------------------------------------===// 749 // R600 Target Machine (R600 -> Cayman) 750 //===----------------------------------------------------------------------===// 751 752 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 753 StringRef CPU, StringRef FS, 754 TargetOptions Options, 755 Optional<Reloc::Model> RM, 756 Optional<CodeModel::Model> CM, 757 CodeGenOpt::Level OL, bool JIT) 758 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 759 setRequiresStructuredCFG(true); 760 761 // Override the default since calls aren't supported for r600. 762 if (EnableFunctionCalls && 763 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 764 EnableFunctionCalls = false; 765 } 766 767 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 768 const Function &F) const { 769 StringRef GPU = getGPUName(F); 770 StringRef FS = getFeatureString(F); 771 772 SmallString<128> SubtargetKey(GPU); 773 SubtargetKey.append(FS); 774 775 auto &I = SubtargetMap[SubtargetKey]; 776 if (!I) { 777 // This needs to be done before we create a new subtarget since any 778 // creation will depend on the TM and the code generation flags on the 779 // function that reside in TargetOptions. 780 resetTargetOptions(F); 781 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 782 } 783 784 return I.get(); 785 } 786 787 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 788 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 789 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 790 AddrSpace == AMDGPUAS::REGION_ADDRESS) 791 ? -1 792 : 0; 793 } 794 795 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 796 unsigned DestAS) const { 797 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 798 AMDGPU::isFlatGlobalAddrSpace(DestAS); 799 } 800 801 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 802 const auto *LD = dyn_cast<LoadInst>(V); 803 if (!LD) 804 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 805 806 // It must be a generic pointer loaded. 807 assert(V->getType()->isPointerTy() && 808 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 809 810 const auto *Ptr = LD->getPointerOperand(); 811 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 812 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 813 // For a generic pointer loaded from the constant memory, it could be assumed 814 // as a global pointer since the constant memory is only populated on the 815 // host side. As implied by the offload programming model, only global 816 // pointers could be referenced on the host side. 817 return AMDGPUAS::GLOBAL_ADDRESS; 818 } 819 820 TargetTransformInfo 821 R600TargetMachine::getTargetTransformInfo(const Function &F) { 822 return TargetTransformInfo(R600TTIImpl(this, F)); 823 } 824 825 //===----------------------------------------------------------------------===// 826 // GCN Target Machine (SI+) 827 //===----------------------------------------------------------------------===// 828 829 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 830 StringRef CPU, StringRef FS, 831 TargetOptions Options, 832 Optional<Reloc::Model> RM, 833 Optional<CodeModel::Model> CM, 834 CodeGenOpt::Level OL, bool JIT) 835 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 836 837 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 838 StringRef GPU = getGPUName(F); 839 StringRef FS = getFeatureString(F); 840 841 SmallString<128> SubtargetKey(GPU); 842 SubtargetKey.append(FS); 843 844 auto &I = SubtargetMap[SubtargetKey]; 845 if (!I) { 846 // This needs to be done before we create a new subtarget since any 847 // creation will depend on the TM and the code generation flags on the 848 // function that reside in TargetOptions. 849 resetTargetOptions(F); 850 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 851 } 852 853 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 854 855 return I.get(); 856 } 857 858 TargetTransformInfo 859 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 860 return TargetTransformInfo(GCNTTIImpl(this, F)); 861 } 862 863 //===----------------------------------------------------------------------===// 864 // AMDGPU Pass Setup 865 //===----------------------------------------------------------------------===// 866 867 namespace { 868 869 class AMDGPUPassConfig : public TargetPassConfig { 870 public: 871 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 872 : TargetPassConfig(TM, PM) { 873 // Exceptions and StackMaps are not supported, so these passes will never do 874 // anything. 