1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUExportClustering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 28 #include "R600MachineScheduler.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "SIMachineScheduler.h" 31 #include "TargetInfo/AMDGPUTargetInfo.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 34 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 35 #include "llvm/CodeGen/GlobalISel/Localizer.h" 36 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 37 #include "llvm/CodeGen/MIRParser/MIParser.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/LegacyPassManager.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Target/TargetLoweringObjectFile.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Scalar/GVN.h" 54 #include "llvm/Transforms/Utils.h" 55 #include "llvm/Transforms/Vectorize.h" 56 #include <memory> 57 58 using namespace llvm; 59 60 static cl::opt<bool> EnableR600StructurizeCFG( 61 "r600-ir-structurize", 62 cl::desc("Use StructurizeCFG IR pass"), 63 cl::init(true)); 64 65 static cl::opt<bool> EnableSROA( 66 "amdgpu-sroa", 67 cl::desc("Run SROA after promote alloca pass"), 68 cl::ReallyHidden, 69 cl::init(true)); 70 71 static cl::opt<bool> 72 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 73 cl::desc("Run early if-conversion"), 74 cl::init(false)); 75 76 static cl::opt<bool> 77 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 78 cl::desc("Run pre-RA exec mask optimizations"), 79 cl::init(true)); 80 81 static cl::opt<bool> EnableR600IfConvert( 82 "r600-if-convert", 83 cl::desc("Use if conversion pass"), 84 cl::ReallyHidden, 85 cl::init(true)); 86 87 // Option to disable vectorizer for tests. 88 static cl::opt<bool> EnableLoadStoreVectorizer( 89 "amdgpu-load-store-vectorizer", 90 cl::desc("Enable load store vectorizer"), 91 cl::init(true), 92 cl::Hidden); 93 94 // Option to control global loads scalarization 95 static cl::opt<bool> ScalarizeGlobal( 96 "amdgpu-scalarize-global-loads", 97 cl::desc("Enable global load scalarization"), 98 cl::init(true), 99 cl::Hidden); 100 101 // Option to run internalize pass. 102 static cl::opt<bool> InternalizeSymbols( 103 "amdgpu-internalize-symbols", 104 cl::desc("Enable elimination of non-kernel functions and unused globals"), 105 cl::init(false), 106 cl::Hidden); 107 108 // Option to inline all early. 109 static cl::opt<bool> EarlyInlineAll( 110 "amdgpu-early-inline-all", 111 cl::desc("Inline all functions early"), 112 cl::init(false), 113 cl::Hidden); 114 115 static cl::opt<bool> EnableSDWAPeephole( 116 "amdgpu-sdwa-peephole", 117 cl::desc("Enable SDWA peepholer"), 118 cl::init(true)); 119 120 static cl::opt<bool> EnableDPPCombine( 121 "amdgpu-dpp-combine", 122 cl::desc("Enable DPP combiner"), 123 cl::init(true)); 124 125 // Enable address space based alias analysis 126 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 127 cl::desc("Enable AMDGPU Alias Analysis"), 128 cl::init(true)); 129 130 // Option to run late CFG structurizer 131 static cl::opt<bool, true> LateCFGStructurize( 132 "amdgpu-late-structurize", 133 cl::desc("Enable late CFG structurization"), 134 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 135 cl::Hidden); 136 137 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 138 "amdgpu-function-calls", 139 cl::desc("Enable AMDGPU function call support"), 140 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 141 cl::init(true), 142 cl::Hidden); 143 144 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 145 "amdgpu-fixed-function-abi", 146 cl::desc("Enable all implicit function arguments"), 147 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 148 cl::init(false), 149 cl::Hidden); 150 151 // Enable lib calls simplifications 152 static cl::opt<bool> EnableLibCallSimplify( 153 "amdgpu-simplify-libcall", 154 cl::desc("Enable amdgpu library simplifications"), 155 cl::init(true), 156 cl::Hidden); 157 158 static cl::opt<bool> EnableLowerKernelArguments( 159 "amdgpu-ir-lower-kernel-arguments", 160 cl::desc("Lower kernel argument loads in IR pass"), 161 cl::init(true), 162 cl::Hidden); 163 164 static cl::opt<bool> EnableRegReassign( 165 "amdgpu-reassign-regs", 166 cl::desc("Enable register reassign optimizations on gfx10+"), 167 cl::init(true), 168 cl::Hidden); 169 170 // Enable atomic optimization 171 static cl::opt<bool> EnableAtomicOptimizations( 172 "amdgpu-atomic-optimizations", 173 cl::desc("Enable atomic optimizations"), 174 cl::init(false), 175 cl::Hidden); 176 177 // Enable Mode register optimization 178 static cl::opt<bool> EnableSIModeRegisterPass( 179 "amdgpu-mode-register", 180 cl::desc("Enable mode register pass"), 181 cl::init(true), 182 cl::Hidden); 183 184 // Option is used in lit tests to prevent deadcoding of patterns inspected. 