875 disablePass(&StackMapLivenessID); 876 disablePass(&FuncletLayoutID); 877 // Garbage collection is not supported. 878 disablePass(&GCLoweringID); 879 disablePass(&ShadowStackGCLoweringID); 880 } 881 882 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 883 return getTM<AMDGPUTargetMachine>(); 884 } 885 886 ScheduleDAGInstrs * 887 createMachineScheduler(MachineSchedContext *C) const override { 888 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 889 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 890 return DAG; 891 } 892 893 void addEarlyCSEOrGVNPass(); 894 void addStraightLineScalarOptimizationPasses(); 895 void addIRPasses() override; 896 void addCodeGenPrepare() override; 897 bool addPreISel() override; 898 bool addInstSelector() override; 899 bool addGCPasses() override; 900 901 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 902 903 /// Check if a pass is enabled given \p Opt option. The option always 904 /// overrides defaults if explicitely used. Otherwise its default will 905 /// be used given that a pass shall work at an optimization \p Level 906 /// minimum. 907 bool isPassEnabled(const cl::opt<bool> &Opt, 908 CodeGenOpt::Level Level = CodeGenOpt::Default) const { 909 if (Opt.getNumOccurrences()) 910 return Opt; 911 if (TM->getOptLevel() < Level) 912 return false; 913 return Opt; 914 } 915 }; 916 917 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 918 return getStandardCSEConfigForOpt(TM->getOptLevel()); 919 } 920 921 class R600PassConfig final : public AMDGPUPassConfig { 922 public: 923 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 924 : AMDGPUPassConfig(TM, PM) {} 925 926 ScheduleDAGInstrs *createMachineScheduler( 927 MachineSchedContext *C) const override { 928 return createR600MachineScheduler(C); 929 } 930 931 bool addPreISel() override; 932 bool addInstSelector() override; 933 void addPreRegAlloc() override; 934 void addPreSched2() override; 935 void addPreEmitPass() override; 936 }; 937 938 class GCNPassConfig final : public AMDGPUPassConfig { 939 public: 940 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 941 : AMDGPUPassConfig(TM, PM) { 942 // It is necessary to know the register usage of the entire call graph. We 943 // allow calls without EnableAMDGPUFunctionCalls if they are marked 944 // noinline, so this is always required. 945 setRequiresCodeGenSCCOrder(true); 946 } 947 948 GCNTargetMachine &getGCNTargetMachine() const { 949 return getTM<GCNTargetMachine>(); 950 } 951 952 ScheduleDAGInstrs * 953 createMachineScheduler(MachineSchedContext *C) const override; 954 955 bool addPreISel() override; 956 void addMachineSSAOptimization() override; 957 bool addILPOpts() override; 958 bool addInstSelector() override; 959 bool addIRTranslator() override; 960 void addPreLegalizeMachineIR() override; 961 bool addLegalizeMachineIR() override; 962 void addPreRegBankSelect() override; 963 bool addRegBankSelect() override; 964 void addPreGlobalInstructionSelect() override; 965 bool addGlobalInstructionSelect() override; 966 void addFastRegAlloc() override; 967 void addOptimizedRegAlloc() override; 968 969 FunctionPass *createSGPRAllocPass(bool Optimized); 970 FunctionPass *createVGPRAllocPass(bool Optimized); 971 FunctionPass *createRegAllocPass(bool Optimized) override; 972 973 bool addRegAssignAndRewriteFast() override; 974 bool addRegAssignAndRewriteOptimized() override; 975 976 void addPreRegAlloc() override; 977 bool addPreRewrite() override; 978 void addPostRegAlloc() override; 979 void addPreSched2() override; 980 void addPreEmitPass() override; 981 }; 982 983 } // end anonymous namespace 984 985 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 986 if (getOptLevel() == CodeGenOpt::Aggressive) 987 addPass(createGVNPass()); 988 else 989 addPass(createEarlyCSEPass()); 990 } 991 992 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 993 addPass(createLICMPass()); 994 addPass(createSeparateConstOffsetFromGEPPass()); 995 addPass(createSpeculativeExecutionPass()); 996 // ReassociateGEPs exposes more opportunites for SLSR. See 997 // the example in reassociate-geps-and-slsr.ll. 998 addPass(createStraightLineStrengthReducePass()); 999 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 1000 // EarlyCSE can reuse. 1001 addEarlyCSEOrGVNPass(); 1002 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 1003 addPass(createNaryReassociatePass()); 1004 // NaryReassociate on GEPs creates redundant common expressions, so run 1005 // EarlyCSE after it. 1006 addPass(createEarlyCSEPass()); 1007 } 1008 1009 void AMDGPUPassConfig::addIRPasses() { 1010 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 1011 1012 // There is no reason to run these. 