185 static cl::opt<bool> 186 EnableDCEInRA("amdgpu-dce-in-ra", 187 cl::init(true), cl::Hidden, 188 cl::desc("Enable machine DCE inside regalloc")); 189 190 static cl::opt<bool> EnableScalarIRPasses( 191 "amdgpu-scalar-ir-passes", 192 cl::desc("Enable scalar IR passes"), 193 cl::init(true), 194 cl::Hidden); 195 196 static cl::opt<bool> EnableStructurizerWorkarounds( 197 "amdgpu-enable-structurizer-workarounds", 198 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 199 cl::Hidden); 200 201 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 202 // Register the target 203 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 204 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 205 206 PassRegistry *PR = PassRegistry::getPassRegistry(); 207 initializeR600ClauseMergePassPass(*PR); 208 initializeR600ControlFlowFinalizerPass(*PR); 209 initializeR600PacketizerPass(*PR); 210 initializeR600ExpandSpecialInstrsPassPass(*PR); 211 initializeR600VectorRegMergerPass(*PR); 212 initializeGlobalISel(*PR); 213 initializeAMDGPUDAGToDAGISelPass(*PR); 214 initializeGCNDPPCombinePass(*PR); 215 initializeSILowerI1CopiesPass(*PR); 216 initializeSILowerSGPRSpillsPass(*PR); 217 initializeSIFixSGPRCopiesPass(*PR); 218 initializeSIFixVGPRCopiesPass(*PR); 219 initializeSIFoldOperandsPass(*PR); 220 initializeSIPeepholeSDWAPass(*PR); 221 initializeSIShrinkInstructionsPass(*PR); 222 initializeSIOptimizeExecMaskingPreRAPass(*PR); 223 initializeSILoadStoreOptimizerPass(*PR); 224 initializeAMDGPUFixFunctionBitcastsPass(*PR); 225 initializeAMDGPUAlwaysInlinePass(*PR); 226 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 227 initializeAMDGPUAnnotateUniformValuesPass(*PR); 228 initializeAMDGPUArgumentUsageInfoPass(*PR); 229 initializeAMDGPUAtomicOptimizerPass(*PR); 230 initializeAMDGPULowerKernelArgumentsPass(*PR); 231 initializeAMDGPULowerKernelAttributesPass(*PR); 232 initializeAMDGPULowerIntrinsicsPass(*PR); 233 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 234 initializeAMDGPUPostLegalizerCombinerPass(*PR); 235 initializeAMDGPUPreLegalizerCombinerPass(*PR); 236 initializeAMDGPUPromoteAllocaPass(*PR); 237 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 238 initializeAMDGPUCodeGenPreparePass(*PR); 239 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 240 initializeAMDGPUPropagateAttributesLatePass(*PR); 241 initializeAMDGPURewriteOutArgumentsPass(*PR); 242 initializeAMDGPUUnifyMetadataPass(*PR); 243 initializeSIAnnotateControlFlowPass(*PR); 244 initializeSIInsertHardClausesPass(*PR); 245 initializeSIInsertWaitcntsPass(*PR); 246 initializeSIModeRegisterPass(*PR); 247 initializeSIWholeQuadModePass(*PR); 248 initializeSILowerControlFlowPass(*PR); 249 initializeSIRemoveShortExecBranchesPass(*PR); 250 initializeSIPreEmitPeepholePass(*PR); 251 initializeSIInsertSkipsPass(*PR); 252 initializeSIMemoryLegalizerPass(*PR); 253 initializeSIOptimizeExecMaskingPass(*PR); 254 initializeSIPreAllocateWWMRegsPass(*PR); 255 initializeSIFormMemoryClausesPass(*PR); 256 initializeSIPostRABundlerPass(*PR); 257 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 258 initializeAMDGPUAAWrapperPassPass(*PR); 259 initializeAMDGPUExternalAAWrapperPass(*PR); 260 initializeAMDGPUUseNativeCallsPass(*PR); 261 initializeAMDGPUSimplifyLibCallsPass(*PR); 262 initializeAMDGPUInlinerPass(*PR); 263 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 264 initializeGCNRegBankReassignPass(*PR); 265 initializeGCNNSAReassignPass(*PR); 266 initializeSIAddIMGInitPass(*PR); 267 } 268 269 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 270 return std::make_unique<AMDGPUTargetObjectFile>(); 271 } 272 273 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 274 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 275 } 276 277 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 278 return new SIScheduleDAGMI(C); 279 } 280 281 static ScheduleDAGInstrs * 282 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 283 ScheduleDAGMILive *DAG = 284 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 285 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 286 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 287 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 288 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 289 return DAG; 290 } 291 292 static ScheduleDAGInstrs * 293 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 294 auto DAG = new GCNIterativeScheduler(C, 295 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 296 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 297 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 298 return DAG; 299 } 300 301 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 302 return new GCNIterativeScheduler(C, 303 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 304 } 305 306 static ScheduleDAGInstrs * 307 createIterativeILPMachineScheduler(MachineSchedContext *C) { 308 auto DAG = new GCNIterativeScheduler(C, 309 GCNIterativeScheduler::SCHEDULE_ILP); 310 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 311 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 312 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 313 return DAG; 314 } 315 316 static MachineSchedRegistry 317 R600SchedRegistry("r600", "Run R600's custom scheduler", 318 createR600MachineScheduler); 319 320 static MachineSchedRegistry 321 SISchedRegistry("si", "Run SI's custom scheduler", 322 createSIMachineScheduler); 323 324 static MachineSchedRegistry 325 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 326 "Run GCN scheduler to maximize occupancy", 327 createGCNMaxOccupancyMachineScheduler); 328 329 static MachineSchedRegistry 330 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 331 "Run GCN scheduler to maximize occupancy (experimental)", 332 createIterativeGCNMaxOccupancyMachineScheduler); 333 334 static MachineSchedRegistry 335 GCNMinRegSchedRegistry("gcn-minreg", 336 "Run GCN iterative scheduler for minimal register usage (experimental)", 337 createMinRegScheduler); 338 339 static MachineSchedRegistry 340 GCNILPSchedRegistry("gcn-ilp", 341 "Run GCN iterative scheduler for ILP scheduling (experimental)", 342 createIterativeILPMachineScheduler); 343 344 static StringRef computeDataLayout(const Triple &TT) { 345 if (TT.getArch() == Triple::r600) { 346 // 32-bit pointers. 347 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 348 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 349 } 350 351 // 32-bit private, local, and region pointers. 64-bit global, constant and 352 // flat, non-integral buffer fat pointers. 353 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 354 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 355 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 356 "-ni:7"; 357 } 358 359 LLVM_READNONE 360 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 361 if (!GPU.empty()) 362 return GPU; 363 364 // Need to default to a target with flat support for HSA. 365 if (TT.getArch() == Triple::amdgcn) 366 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 367 368 return "r600"; 369 } 370 371 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 372 // The AMDGPU toolchain only supports generating shared objects, so we 373 // must always use PIC. 374 return Reloc::PIC_; 375 } 376 377 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 378 StringRef CPU, StringRef FS, 379 TargetOptions Options, 380 Optional<Reloc::Model> RM, 381 Optional<CodeModel::Model> CM, 382 CodeGenOpt::Level OptLevel) 383 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 384 FS, Options, getEffectiveRelocModel(RM), 385 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 386 TLOF(createTLOF(getTargetTriple())) { 387 initAsmInfo(); 388 if (TT.getArch() == Triple::amdgcn) { 389 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 390 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 391 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 392 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 393 } 394 } 395 396 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 397 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 398 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 399 400 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 401 402 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 403 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 404 return GPUAttr.hasAttribute(Attribute::None) ? 405 getTargetCPU() : GPUAttr.getValueAsString(); 406 } 407 408 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 409 Attribute FSAttr = F.getFnAttribute("target-features"); 410 411 return FSAttr.hasAttribute(Attribute::None) ? 412 getTargetFeatureString() : 413 FSAttr.getValueAsString(); 414 } 415 416 /// Predicate for Internalize pass. 417 static bool mustPreserveGV(const GlobalValue &GV) { 418 if (const Function *F = dyn_cast<Function>(&GV)) 419 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 420 421 return !GV.use_empty(); 422 } 423 424 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 425 Builder.DivergentTarget = true; 426 427 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 428 bool Internalize = InternalizeSymbols; 429 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 430 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 431 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 432 433 if (EnableFunctionCalls) { 434 delete Builder.Inliner; 435 Builder.Inliner = createAMDGPUFunctionInliningPass(); 436 } 437 438 Builder.addExtension( 439 PassManagerBuilder::EP_ModuleOptimizerEarly, 440 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 441 legacy::PassManagerBase &PM) { 442 if (AMDGPUAA) { 443 PM.add(createAMDGPUAAWrapperPass()); 444 PM.add(createAMDGPUExternalAAWrapperPass()); 445 } 446 PM.add(createAMDGPUUnifyMetadataPass()); 447 PM.add(createAMDGPUPrintfRuntimeBinding()); 448 if (Internalize) 449 PM.add(createInternalizePass(mustPreserveGV)); 450 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 451 if (Internalize) 452 PM.add(createGlobalDCEPass()); 453 if (EarlyInline) 454 PM.add(createAMDGPUAlwaysInlinePass(false)); 455 }); 456 457 Builder.addExtension( 458 PassManagerBuilder::EP_EarlyAsPossible, 459 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 460 legacy::PassManagerBase &PM) { 461 if (AMDGPUAA) { 462 PM.add(createAMDGPUAAWrapperPass()); 463 PM.add(createAMDGPUExternalAAWrapperPass()); 464 } 465 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 466 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 467 if (LibCallSimplify) 468 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 469 }); 470 471 Builder.addExtension( 472 PassManagerBuilder::EP_CGSCCOptimizerLate, 473 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 474 // Add infer address spaces pass to the opt pipeline after inlining 475 // but before SROA to increase SROA opportunities. 