1013 disablePass(&StackMapLivenessID); 1014 disablePass(&FuncletLayoutID); 1015 disablePass(&PatchableFunctionID); 1016 1017 addPass(createAMDGPUPrintfRuntimeBinding()); 1018 addPass(createAMDGPUCtorDtorLoweringPass()); 1019 1020 // This must occur before inlining, as the inliner will not look through 1021 // bitcast calls. 1022 addPass(createAMDGPUFixFunctionBitcastsPass()); 1023 1024 // A call to propagate attributes pass in the backend in case opt was not run. 1025 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 1026 1027 addPass(createAMDGPULowerIntrinsicsPass()); 1028 1029 // Function calls are not supported, so make sure we inline everything. 1030 addPass(createAMDGPUAlwaysInlinePass()); 1031 addPass(createAlwaysInlinerLegacyPass()); 1032 // We need to add the barrier noop pass, otherwise adding the function 1033 // inlining pass will cause all of the PassConfigs passes to be run 1034 // one function at a time, which means if we have a nodule with two 1035 // functions, then we will generate code for the first function 1036 // without ever running any passes on the second. 1037 addPass(createBarrierNoopPass()); 1038 1039 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 1040 if (TM.getTargetTriple().getArch() == Triple::r600) 1041 addPass(createR600OpenCLImageTypeLoweringPass()); 1042 1043 // Replace OpenCL enqueued block function pointers with global variables. 1044 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 1045 1046 // Can increase LDS used by kernel so runs before PromoteAlloca 1047 if (EnableLowerModuleLDS) { 1048 // The pass "amdgpu-replace-lds-use-with-pointer" need to be run before the 1049 // pass "amdgpu-lower-module-lds", and also it required to be run only if 1050 // "amdgpu-lower-module-lds" pass is enabled. 1051 if (EnableLDSReplaceWithPointer) 1052 addPass(createAMDGPUReplaceLDSUseWithPointerPass()); 1053 1054 addPass(createAMDGPULowerModuleLDSPass()); 1055 } 1056 1057 if (TM.getOptLevel() > CodeGenOpt::None) 1058 addPass(createInferAddressSpacesPass()); 1059 1060 addPass(createAtomicExpandPass()); 1061 1062 if (TM.getOptLevel() > CodeGenOpt::None) { 1063 addPass(createAMDGPUPromoteAlloca()); 1064 1065 if (EnableSROA) 1066 addPass(createSROAPass()); 1067 if (isPassEnabled(EnableScalarIRPasses)) 1068 addStraightLineScalarOptimizationPasses(); 1069 1070 if (EnableAMDGPUAliasAnalysis) { 1071 addPass(createAMDGPUAAWrapperPass()); 1072 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 1073 AAResults &AAR) { 1074 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 1075 AAR.addAAResult(WrapperPass->getResult()); 1076 })); 1077 } 1078 1079 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1080 // TODO: May want to move later or split into an early and late one. 1081 addPass(createAMDGPUCodeGenPreparePass()); 1082 } 1083 } 1084 1085 TargetPassConfig::addIRPasses(); 1086 1087 // EarlyCSE is not always strong enough to clean up what LSR produces. For 1088 // example, GVN can combine 1089 // 1090 // %0 = add %a, %b 1091 // %1 = add %b, %a 1092 // 1093 // and 1094 // 1095 // %0 = shl nsw %a, 2 1096 // %1 = shl %a, 2 1097 // 1098 // but EarlyCSE can do neither of them. 1099 if (isPassEnabled(EnableScalarIRPasses)) 1100 addEarlyCSEOrGVNPass(); 1101 } 1102 1103 void AMDGPUPassConfig::addCodeGenPrepare() { 1104 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 1105 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 1106 1107 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 1108 EnableLowerKernelArguments) 1109 addPass(createAMDGPULowerKernelArgumentsPass()); 1110 1111 TargetPassConfig::addCodeGenPrepare(); 1112 1113 if (isPassEnabled(EnableLoadStoreVectorizer)) 1114 addPass(createLoadStoreVectorizerPass()); 1115 1116 // LowerSwitch pass may introduce unreachable blocks that can 1117 // cause unexpected behavior for subsequent passes. Placing it 1118 // here seems better that these blocks would get cleaned up by 1119 // UnreachableBlockElim inserted next in the pass flow. 1120 addPass(createLowerSwitchPass()); 1121 } 1122 1123 bool AMDGPUPassConfig::addPreISel() { 1124 if (TM->getOptLevel() > CodeGenOpt::None) 1125 addPass(createFlattenCFGPass()); 1126 return false; 1127 } 1128 1129 bool AMDGPUPassConfig::addInstSelector() { 1130 // Defer the verifier until FinalizeISel. 