476 PM.add(createInferAddressSpacesPass()); 477 478 // This should run after inlining to have any chance of doing anything, 479 // and before other cleanup optimizations. 480 PM.add(createAMDGPULowerKernelAttributesPass()); 481 482 // Promote alloca to vector before SROA and loop unroll. If we manage 483 // to eliminate allocas before unroll we may choose to unroll less. 484 if (EnableOpt) 485 PM.add(createAMDGPUPromoteAllocaToVector()); 486 }); 487 } 488 489 //===----------------------------------------------------------------------===// 490 // R600 Target Machine (R600 -> Cayman) 491 //===----------------------------------------------------------------------===// 492 493 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 494 StringRef CPU, StringRef FS, 495 TargetOptions Options, 496 Optional<Reloc::Model> RM, 497 Optional<CodeModel::Model> CM, 498 CodeGenOpt::Level OL, bool JIT) 499 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 500 setRequiresStructuredCFG(true); 501 502 // Override the default since calls aren't supported for r600. 503 if (EnableFunctionCalls && 504 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 505 EnableFunctionCalls = false; 506 } 507 508 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 509 const Function &F) const { 510 StringRef GPU = getGPUName(F); 511 StringRef FS = getFeatureString(F); 512 513 SmallString<128> SubtargetKey(GPU); 514 SubtargetKey.append(FS); 515 516 auto &I = SubtargetMap[SubtargetKey]; 517 if (!I) { 518 // This needs to be done before we create a new subtarget since any 519 // creation will depend on the TM and the code generation flags on the 520 // function that reside in TargetOptions. 521 resetTargetOptions(F); 522 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 523 } 524 525 return I.get(); 526 } 527 528 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 529 unsigned DestAS) const { 530 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 531 AMDGPU::isFlatGlobalAddrSpace(DestAS); 532 } 533 534 TargetTransformInfo 535 R600TargetMachine::getTargetTransformInfo(const Function &F) { 536 return TargetTransformInfo(R600TTIImpl(this, F)); 537 } 538 539 //===----------------------------------------------------------------------===// 540 // GCN Target Machine (SI+) 541 //===----------------------------------------------------------------------===// 542 543 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 544 StringRef CPU, StringRef FS, 545 TargetOptions Options, 546 Optional<Reloc::Model> RM, 547 Optional<CodeModel::Model> CM, 548 CodeGenOpt::Level OL, bool JIT) 549 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 550 551 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 552 StringRef GPU = getGPUName(F); 553 StringRef FS = getFeatureString(F); 554 555 SmallString<128> SubtargetKey(GPU); 556 SubtargetKey.append(FS); 557 558 auto &I = SubtargetMap[SubtargetKey]; 559 if (!I) { 560 // This needs to be done before we create a new subtarget since any 561 // creation will depend on the TM and the code generation flags on the 562 // function that reside in TargetOptions. 563 resetTargetOptions(F); 564 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 565 } 566 567 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 568 569 return I.get(); 570 } 571 572 TargetTransformInfo 573 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 574 return TargetTransformInfo(GCNTTIImpl(this, F)); 575 } 576 577 //===----------------------------------------------------------------------===// 578 // AMDGPU Pass Setup 579 //===----------------------------------------------------------------------===// 580 581 namespace { 582 583 class AMDGPUPassConfig : public TargetPassConfig { 584 public: 585 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 586 : TargetPassConfig(TM, PM) { 587 // Exceptions and StackMaps are not supported, so these passes will never do 588 // anything. 589 disablePass(&StackMapLivenessID); 590 disablePass(&FuncletLayoutID); 591 } 592 593 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 594 return getTM<AMDGPUTargetMachine>(); 595 } 596 597 ScheduleDAGInstrs * 598 createMachineScheduler(MachineSchedContext *C) const override { 599 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 600 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 601 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 602 return DAG; 603 } 604 605 void addEarlyCSEOrGVNPass(); 606 void addStraightLineScalarOptimizationPasses(); 607 void addIRPasses() override; 608 void addCodeGenPrepare() override; 609 bool addPreISel() override; 610 bool addInstSelector() override; 611 bool addGCPasses() override; 612 613 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 614 }; 615 616 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 617 return getStandardCSEConfigForOpt(TM->getOptLevel()); 618 } 619 620 class R600PassConfig final : public AMDGPUPassConfig { 621 public: 622 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 623 : AMDGPUPassConfig(TM, PM) {} 624 625 ScheduleDAGInstrs *createMachineScheduler( 626 MachineSchedContext *C) const override { 627 return createR600MachineScheduler(C); 628 } 629 630 bool addPreISel() override; 631 bool addInstSelector() override; 632 void addPreRegAlloc() override; 633 void addPreSched2() override; 634 void addPreEmitPass() override; 635 }; 636 637 class GCNPassConfig final : public AMDGPUPassConfig { 638 public: 639 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 640 : AMDGPUPassConfig(TM, PM) { 641 // It is necessary to know the register usage of the entire call graph. We 642 // allow calls without EnableAMDGPUFunctionCalls if they are marked 643 // noinline, so this is always required. 644 setRequiresCodeGenSCCOrder(true); 645 } 646 647 GCNTargetMachine &getGCNTargetMachine() const { 648 return getTM<GCNTargetMachine>(); 649 } 650 651 ScheduleDAGInstrs * 652 createMachineScheduler(MachineSchedContext *C) const override; 653 654 bool addPreISel() override; 655 void addMachineSSAOptimization() override; 656 bool addILPOpts() override; 657 bool addInstSelector() override; 658 bool addIRTranslator() override; 659 void addPreLegalizeMachineIR() override; 660 bool addLegalizeMachineIR() override; 661 void addPreRegBankSelect() override; 662 bool addRegBankSelect() override; 663 bool addGlobalInstructionSelect() override; 664 void addFastRegAlloc() override; 665 void addOptimizedRegAlloc() override; 666 void addPreRegAlloc() override; 667 bool addPreRewrite() override; 668 void addPostRegAlloc() override; 669 void addPreSched2() override; 670 void addPreEmitPass() override; 671 }; 672 673 } // end anonymous namespace 674 675 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 676 if (getOptLevel() == CodeGenOpt::Aggressive) 677 addPass(createGVNPass()); 678 else 679 addPass(createEarlyCSEPass()); 680 } 681 682 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 683 addPass(createLICMPass()); 684 addPass(createSeparateConstOffsetFromGEPPass()); 685 addPass(createSpeculativeExecutionPass()); 686 // ReassociateGEPs exposes more opportunites for SLSR. See 687 // the example in reassociate-geps-and-slsr.ll. 688 addPass(createStraightLineStrengthReducePass()); 689 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 690 // EarlyCSE can reuse. 691 addEarlyCSEOrGVNPass(); 692 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 693 addPass(createNaryReassociatePass()); 694 // NaryReassociate on GEPs creates redundant common expressions, so run 695 // EarlyCSE after it. 696 addPass(createEarlyCSEPass()); 697 } 698 699 void AMDGPUPassConfig::addIRPasses() { 700 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 701 702 // There is no reason to run these. 703 disablePass(&StackMapLivenessID); 704 disablePass(&FuncletLayoutID); 705 disablePass(&PatchableFunctionID); 706 707 addPass(createAMDGPUPrintfRuntimeBinding()); 708 709 // This must occur before inlining, as the inliner will not look through 710 // bitcast calls. 711 addPass(createAMDGPUFixFunctionBitcastsPass()); 712 713 // A call to propagate attributes pass in the backend in case opt was not run. 714 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 715 716 addPass(createAtomicExpandPass()); 717 718 719 addPass(createAMDGPULowerIntrinsicsPass()); 720 721 // Function calls are not supported, so make sure we inline everything. 722 addPass(createAMDGPUAlwaysInlinePass()); 723 addPass(createAlwaysInlinerLegacyPass()); 724 // We need to add the barrier noop pass, otherwise adding the function 725 // inlining pass will cause all of the PassConfigs passes to be run 726 // one function at a time, which means if we have a nodule with two 727 // functions, then we will generate code for the first function 728 // without ever running any passes on the second. 729 addPass(createBarrierNoopPass()); 730 731 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 732 if (TM.getTargetTriple().getArch() == Triple::r600) 733 addPass(createR600OpenCLImageTypeLoweringPass()); 734 735 // Replace OpenCL enqueued block function pointers with global variables. 736 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 737 738 if (TM.getOptLevel() > CodeGenOpt::None) { 739 addPass(createInferAddressSpacesPass()); 740 addPass(createAMDGPUPromoteAlloca()); 741 742 if (EnableSROA) 743 addPass(createSROAPass()); 744 745 if (EnableScalarIRPasses) 746 addStraightLineScalarOptimizationPasses(); 747 748 if (EnableAMDGPUAliasAnalysis) { 749 addPass(createAMDGPUAAWrapperPass()); 750 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 751 AAResults &AAR) { 752 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 753 AAR.addAAResult(WrapperPass->getResult()); 754 })); 755 } 756 } 757 758 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 759 // TODO: May want to move later or split into an early and late one. 760 addPass(createAMDGPUCodeGenPreparePass()); 761 } 762 763 TargetPassConfig::addIRPasses(); 764 765 // EarlyCSE is not always strong enough to clean up what LSR produces. For 766 // example, GVN can combine 767 // 768 // %0 = add %a, %b 769 // %1 = add %b, %a 770 // 771 // and 772 // 773 // %0 = shl nsw %a, 2 774 // %1 = shl %a, 2 