1131 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 1132 return false; 1133 } 1134 1135 bool AMDGPUPassConfig::addGCPasses() { 1136 // Do nothing. GC is not supported. 1137 return false; 1138 } 1139 1140 //===----------------------------------------------------------------------===// 1141 // R600 Pass Setup 1142 //===----------------------------------------------------------------------===// 1143 1144 bool R600PassConfig::addPreISel() { 1145 AMDGPUPassConfig::addPreISel(); 1146 1147 if (EnableR600StructurizeCFG) 1148 addPass(createStructurizeCFGPass()); 1149 return false; 1150 } 1151 1152 bool R600PassConfig::addInstSelector() { 1153 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 1154 return false; 1155 } 1156 1157 void R600PassConfig::addPreRegAlloc() { 1158 addPass(createR600VectorRegMerger()); 1159 } 1160 1161 void R600PassConfig::addPreSched2() { 1162 addPass(createR600EmitClauseMarkers(), false); 1163 if (EnableR600IfConvert) 1164 addPass(&IfConverterID, false); 1165 addPass(createR600ClauseMergePass(), false); 1166 } 1167 1168 void R600PassConfig::addPreEmitPass() { 1169 addPass(createAMDGPUCFGStructurizerPass(), false); 1170 addPass(createR600ExpandSpecialInstrsPass(), false); 1171 addPass(&FinalizeMachineBundlesID, false); 1172 addPass(createR600Packetizer(), false); 1173 addPass(createR600ControlFlowFinalizer(), false); 1174 } 1175 1176 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 1177 return new R600PassConfig(*this, PM); 1178 } 1179 1180 //===----------------------------------------------------------------------===// 1181 // GCN Pass Setup 1182 //===----------------------------------------------------------------------===// 1183 1184 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1185 MachineSchedContext *C) const { 1186 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1187 if (ST.enableSIScheduler()) 1188 return createSIMachineScheduler(C); 1189 return createGCNMaxOccupancyMachineScheduler(C); 1190 } 1191 1192 bool GCNPassConfig::addPreISel() { 1193 AMDGPUPassConfig::addPreISel(); 1194 1195 if (TM->getOptLevel() > CodeGenOpt::None) 1196 addPass(createAMDGPULateCodeGenPreparePass()); 1197 1198 if (isPassEnabled(EnableAtomicOptimizations, CodeGenOpt::Less)) { 1199 addPass(createAMDGPUAtomicOptimizerPass()); 1200 } 1201 1202 if (TM->getOptLevel() > CodeGenOpt::None) 1203 addPass(createSinkingPass()); 1204 1205 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1206 // regions formed by them. 1207 addPass(&AMDGPUUnifyDivergentExitNodesID); 1208 if (!LateCFGStructurize) { 1209 if (EnableStructurizerWorkarounds) { 1210 addPass(createFixIrreduciblePass()); 1211 addPass(createUnifyLoopExitsPass()); 1212 } 1213 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1214 } 1215 addPass(createAMDGPUAnnotateUniformValues()); 1216 if (!LateCFGStructurize) { 1217 addPass(createSIAnnotateControlFlowPass()); 1218 } 1219 addPass(createLCSSAPass()); 1220 1221 if (TM->getOptLevel() > CodeGenOpt::Less) 1222 addPass(&AMDGPUPerfHintAnalysisID); 1223 1224 return false; 1225 } 1226 1227 void GCNPassConfig::addMachineSSAOptimization() { 1228 TargetPassConfig::addMachineSSAOptimization(); 1229 1230 // We want to fold operands after PeepholeOptimizer has run (or as part of 1231 // it), because it will eliminate extra copies making it easier to fold the 1232 // real source operand. We want to eliminate dead instructions after, so that 1233 // we see fewer uses of the copies. We then need to clean up the dead 1234 // instructions leftover after the operands are folded as well. 1235 // 1236 // XXX - Can we get away without running DeadMachineInstructionElim again? 1237 addPass(&SIFoldOperandsID); 1238 if (EnableDPPCombine) 1239 addPass(&GCNDPPCombineID); 1240 addPass(&SILoadStoreOptimizerID); 1241 if (isPassEnabled(EnableSDWAPeephole)) { 1242 addPass(&SIPeepholeSDWAID); 1243 addPass(&EarlyMachineLICMID); 1244 addPass(&MachineCSEID); 1245 addPass(&SIFoldOperandsID); 1246 } 1247 addPass(&DeadMachineInstructionElimID); 1248 addPass(createSIShrinkInstructionsPass()); 1249 } 1250 1251 bool GCNPassConfig::addILPOpts() { 1252 if (EnableEarlyIfConversion) 1253 addPass(&EarlyIfConverterID); 1254 1255 TargetPassConfig::addILPOpts(); 1256 return false; 1257 } 1258 1259 bool GCNPassConfig::addInstSelector() { 1260 AMDGPUPassConfig::addInstSelector(); 1261 addPass(&SIFixSGPRCopiesID); 1262 addPass(createSILowerI1CopiesPass()); 1263 return false; 1264 } 1265 1266 bool GCNPassConfig::addIRTranslator() { 1267 addPass(new IRTranslator(getOptLevel())); 