775 // 776 // but EarlyCSE can do neither of them. 777 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 778 addEarlyCSEOrGVNPass(); 779 } 780 781 void AMDGPUPassConfig::addCodeGenPrepare() { 782 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 783 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 784 785 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 786 EnableLowerKernelArguments) 787 addPass(createAMDGPULowerKernelArgumentsPass()); 788 789 addPass(&AMDGPUPerfHintAnalysisID); 790 791 TargetPassConfig::addCodeGenPrepare(); 792 793 if (EnableLoadStoreVectorizer) 794 addPass(createLoadStoreVectorizerPass()); 795 796 // LowerSwitch pass may introduce unreachable blocks that can 797 // cause unexpected behavior for subsequent passes. Placing it 798 // here seems better that these blocks would get cleaned up by 799 // UnreachableBlockElim inserted next in the pass flow. 800 addPass(createLowerSwitchPass()); 801 } 802 803 bool AMDGPUPassConfig::addPreISel() { 804 addPass(createFlattenCFGPass()); 805 return false; 806 } 807 808 bool AMDGPUPassConfig::addInstSelector() { 809 // Defer the verifier until FinalizeISel. 810 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 811 return false; 812 } 813 814 bool AMDGPUPassConfig::addGCPasses() { 815 // Do nothing. GC is not supported. 816 return false; 817 } 818 819 //===----------------------------------------------------------------------===// 820 // R600 Pass Setup 821 //===----------------------------------------------------------------------===// 822 823 bool R600PassConfig::addPreISel() { 824 AMDGPUPassConfig::addPreISel(); 825 826 if (EnableR600StructurizeCFG) 827 addPass(createStructurizeCFGPass()); 828 return false; 829 } 830 831 bool R600PassConfig::addInstSelector() { 832 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 833 return false; 834 } 835 836 void R600PassConfig::addPreRegAlloc() { 837 addPass(createR600VectorRegMerger()); 838 } 839 840 void R600PassConfig::addPreSched2() { 841 addPass(createR600EmitClauseMarkers(), false); 842 if (EnableR600IfConvert) 843 addPass(&IfConverterID, false); 844 addPass(createR600ClauseMergePass(), false); 845 } 846 847 void R600PassConfig::addPreEmitPass() { 848 addPass(createAMDGPUCFGStructurizerPass(), false); 849 addPass(createR600ExpandSpecialInstrsPass(), false); 850 addPass(&FinalizeMachineBundlesID, false); 851 addPass(createR600Packetizer(), false); 852 addPass(createR600ControlFlowFinalizer(), false); 853 } 854 855 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 856 return new R600PassConfig(*this, PM); 857 } 858 859 //===----------------------------------------------------------------------===// 860 // GCN Pass Setup 861 //===----------------------------------------------------------------------===// 862 863 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 864 MachineSchedContext *C) const { 865 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 866 if (ST.enableSIScheduler()) 867 return createSIMachineScheduler(C); 868 return createGCNMaxOccupancyMachineScheduler(C); 869 } 870 871 bool GCNPassConfig::addPreISel() { 872 AMDGPUPassConfig::addPreISel(); 873 874 if (EnableAtomicOptimizations) { 875 addPass(createAMDGPUAtomicOptimizerPass()); 876 } 877 878 // FIXME: We need to run a pass to propagate the attributes when calls are 879 // supported. 880 881 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 882 // regions formed by them. 883 addPass(&AMDGPUUnifyDivergentExitNodesID); 884 if (!LateCFGStructurize) { 885 if (EnableStructurizerWorkarounds) { 886 addPass(createFixIrreduciblePass()); 887 addPass(createUnifyLoopExitsPass()); 888 } 889 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 890 } 891 addPass(createSinkingPass()); 892 addPass(createAMDGPUAnnotateUniformValues()); 893 if (!LateCFGStructurize) { 894 addPass(createSIAnnotateControlFlowPass()); 895 } 896 addPass(createLCSSAPass()); 897 898 return false; 899 } 900 901 void GCNPassConfig::addMachineSSAOptimization() { 902 TargetPassConfig::addMachineSSAOptimization(); 903 904 // We want to fold operands after PeepholeOptimizer has run (or as part of 905 // it), because it will eliminate extra copies making it easier to fold the 906 // real source operand. We want to eliminate dead instructions after, so that 907 // we see fewer uses of the copies. We then need to clean up the dead 908 // instructions leftover after the operands are folded as well. 909 // 910 // XXX - Can we get away without running DeadMachineInstructionElim again? 