1268 return false; 1269 } 1270 1271 void GCNPassConfig::addPreLegalizeMachineIR() { 1272 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1273 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1274 addPass(new Localizer()); 1275 } 1276 1277 bool GCNPassConfig::addLegalizeMachineIR() { 1278 addPass(new Legalizer()); 1279 return false; 1280 } 1281 1282 void GCNPassConfig::addPreRegBankSelect() { 1283 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1284 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1285 } 1286 1287 bool GCNPassConfig::addRegBankSelect() { 1288 addPass(new RegBankSelect()); 1289 return false; 1290 } 1291 1292 void GCNPassConfig::addPreGlobalInstructionSelect() { 1293 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1294 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1295 } 1296 1297 bool GCNPassConfig::addGlobalInstructionSelect() { 1298 addPass(new InstructionSelect(getOptLevel())); 1299 return false; 1300 } 1301 1302 void GCNPassConfig::addPreRegAlloc() { 1303 if (LateCFGStructurize) { 1304 addPass(createAMDGPUMachineCFGStructurizerPass()); 1305 } 1306 } 1307 1308 void GCNPassConfig::addFastRegAlloc() { 1309 // FIXME: We have to disable the verifier here because of PHIElimination + 1310 // TwoAddressInstructions disabling it. 1311 1312 // This must be run immediately after phi elimination and before 1313 // TwoAddressInstructions, otherwise the processing of the tied operand of 1314 // SI_ELSE will introduce a copy of the tied operand source after the else. 1315 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1316 1317 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1318 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1319 1320 TargetPassConfig::addFastRegAlloc(); 1321 } 1322 1323 void GCNPassConfig::addOptimizedRegAlloc() { 1324 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1325 // instructions that cause scheduling barriers. 1326 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1327 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1328 1329 if (OptExecMaskPreRA) 1330 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1331 1332 if (isPassEnabled(EnablePreRAOptimizations)) 1333 insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID); 1334 1335 // This is not an essential optimization and it has a noticeable impact on 1336 // compilation time, so we only enable it from O2. 1337 if (TM->getOptLevel() > CodeGenOpt::Less) 1338 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1339 1340 // FIXME: when an instruction has a Killed operand, and the instruction is 1341 // inside a bundle, seems only the BUNDLE instruction appears as the Kills of 1342 // the register in LiveVariables, this would trigger a failure in verifier, 1343 // we should fix it and enable the verifier. 1344 if (OptVGPRLiveRange) 1345 insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID, false); 1346 // This must be run immediately after phi elimination and before 1347 // TwoAddressInstructions, otherwise the processing of the tied operand of 1348 // SI_ELSE will introduce a copy of the tied operand source after the else. 1349 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1350 1351 if (EnableDCEInRA) 1352 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1353 1354 TargetPassConfig::addOptimizedRegAlloc(); 1355 } 1356 1357 bool GCNPassConfig::addPreRewrite() { 1358 if (EnableRegReassign) 1359 addPass(&GCNNSAReassignID); 1360 return true; 1361 } 1362 1363 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) { 1364 // Initialize the global default. 1365 llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag, 1366 initializeDefaultSGPRRegisterAllocatorOnce); 1367 1368 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 1369 if (Ctor != useDefaultRegisterAllocator) 1370 return Ctor(); 1371 1372 if (Optimized) 1373 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 1374 1375 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 1376 } 1377 1378 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) { 1379 // Initialize the global default. 