911 addPass(&SIFoldOperandsID); 912 if (EnableDPPCombine) 913 addPass(&GCNDPPCombineID); 914 addPass(&DeadMachineInstructionElimID); 915 addPass(&SILoadStoreOptimizerID); 916 if (EnableSDWAPeephole) { 917 addPass(&SIPeepholeSDWAID); 918 addPass(&EarlyMachineLICMID); 919 addPass(&MachineCSEID); 920 addPass(&SIFoldOperandsID); 921 addPass(&DeadMachineInstructionElimID); 922 } 923 addPass(createSIShrinkInstructionsPass()); 924 } 925 926 bool GCNPassConfig::addILPOpts() { 927 if (EnableEarlyIfConversion) 928 addPass(&EarlyIfConverterID); 929 930 TargetPassConfig::addILPOpts(); 931 return false; 932 } 933 934 bool GCNPassConfig::addInstSelector() { 935 AMDGPUPassConfig::addInstSelector(); 936 addPass(&SIFixSGPRCopiesID); 937 addPass(createSILowerI1CopiesPass()); 938 addPass(createSIAddIMGInitPass()); 939 return false; 940 } 941 942 bool GCNPassConfig::addIRTranslator() { 943 addPass(new IRTranslator()); 944 return false; 945 } 946 947 void GCNPassConfig::addPreLegalizeMachineIR() { 948 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 949 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 950 addPass(new Localizer()); 951 } 952 953 bool GCNPassConfig::addLegalizeMachineIR() { 954 addPass(new Legalizer()); 955 return false; 956 } 957 958 void GCNPassConfig::addPreRegBankSelect() { 959 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 960 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 961 } 962 963 bool GCNPassConfig::addRegBankSelect() { 964 addPass(new RegBankSelect()); 965 return false; 966 } 967 968 bool GCNPassConfig::addGlobalInstructionSelect() { 969 addPass(new InstructionSelect()); 970 return false; 971 } 972 973 void GCNPassConfig::addPreRegAlloc() { 974 if (LateCFGStructurize) { 975 addPass(createAMDGPUMachineCFGStructurizerPass()); 976 } 977 addPass(createSIWholeQuadModePass()); 978 } 979 980 void GCNPassConfig::addFastRegAlloc() { 981 // FIXME: We have to disable the verifier here because of PHIElimination + 982 // TwoAddressInstructions disabling it. 983 984 // This must be run immediately after phi elimination and before 985 // TwoAddressInstructions, otherwise the processing of the tied operand of 986 // SI_ELSE will introduce a copy of the tied operand source after the else. 987 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 988 989 // This must be run just after RegisterCoalescing. 990 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 991 992 TargetPassConfig::addFastRegAlloc(); 993 } 994 995 void GCNPassConfig::addOptimizedRegAlloc() { 996 if (OptExecMaskPreRA) 997 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 998 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 999 1000 // This must be run immediately after phi elimination and before 1001 // TwoAddressInstructions, otherwise the processing of the tied operand of 1002 // SI_ELSE will introduce a copy of the tied operand source after the else. 1003 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1004 1005 // This must be run just after RegisterCoalescing. 1006 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 1007 1008 if (EnableDCEInRA) 1009 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1010 1011 TargetPassConfig::addOptimizedRegAlloc(); 1012 } 1013 1014 bool GCNPassConfig::addPreRewrite() { 1015 if (EnableRegReassign) { 1016 addPass(&GCNNSAReassignID); 1017 addPass(&GCNRegBankReassignID); 1018 } 1019 return true; 1020 } 1021 1022 void GCNPassConfig::addPostRegAlloc() { 1023 addPass(&SIFixVGPRCopiesID); 1024 if (getOptLevel() > CodeGenOpt::None) 1025 addPass(&SIOptimizeExecMaskingID); 1026 TargetPassConfig::addPostRegAlloc(); 1027 1028 // Equivalent of PEI for SGPRs. 1029 addPass(&SILowerSGPRSpillsID); 1030 } 1031 1032 void GCNPassConfig::addPreSched2() { 1033 addPass(&SIPostRABundlerID); 1034 } 1035 1036 void GCNPassConfig::addPreEmitPass() { 1037 addPass(createSIMemoryLegalizerPass()); 1038 addPass(createSIInsertWaitcntsPass()); 1039 addPass(createSIShrinkInstructionsPass()); 1040 addPass(createSIModeRegisterPass()); 1041 1042 // The hazard recognizer that runs as part of the post-ra scheduler does not 1043 // guarantee to be able handle all hazards correctly. This is because if there 1044 // are multiple scheduling regions in a basic block, the regions are scheduled 1045 // bottom up, so when we begin to schedule a region we don't know what 1046 // instructions were emitted directly before it. 1047 // 1048 // Here we add a stand-alone hazard recognizer pass which can handle all 1049 // cases. 1050 // 1051 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 1052 // be better for it to emit S_NOP <N> when possible. 1053 addPass(&PostRAHazardRecognizerID); 1054 if (getOptLevel() > CodeGenOpt::None) 1055 addPass(&SIInsertHardClausesID); 1056 1057 addPass(&SIRemoveShortExecBranchesID); 1058 addPass(&SIInsertSkipsPassID); 1059 addPass(&SIPreEmitPeepholeID); 1060 addPass(&BranchRelaxationPassID); 1061 } 1062 1063 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1064 return new GCNPassConfig(*this, PM); 1065 } 1066 1067 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1068 return new yaml::SIMachineFunctionInfo(); 1069 } 1070 1071 yaml::MachineFunctionInfo * 1072 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1073 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1074 return new yaml::SIMachineFunctionInfo(*MFI, 1075 *MF.getSubtarget().getRegisterInfo()); 1076 } 1077 1078 bool GCNTargetMachine::parseMachineFunctionInfo( 1079 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1080 SMDiagnostic &Error, SMRange &SourceRange) const { 1081 const yaml::SIMachineFunctionInfo &YamlMFI = 1082 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1083 MachineFunction &MF = PFS.MF; 1084 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1085 1086 MFI->initializeBaseYamlFields(YamlMFI); 1087 1088 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1089 Register TempReg; 1090 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1091 SourceRange = RegName.SourceRange; 1092 return true; 1093 } 1094 RegVal = TempReg; 1095 1096 return false; 1097 }; 1098 1099 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1100 // Create a diagnostic for a the register string literal. 