1380 llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag, 1381 initializeDefaultVGPRRegisterAllocatorOnce); 1382 1383 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 1384 if (Ctor != useDefaultRegisterAllocator) 1385 return Ctor(); 1386 1387 if (Optimized) 1388 return createGreedyVGPRRegisterAllocator(); 1389 1390 return createFastVGPRRegisterAllocator(); 1391 } 1392 1393 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) { 1394 llvm_unreachable("should not be used"); 1395 } 1396 1397 static const char RegAllocOptNotSupportedMessage[] = 1398 "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc"; 1399 1400 bool GCNPassConfig::addRegAssignAndRewriteFast() { 1401 if (!usingDefaultRegAlloc()) 1402 report_fatal_error(RegAllocOptNotSupportedMessage); 1403 1404 addPass(createSGPRAllocPass(false)); 1405 1406 // Equivalent of PEI for SGPRs. 1407 addPass(&SILowerSGPRSpillsID); 1408 1409 addPass(createVGPRAllocPass(false)); 1410 return true; 1411 } 1412 1413 bool GCNPassConfig::addRegAssignAndRewriteOptimized() { 1414 if (!usingDefaultRegAlloc()) 1415 report_fatal_error(RegAllocOptNotSupportedMessage); 1416 1417 addPass(createSGPRAllocPass(true)); 1418 1419 // Commit allocated register changes. This is mostly necessary because too 1420 // many things rely on the use lists of the physical registers, such as the 1421 // verifier. This is only necessary with allocators which use LiveIntervals, 1422 // since FastRegAlloc does the replacments itself. 1423 addPass(createVirtRegRewriter(false)); 1424 1425 // Equivalent of PEI for SGPRs. 1426 addPass(&SILowerSGPRSpillsID); 1427 1428 addPass(createVGPRAllocPass(true)); 1429 1430 addPreRewrite(); 1431 addPass(&VirtRegRewriterID); 1432 1433 return true; 1434 } 1435 1436 void GCNPassConfig::addPostRegAlloc() { 1437 addPass(&SIFixVGPRCopiesID); 1438 if (getOptLevel() > CodeGenOpt::None) 1439 addPass(&SIOptimizeExecMaskingID); 1440 TargetPassConfig::addPostRegAlloc(); 1441 } 1442 1443 void GCNPassConfig::addPreSched2() { 1444 addPass(&SIPostRABundlerID); 1445 } 1446 1447 void GCNPassConfig::addPreEmitPass() { 1448 addPass(createSIMemoryLegalizerPass()); 1449 addPass(createSIInsertWaitcntsPass()); 1450 1451 if (TM->getOptLevel() > CodeGenOpt::None) 1452 addPass(createSIShrinkInstructionsPass()); 1453 1454 addPass(createSIModeRegisterPass()); 1455 1456 if (getOptLevel() > CodeGenOpt::None) 1457 addPass(&SIInsertHardClausesID); 1458 1459 addPass(&SILateBranchLoweringPassID); 1460 if (getOptLevel() > CodeGenOpt::None) 1461 addPass(&SIPreEmitPeepholeID); 1462 // The hazard recognizer that runs as part of the post-ra scheduler does not 1463 // guarantee to be able handle all hazards correctly. This is because if there 1464 // are multiple scheduling regions in a basic block, the regions are scheduled 1465 // bottom up, so when we begin to schedule a region we don't know what 1466 // instructions were emitted directly before it. 1467 // 1468 // Here we add a stand-alone hazard recognizer pass which can handle all 1469 // cases. 1470 addPass(&PostRAHazardRecognizerID); 1471 addPass(&BranchRelaxationPassID); 1472 } 1473 1474 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1475 return new GCNPassConfig(*this, PM); 1476 } 1477 1478 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1479 return new yaml::SIMachineFunctionInfo(); 1480 } 1481 1482 yaml::MachineFunctionInfo * 1483 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1484 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1485 return new yaml::SIMachineFunctionInfo( 1486 *MFI, *MF.getSubtarget().getRegisterInfo(), MF); 1487 } 1488 1489 bool GCNTargetMachine::parseMachineFunctionInfo( 1490 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1491 SMDiagnostic &Error, SMRange &SourceRange) const { 1492 const yaml::SIMachineFunctionInfo &YamlMFI = 1493 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1494 MachineFunction &MF = PFS.MF; 1495 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1496 1497 if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange)) 1498 return true; 1499 1500 if (MFI->Occupancy == 0) { 1501 // Fixup the subtarget dependent default value. 1502 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1503 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1504 } 1505 1506 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1507 Register TempReg; 1508 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1509 SourceRange = RegName.SourceRange; 1510 return true; 1511 } 1512 RegVal = TempReg; 1513 1514 return false; 1515 }; 1516 1517 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1518 // Create a diagnostic for a the register string literal. 