1101 const MemoryBuffer &Buffer = 1102 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1103 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1104 RegName.Value.size(), SourceMgr::DK_Error, 1105 "incorrect register class for field", RegName.Value, 1106 None, None); 1107 SourceRange = RegName.SourceRange; 1108 return true; 1109 }; 1110 1111 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1112 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1113 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1114 return true; 1115 1116 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1117 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1118 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1119 } 1120 1121 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1122 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1123 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1124 } 1125 1126 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1127 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1128 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1129 } 1130 1131 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1132 const TargetRegisterClass &RC, 1133 ArgDescriptor &Arg, unsigned UserSGPRs, 1134 unsigned SystemSGPRs) { 1135 // Skip parsing if it's not present. 1136 if (!A) 1137 return false; 1138 1139 if (A->IsRegister) { 1140 Register Reg; 1141 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1142 SourceRange = A->RegisterName.SourceRange; 1143 return true; 1144 } 1145 if (!RC.contains(Reg)) 1146 return diagnoseRegisterClass(A->RegisterName); 1147 Arg = ArgDescriptor::createRegister(Reg); 1148 } else 1149 Arg = ArgDescriptor::createStack(A->StackOffset); 1150 // Check and apply the optional mask. 1151 if (A->Mask) 1152 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1153 1154 MFI->NumUserSGPRs += UserSGPRs; 1155 MFI->NumSystemSGPRs += SystemSGPRs; 1156 return false; 1157 }; 1158 1159 if (YamlMFI.ArgInfo && 1160 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1161 AMDGPU::SGPR_128RegClass, 1162 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1163 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1164 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1165 2, 0) || 1166 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1167 MFI->ArgInfo.QueuePtr, 2, 0) || 1168 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1169 AMDGPU::SReg_64RegClass, 1170 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1171 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1172 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1173 2, 0) || 1174 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1175 AMDGPU::SReg_64RegClass, 1176 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1177 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1178 AMDGPU::SGPR_32RegClass, 1179 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1180 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1181 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1182 0, 1) || 1183 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1184 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1185 0, 1) || 1186 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1187 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1188 0, 1) || 1189 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1190 AMDGPU::SGPR_32RegClass, 1191 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1192 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1193 AMDGPU::SGPR_32RegClass, 1194 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1195 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1196 AMDGPU::SReg_64RegClass, 1197 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1198 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1199 AMDGPU::SReg_64RegClass, 1200 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1201 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1202 AMDGPU::VGPR_32RegClass, 1203 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1204 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1205 AMDGPU::VGPR_32RegClass, 1206 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1207 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1208 AMDGPU::VGPR_32RegClass, 1209 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1210 return true; 1211 1212 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1213 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1214 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1215 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1216 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1217 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1218 1219 return false; 1220 } 1221