1519 const MemoryBuffer &Buffer = 1520 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1521 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1522 RegName.Value.size(), SourceMgr::DK_Error, 1523 "incorrect register class for field", RegName.Value, 1524 None, None); 1525 SourceRange = RegName.SourceRange; 1526 return true; 1527 }; 1528 1529 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1530 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1531 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1532 return true; 1533 1534 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1535 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1536 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1537 } 1538 1539 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1540 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1541 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1542 } 1543 1544 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1545 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1546 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1547 } 1548 1549 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1550 const TargetRegisterClass &RC, 1551 ArgDescriptor &Arg, unsigned UserSGPRs, 1552 unsigned SystemSGPRs) { 1553 // Skip parsing if it's not present. 1554 if (!A) 1555 return false; 1556 1557 if (A->IsRegister) { 1558 Register Reg; 1559 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1560 SourceRange = A->RegisterName.SourceRange; 1561 return true; 1562 } 1563 if (!RC.contains(Reg)) 1564 return diagnoseRegisterClass(A->RegisterName); 1565 Arg = ArgDescriptor::createRegister(Reg); 1566 } else 1567 Arg = ArgDescriptor::createStack(A->StackOffset); 1568 // Check and apply the optional mask. 1569 if (A->Mask) 1570 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1571 1572 MFI->NumUserSGPRs += UserSGPRs; 1573 MFI->NumSystemSGPRs += SystemSGPRs; 1574 return false; 1575 }; 1576 1577 if (YamlMFI.ArgInfo && 1578 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1579 AMDGPU::SGPR_128RegClass, 1580 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1581 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1582 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1583 2, 0) || 1584 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1585 MFI->ArgInfo.QueuePtr, 2, 0) || 1586 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1587 AMDGPU::SReg_64RegClass, 1588 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1589 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1590 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1591 2, 0) || 1592 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1593 AMDGPU::SReg_64RegClass, 1594 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1595 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1596 AMDGPU::SGPR_32RegClass, 1597 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1598 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1599 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1600 0, 1) || 1601 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1602 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1603 0, 1) || 1604 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1605 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1606 0, 1) || 1607 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1608 AMDGPU::SGPR_32RegClass, 1609 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1610 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1611 AMDGPU::SGPR_32RegClass, 1612 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1613 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1614 AMDGPU::SReg_64RegClass, 1615 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1616 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1617 AMDGPU::SReg_64RegClass, 1618 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1619 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1620 AMDGPU::VGPR_32RegClass, 1621 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1622 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1623 AMDGPU::VGPR_32RegClass, 1624 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1625 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1626 AMDGPU::VGPR_32RegClass, 1627 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1628 return true; 1629 1630 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1631 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1632 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1633 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1634 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1635 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1636 1637 return false; 1638 } 1639